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Abstract—In the current Grid environment, efficient workload 

management presents a significant challenge, for which there are 
exorbitant de facto standards encompassing resource discovery, 
brokerage, and data transfer, among others. In addition, the real-time 
resource status, essential for an optimal resource allocation strategy, 
is often not readily accessible. To address these issues and provide a 
cleaner abstraction of the Grid with the potential of generalizing into 
arbitrary resource-sharing environment, this paper proposes a new 
Condor-based pilot mechanism applied in the PanDA architecture, 
PanDA-PF WMS, with the goal of providing a more generic yet 
efficient resource allocating strategy. In this architecture, the PanDA 
server primarily acts as a repository of user jobs, responding to pilot 
requests from distributed, remote resources. Scheduling decisions are 
subsequently made according to the real-time resource information 
reported by pilots. Pilot Factory is a Condor-inspired solution for a 
scalable pilot dissemination and effectively functions as a resource 
provisioning mechanism through which the user-job server, PanDA, 
reaches out to the candidate resources only on demand. 
 

Keywords—Condor, glidein, PanDA, Pilot, Pilot Factory.  

I. INTRODUCTION 

N scientific community, many research and engineering 
projects over the past few years have gradually evolved to 

large-scale collaborations from different organizations through 
the use of geographically dispersed compute resources over 
the network. Projects that require such collaborative endeavor 
often involve cross-disciplinary settings with massive amount 
of data exchanged for the purpose of simulation and analysis 
such as Monte Carlo computing, large-scale optimization, and 
pattern discovery. Examples can be observed in ATLAS 
experiment [1-2], Human Genome Project [3], and 
SERENDIP [4], etc. To harness the distributed computational 
power, often the problem to solve is decomposed into several 
subtasks, whether it be independent user jobs or workflows 
containing several interdependent tasks (e.g. DAGMan [7]), 
followed by allocations to the desired compute resources for 
their results and feedback. Correspondingly, a user-friendly 
interface for task submissions, output retrievals and fast turn-
around time are among the core issues to be considered.  
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Further, it is foreseeable that the conjoint effort of shared 
and distributed resources will potentially extend beyond the 
boundaries of current dedicated clusters and computing farms, 
as seen in the conventional Grid, to the inclusion of sensor 
network, personal computers, mobile computers, etc as 
evidenced by the growth of Volunteer Computing [9] and 
Opportunistic Computing [15]. Heterogeneity of distributed 
compute resources will thus become increasingly prominent. 
Nevertheless, even with the current Grid environment of 
modest scale with mostly clouds of computing farms, there 
already exist highly diversified infrastructures in the aspects of 
resource brokerage, data transfer, site services, and resource 
access and sharing mechanisms, among many others.  

In light of the inherently complex and diversified resource-
sharing environment, perhaps a more generic framework is 
necessary to accommodate potentially multiple forms of 
computing resources. The proposed new workload 
management system (WMS) is therefore conceived based upon 
the existing PanDA system [12] and further extended by a new 
pilot mechanism, i.e. pilot factory. For the intent of later 
discussion, the new WMS referenced above is conveniently 
termed PanDA-PF WMS. The PanDA architecture is built 
mostly on top of the existing networking infrastructure and 
database technology with a user-friendly and uniform interface 
to task submission and scheduling. The PanDA system works 
naturally with general pilot mechanism [14], a method of 
resource allocation where pilots are distributed to candidate 
resources to capture their real-time information, prepare and 
validate the computing environment before requesting real 
payloads of pending user jobs. In this manner, users need not 
be concerned about the details and differences in the 
underlying Grid infrastructure such as its associated scheduler 
and brokerage system; meanwhile, the real-time resource status 
collected by pilots allows for a more robust job scheduling and 
processing without unexpected failures resulted from, for 
example, inaccurate estimate of resource capacity (e.g. load 
average, CPU time, remaining memory, etc), incomplete 
software stack, or missing input datasets.  

A. Cross-Domain Scheduling Issues  

An efficient resource allocation strategy often requires 
accurate resource status information, which not only includes 
static attributes such as CPU speed, total memory, and other 
system-wise configurations but also time-varying properties 
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with high dynamics such as current available CPU time, load 
average, remaining disk space, etc. In addition, it is imperative 
to ensure that the basic computing environment of a machine is 
well validated before injecting real job payloads in order to 
minimize unnecessary waste of computing resource. Empirical 
observations often indicate that a perfectly functioning 
compute resource can still fail to accomplish the task as a 
result of missing pieces of software, staging errors of input 
files and/or temporary unavailability of network connection, 
etc. However, the individual machine profile, being remote to 
the local administrative domain, is usually not directly 
obtainable; that is, the external resource often appears as a 
black box to the local user. Without reliable real-time status, it 
is difficult to apply scheduling policies accurately tailored for 
the job requirements idiosyncratic to different research and 
engineering projects. 

B. High-level View of the Proposed Architecture 

The workload management architecture under the PanDA 
framework achieves resource allocation by systematically 
sending a series of precursor jobs, namely pilots, to prepare 
candidate resources before fetching real payloads via PanDA 
server. Fig. 1 illustrates the PanDA system when applied to a 
typical Grid environment with multiple participating sites 
contributing resources. As shown from the figure, the user 
submits jobs to PanDA server via a simple client interface 
where each job defines the associated input and output files, 
desired matching criteria, and secure channels (e.g. HTTPS, 
GSIFTP, etc) from which job payloads can be obtained, etc. 
Note that the payload, in general, refers to any executables 
required for completing a task. These user jobs are then 
transmitted to the PanDA server via a secure HTTP, 
authenticated using Grid proxy certificates, followed by 
returns of submission status information to the client software. 
The pilot generator comes into the picture for disseminating 
pilots periodically to candidate compute resources with an 
adjustable rate. Optionally, PanDA server communicates with 
one or more distributed data management systems such as 
ATLAS DDM [13] to pre-stage input data required for given 
user jobs. Nonetheless, DDM and details of its data 
movements are complex subjects in their own rights and are 
not the primary focus of this paper. 

As suggested in Fig. 1, PanDA architecture follows the 
separation-of-concerns principle [17] by decoupling job 
submission, job retrieval, data management, and resource 
allocation to distributed components. In this manner, the 
architecture has the advantage of higher adaptability; that is, 
users are free to choose locally-customized systems or 
preferable platforms for each role in the flow of workload 
processing, thereby achieving software interoperability as is 
highly preferable in general and complex Grid settings [16]. 
For instance, pilots can be distributed via Condor-G [5], a 
Condor system extension that allows for jobs to be submitted 
over the Grid through Globus-enabled gatekeepers that bridge 
between sites across administrative domains. Other 
contemporary batch systems such as Glite [24] and PBS [8] 
are possible alternatives for pilot submissions.  

 
 

Fig. 1 High-level view of the PanDA architecture 
 
Under PanDA architecture, efficient job dispatch and 

resource utilization hinges upon timely resource discovery, job 
sandboxing, and impromptu status reporting of target 
machines. To this end, a more scalable and automated version 
of pilot generator, i.e. pilot factory, is developed based on 
Condor’s glidein mechanism [5].   

The rest of the paper is organized as follows: Section 2 
briefly introduces the design and current implementation of the 
PanDA system. Section 3 covers an overview of Condor [6], 
[7], [21] and discusses the role of Condor-based pilot factory 
in resource allocation. Numerical results that compare regular 
pilot dispatch using Condor-G and pilot-factory approach 
using Condor glidein is presented in section 4. Section 5 
describes the experience with the PanDA system on active 
scientific experiments. Section 6 outlines related study and 
open issues in workload management. Lastly, implications of 
the PanDA-PF WMS and related future research are presented 
in Section 7. 

II.  PANDA AND PILOT GENERATOR 

A. Terminology  

    Before proceeding to the details of the PanDA framework, it 
is helpful to elaborate some of the terminology used 
throughput the paper.  
    The current resource-sharing environment mainly includes 
two different categories: i) Grid Computing environment 
where the compute resource generally refers to the dedicated 
computing farms affiliated with certain organizations – such as 
companies, research labs, etc – that are mutually accountable, 
and ii) Volunteer Computing environment in which public 
processing and storage resources (typically PCs) are combined 
in an efficient way both architecturally and algorithmically as a 
conjoint effort to support computational needs from complex 
projects. In a futuristic sense, the second category can be 
extended to include any online computational devices such as 
mobile computers, sensor network, etc. Since the ultimate goal 
of the PanDA-PF WMS is to adapt to a general resource-
sharing environment regardless the underlying middleware, the 
party that provides compute resources is generally referred to 
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as a resource provider. This is analogous to the site affiliated 
with particular Virtual Organizations (or VOs) in the Grid 
literature.  

In a computational cluster, the particular server that 
manages the backend compute resources is referred to as a 
head node (or a front-end node) to be generic; it is analogous 
to, in Globus architecture, the gatekeeper machine which 
typically has a batch system installed such as Condor or PBS 
in order to further schedule the jobs to the desired backend 
resources. Such backend resources are sometimes referred to 
as worker nodes (WNs) in Grid Computing context [14], [19]. 

    For convenience, resource boundary is defined to refer to 
the set of available compute resources that are reachable from 
the local administrative domain. Resource boundary morphs as 
the external resources join or leave the local domain.   

B. Brief Overview of PanDA Architecture  

PanDA, Production ANd Distributed Analysis system, has 
been developed since Fall 2005 to support petabyte-scaled and 
data-driven production and distributed analysis processing in 
the ATLAS experiment [19]. The main focus here is to 
introduce the important features of PanDA directly linked to 
the architectural benefits as a general WMS and flexible, on-
demand access to distributed resources through pilot 
mechanism.  

To start with, there are four essential components in the 
PanDA system as illustrated in Fig. 2: 

 
 
Fig. 2 Job stream flowing into the PanDA system as it interacts with 
the external data storage system to pre-stage the required dataset 
while pilots fetch appropriate jobs to their host resources 

• Task Buffer represents a job repository containing 
user job information including related input and 
output files, various system requirements, job type, 
priority scheme, location of job’s payload, etc.   

• Data Service interfaces with distributed data 
management system (e.g. ATLAS DDM) that 
performs stage-in and stage-out of the data on which 
the user job depends.    

• Job Brokerage is a match-making component that 
prioritizes and assigns tasks on the basis of known 
static attributes such as job type, user-defined 
priority, locality of input data, required resource 
capacity (e.g. CPU speed, memory, disk space, etc), 
and other VO- or site-specific brokerage criteria. Job 
Brokerage in combination with pilots, distributed 
over candidate resources, completes the desired 
match-making cycle where pilots further provides 
dynamic, real-time resource attributes to help with the 
decision process of job assignments. Different 
scheduling policies can be supported by Job 
Brokerage, consistent with local site’s administrative 
requirements.  

• Job Dispatcher follows the secure link specified in 
user jobs and sends job’s payloads to the designated 
compute resources upon pilot requests.   

 
In a generic setting, PanDA Task Buffer functions as a 

system-wide, attribute-rich job database that records both 
static and dynamic information on all jobs submitted over the 
Grid. There is no inherent restriction on the task representation 
and client interface to the PanDA’s Task Buffer. In current 
implementation, PanDA uses a LAMP stack in which job 
submission is accomplished via a simple Python- and http-
based client without dependency on the underlying Grid 
middleware. Job specifications are parsed and stored in 
PanDA’s backend database. Other possible job abstraction 
schemes for the PanDA front-end client include XML-based 
job specification, UDDI framework [20], and Condor classAd 
[7], etc.   

While jobs are being uploaded to Task Buffer, the pilots in 
the meantime are running on the candidate resources, in the 
process of which, pilots then make requests to Job Dispatcher 
in order to obtain job payloads that match with pilot-resident 
hosts. Behind the scene, the best-fit job is determined by 
querying Job Brokerage that executes a given match-making 
algorithm. The decision process is based in part on the user job 
requirements and preferences and in part on the real-time 
snapshots that pilots had taken from their hosts. Allocation of 
jobs is followed by the dispatch of corresponding input data, 
handled by Data Service, to those pilot-resident hosts; during 
this process, Data Service interfaces with DDM, responsible 
for data movements, to obtain the desired data. In the PanDA 
framework, data pre-placement in target machines is ensured 
before the start of job execution to avoid failures from data 
staging, which usually in turn results in esoteric failure modes 
and waste of available computing resource such as CPU time. 
Data pre-staging is part of the schemes that implement the late-
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binding policy used in the PanDA framework as further 
discussed in the following subsection. 

C. Pilot 

Resource sharing mechanism in the current landscape of the 
Grid environment can be classified into two types: one is the 
push system where user tasks are allocated, or pushed, to the 
available resources via the task scheduler following certain 
match-making policy; conversely, the other type belongs to the 
pull system where resources, often volunteer hosts like 
personal computers, initiate connections to the designated task 
servers, pulling jobs to the hosts where scheduling policies are 
being executed from within volunteer’s domain. Common 
batch systems used nowadays (e.g. Condor, PBS, LSF [10], 
etc) in the Grid community mostly falls into the push-system 
category. Volunteer computing systems such as BOINC [9] are 
mostly considered as pull systems – compute resources are 
often precluded behind firewalls or NATs and hence, resource 
sharing requires initiations from the machine’s end.       
    The PanDA system, on the other hand, is a hybrid system 
following so called late-binding strategy in that user jobs are 
eventually bound to best-fit resources by first pushing pilots to 
the candidate resources to perform computing environment 
provisioning, followed by pulling actual job payloads through 
the PanDA server.  

In the most generic use case, a pilot functions as a light-
weight user job that validates the most rudimentary resource 
properties such as shell environment, interpreter/compiler 
availability, basic software stacks, system configurations and 
network connectivity and additionally, performs real-time 
resource profiling such as the remaining memory capacity, etc. 
These checks are performed to secure a basic working 
environment to the end-user and also provide a snapshot of 
various resource availability used to facilitate an optimal 
match-making process.  

In theory, pilot can be designed hierarchically with a 
generic layer that performs only a high-level system-wise 
validation prior to its immediate binding with the site-specific 
service layers, which are implemented as a separate pilot core, 
containing site’s local services such as methods for file 
transfer, security and sandboxing mechanisms, etc. Once the 
computing environment checks are completed, pilots then 
proceed to the following job-specific routines [14]:  
 
1) Data Transfer: After receiving the job payload from 

PanDA server, the pilot invokes Data Service to draw in 
the required input data from DDM using site’s preferable 
copy tools (e.g. GSIFTP); pilot also transfers output and 
log files back to end users upon completion of the 
designated task. Depending on the implementation 
scheme, file stage-out can also be performed instead by 
DDM in response to pilot requests, conforming more 
strictly to separation-of-concerns principle.    

2) Job Execution: Pilot spawns a process as a job wrapper 
that copies input files, sets up runtime environment, 
executes the job payload, transfers job output files (either 
by itself or by delegating to DDM) and then finally 
performs final clean-ups. Conversely, if no job is 

received, the pilot simply cleans up the work directory and 
exits.      

3) Monitoring: The pilot runs job monitor as a separate 
thread that tracks the runtime states and packs the 
information in terms of periodical heartbeat messages 
back to the Job Dispatcher at the PanDA server. If Job 
Dispatcher does not receive the message after a pre-
defined period, it will consider that the job had failed and 
thus notify the pilot to kill the job. Moreover, each job’s 
runtime information is updated accordingly upon the 
receipts of heartbeat messages.  

4) Job Recovery: Temporary unavailability of the resource 
can often lead to job’s valid outputs being stranded at 
remote storage system or worse yet, being deleted by 
clean-up operations from the resource provider itself. Site 
maintenance, system overhead, or job preemption 
enforced by site’s local policy could all results in such 
temporary disconnect. The pilot in this scenario will 
attempt to rerun the entire file transfer mechanism 
mentioned earlier; if failed, the same file-transfer 
operation will then be executed by the successive pilots 
until a per-defined limit is reached.     

     
The PanDA system accomplishes match-making process 

through not only the static job requirements stored in Task 
Buffer but also the dynamic resource attributes published from 
the pilots running at candidate machines. Under this modality, 
the resource utilization would highly depend on the way pilots 
are distributed and the functionality they offer. Apart from the 
generic pilot and hierarchical pilot discussed above, another 
possibility is to have pilot request multiple user jobs (hence, 
their payloads) simultaneously once the computing 
environment preparation is completed. Although such multi-
tasking pilot is theoretically possible to realize, it often results 
in difficulty in maintaining fairness of resource share and 
could potentially lead to machine overload. For reasons above, 
achieving the optimal scheduling result is then being delegated 
to the pilot submission mechanism – the pilot generator. 

D. Pilot Generator 

In the PanDA framework, pilots are distributed to remote 
resources via an independent system tied to an underlying 
scheduler (e.g. Condor), as can be seen from both Fig. 1 and 
Fig. 2. An advantage of this scheme, particularly for the 
interactive analysis in research projects where minimal latency 
from job submission to launch is expected, is that the pilot 
dispatch mechanism bypasses any latency between pilot 
submission and execution – the user obtains, from the remote 
resource, an interactive session within a short duration so long 
as that there is at least one pilot, out of the population running 
over active resources, presents a valid computing environment 
for the job’s payload at the time of need.   
    In this manner, the pilot mechanism isolates workload jobs 
from compute resources and batch system failure modes in that 
a workload job is assigned if and only if the pilot successfully 
launches on a candidate resource. Throughput of user jobs is 
increased since there is a continuously ongoing service of 
resource provisioning from distributed pilots running in 
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parallel as jobs are submitted. As a result, machines effectively 
appear available on-demand for end users. In addition, the 
pilot service layer isolates the PanDA system from Grid 
heterogeneities, being encapsulated in the pilot, such that from 
the perspective of end users, the Grid or the resource-sharing 
environment in general appears homogeneous. 

The PanDA framework places no restrictions on the 
mechanism by which pilots are disseminated. In fact, this 
highly depends on resource provider’s preferable batch 
system, which is part of the heterogeneous factor on resource-
sharing landscape. Where PanDA was originally introduced, 
the US ATLAS production has been primarily using Condor-G 
to schedule pilots across site boundaries [19]. Yet, Condor-G 
encounters scalability issues at Globus-controlled gatekeepers 
as a result of high GRAM traffic in response to high-volume of 
user jobs. GRAM [26] refers to the Grid Resource Allocation 
and Management protocol that supports the submission of 
remote job requests and their subsequent monitoring and 
control. With an increase in user job demands, often seen in 
complex projects (e.g. ATLAS experiment), a higher pilot 
flow is expected accordingly, which in turn leads to heavier 
GRAM traffic (i.e. channel between Condor and Globus 
software). To achieve a more scalable pilot dissemination, a 
distributed scheduling approach based on Condor’s glidein 
mechanism is therefore conceived.  Details are to be covered 
in the next section following a brief overview of the Condor 
system. 

III.  CONDOR AND PILOT FACTORY 

Condor [7] is a distributed workload management system 
developed primarily for integrating distributed resources to 
ultimately achieve both high-throughput computing [22] and 
opportunistic computing. Similar to other batch systems, 
Condor provides the following major functionality: 
job/machine monitoring and management, fault recovery, 
checkpointing, customizable scheduling polices and match-
making mechanisms that reflect job/machine requirements and 
different priority schemes [23]. Fig. 3 presents the fundamental 
structure of Condor system. The core logical components, also 
known as Condor kernel [7], include job queue (functionally 
represented by the Condor schedd daemon), virtual machine 
(startd daemon), match maker (negotiator daemon), and in-
memory database (collector daemon).  

 

 
 

Fig. 3 Condor kernel 

The following stepwise description briefly outlines how 
Condor works using the aforementioned components: i) users 
submit tasks to the job queue (i.e. schedd) in the format of 
ClassAds containing matching criteria ii) the schedd publishes 
all task information to the pool database (i.e. collector) while, 
in the mean time, Condor virtual machines (i.e. startd), being 
distributed over all the available compute resources, also 
advertise their associated machine profiles to the collector 
including system configurations, machine runtime states, and 
matching preferences (over user jobs), etc iii) with the 
collector receiving information from both the job queue and 
resources, the Condor negotiator then executes its match-
making algorithm based on the scheduling policies defined in 
both the job and the resource (in terms of requirements and 
preferences) and finally determines the best match. 

A. Condor Glidein   

A basic Condor-managed resource pool consists of the 
following building blocks: i) the job submitter with one or 
more job queues (i.e. schedds) containing submitted user jobs, 
ii) the job executor consisting of one or more distributed 
virtual machines (i.e. startds) that represent all the available 
compute resources, and iii) the central manager (i.e. collector 
and negotiator) primarily responsible for collecting pool-wise 
status information and performing match-making algorithm. 
Each role mentioned above runs independently and can be 
deployed on different machines. Condor system, being 
structurally decentralized in its design, makes it possible to 
dynamically deploy partial Condor functionality on-demand 
(i.e. subset of Condor daemons) across the network, whereby 
expands the local resource on the fly. The idea of dynamic 
deployment gives rise to glidein. A Condor glidein generally 
refers to the startd and its functionally-dependent daemons – 
altogether serving as a virtual machine – that are dynamically 
installed and executed on a remote resource. Glidein startd 
creates an abstraction of the hosting machine in terms of the 
Condor representation and advertises itself to the local-pool 
database (collector) such that the remote resource effectively 
joins the local pool and become visible to the local user. 

B. Schedd Glidein  

The schedd-based glidein, similar to the dynamically-
deployed Condor virtual machines mentioned previously, is 
accomplished by remotely install and execute a subset of 
Condor daemons altogether functioning as a job queue. This 
remote schedd effectively “glides into” the local resource pool 
by advertising itself to the local collector, sharing exactly the 
same mechanism as the startd glideins.  

Fig. 4 illustrates the Condor glidein mechanism and 
compares the two different glidein types with one working 
effectively as distributed virtual-machines and the other as a 
dynamic job queue. Typically, the schedd glidein is deployed 
on a remote Globus-enabled machine where the glidein 
operates as a medium that redirects Condor jobs to the site’s 
native batch system. Contrary to the job flow in the Globus 
model, user jobs now flow through the schedd glidein to the 
remote batch system rather than through the Globus Job 
Manager, a set of processes that perform monitoring and 
control over Grid jobs. The downstream flow remains the 
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same as the Globus model where the remote batch system is 
responsible for eventual match-making for the incoming jobs.   

 

 
 

Fig. 4 Glidein schematic 
   
The glidein schedd communicates with the native batch 

system through the related GAHP server process depending on 
the native batch system type (e.g. Condor, PBS, LSF, etc). For 
the purpose of presenting the glidein-based approach for pilot 
dispatch, here it is assumed that the remote batch system type 
is Condor, in which case the glidein relays jobs using the 
Condor-C mechanism [25]. Condor-C stands for Condor to 
Condor, designed to interconnect two or more independent 
Condor-managed resource pools. Using Condor-C, jobs are 
submitted to a job queue (i.e. client schedd) and are 
subsequently forwarded to another job queue (i.e. server 
schedd). The client schedd is typically an instance running on 
a machine within the local resource domain (i.e. the local job 
submitter) whereas the server schedd runs in the foreign 
resource domain. When the server schedd is the glidein 
instance, remote jobs can effectively be allotted to a foreign 
computational cluster while being treated almost the same as 
local jobs. In this manner, multiple clusters across 
administrative domains are virtually merged together, thereby 
expanding the resource boundary.  

The glidein schedd works similarly to the role of the Globus 
Job Manager in the sense that the glidein also serves as a 
resource broker connecting different resource domains. The 
fundamental difference is that the jobs dispatched via a glidein 
schedd no longer go through the Globus GRAM channel. 
Compared to the Condor-G using GRAM protocol, each job, 
either in active or wait state, is monitored and controlled by a 
Globus jobmanger process (a primary component of the 
Globus Job Manager), leading to higher resource consumption 
upon heavier job flow. In the Condor-G model, such overhead 
due to job monitoring activities is ameliorated by introducing a 
Grid Monitor that temporarily shuts down the jobmanager 
process while the associated job is not running [25]. However, 
the source of the overhead still exists due to the remaining 
monitoring activities in active jobs, which are required 
considering that each user job is unique and that the job 

representations are inherently different in the Condor and 
Globus system1. 

While Condor-G fits the needs of regular user jobs, it may 
be excessive for the pilot mechanism since pilots in aggregate 
work as a light-weight service layer on top of the job payloads. 
The schedd glidein can thus achieve higher scalability for the 
pilot mechanism by treating pilot jobs as a “homogenous job 
stream,” requiring no separate job monitoring and control. In 
addition, a glidein by definition is only deployed on a service-
on-demand basis and thus can be removed when no jobs are 
intended to use the resource pool. The next section introduces 
an application of the schedd glidein used in pilot 
disseminations. 

C. Pilot Factory  

The Pilot Factory (PF) represents an independent and 
automatic system for the pilot dispatch and control. It is 
developed in parallel with PanDA system and for historical 
reasons, Pilot Factory took its name to differentiate it from a 
regular pilot generator (or pilot submitter) used only as a 
component in the factory. The factory first deploys glidein 
schedds to the head nodes of the sites, followed by the 
backend pilot generator submitting pilots directly to these 
glideins, from which these pilots are then redirected to the 
native batch system.  

The Pilot Factory consists of three major components: i) a 
glidein launcher, responsible for the dynamic deployment of 
glideins to eligible sites ii) a glidein monitor that detects any 
failure or removal of the running glideins due to walltime 
limits or temporary site downtimes, upon which the monitor 
then invokes the glidein launcher to deploy new glidein 
instances and iii) a pilot generator that distributes pilots 
through the schedd glideins running on remote resources. The 
core of the glidein launcher and monitor lies in the mechanism 
to submit glidein requests, which is accomplished by initiating 
Condor-G jobs to configure, install and execute related 
daemon set on the target head node of the foreign site. The 
pilot generator is built upon Condor schedd, to which pilots 
are submitted. Given that all factory components are 
essentially complex wrappers over Condor, they can be 
distributed, like the majority of Condor daemons, to different 
machines without locality constraint.  
    The current implementation of schedd glidein still relies 
upon the service of Globus software for its initial setup in that 
the glidein deployment is achieved via two consecutive 
Condor-G jobs: the setup and the startup. The system-setup job 
locates and installs platform-dependent, schedd-related 
binaries on the designated head node, generates the required 
configuration file and a startup script to be used at the next 
phase. The startup job then executes the script staged earlier to 
activate Condor daemons. Using the glidein as a job queue for 
pilots, Globus software only serves occasional glidein requests 

 
1 Condor-G converts the job description to RSL (Resource Allocation 

Language) format used by GRAM. The Globus Job Manger then parses the 
RSL that specifies the binary to be executed and other job requirements such 
as CPU time, number of processors, etc, some of which are further used to 
construct the job submit file for the native batch system.    
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and thus is fully decoupled from the pilot traffic for as long as 
the glidein remains active.   
    As alluded to earlier, Condor schedd supports the 
interfacing with multiple widely-used batch systems (e.g. PBS) 
in addition to Condor itself with the proper configuration and 
the required GAHP server binary. Using the feature above, the 
schedd glidein mirrors the external resource domain, thereby 
hiding the heterogeneity of site infrastructure. The result 
effectively presents the pilot generator with a uniform 
submission portal yet without the burden of constant job 
control/monitoring as in Condor-G, which allows for much 
higher pilot flow. The Pilot Factory approach therefore has 
great potential to lift the performance bottleneck in the PanDA 
architecture in light of its higher scalability and its flexibility 
in the on-demand deployment. The next section justifies this 
modality with empirical results. 

IV.  EXPERIMENTAL RESULTS AND ANALYSIS 

Since PanDA was introduced, the US ATLAS production 
has been primarily using Condor-G to schedule pilots across 
site boundaries. At times of peak usage, large pilot traffic is 
often required to cope with high demand of user jobs. To 
alleviate the correspondingly high GRAM traffic in Condor-G-
based pilot dispatch, the Pilot Factory approach is developed 
as an alternative method that substantially reduces the need of 
Globus brokerage by deploying Condor’s schedd glideins to 
the front-end nodes of the remote clusters. Pilots are then flow 
through the glideins to the native scheduling system where 
glideins function as tunnels that connect the pilot submitter 
host with the remote scheduler. 

A. Resource Usage Comparison   

In this section, an experiment is presented to compare the 
resource usage in Condor-G-based pilot dispatch with the Pilot 
Factory approach in terms of percentage CPU time and 
memory consumption. The experiment was conducted in a test 
computational cluster (OSG-ITB test bed) with 1 head node 
and 8 worker nodes (i.e. backend compute resources), 
configured with 8 job slots; that is, a maximum of 8 jobs is 
allowed to be in the running state on the job queue.  

To ensure a continuous supply of pilot jobs, the pilot 
generator was configured to maintain a queue depth of 20 
pilots on the submitter host so that ultimately, the 8 job slots 
on the remote cluster are filled most of the time; although 
theoretically, a persistence of approximately 8 pilot jobs (or 
less) should suffice. To simulate the fact that pilots in practice 
should remain active for as long as their associated user jobs 
of varying execution times, each pilot is configured to have a 
runtime determined by the bounded Gaussian distribution with 
an appropriate lower and upper limit (see Table I). Further, the 
resource usage metrics (e.g. percentage CPU time) on the 
cluster-head node are sampled on a predefined interval 
perturbed by a Gaussian noise. The irregular sampling interval 
is incorporated here with the intent of minimizing biased 
measurements from any possible “synchronization” between 
hidden temporal patterns in the scheduling process and the 
sampling process itself. The specification for the 
experimentation is summarized in Table I. 

 
Fig. 5 compares the resource usage in terms of percentage 

CPU time while Fig. 6 compares memory usage. With the 
same pilot load, the result indicates that the Pilot Factory mode 
has lower resource consumption on average and lower 
sampling errors. Since a glidein only serves as a conduit 
between the submitter host and the remote scheduler, 
computing resource is only allocated for running the schedd 
and the GAHP server process without additional processing 
time required for the per-job monitoring/control as in the case 
of Condor-G.   
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Fig. 5 Percentage CPU times during a 6-hour time frame 
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Fig. 6 Memory usage during a 6-hour time frame 
 
Note that the experiment focuses on relatively shorter jobs 

with life spans within the order of a few minutes (3 minutes at 
maximum in this experiment). Theoretically speaking, the 

TABLE I 
PILOT-SPECIFIC PARAMETERS 

Parameter Value 

Number of job slots 
in the target cluster  

8 

Pilot queue depth  20 

Pilot runtime Minimum: 5 seconds  
Maximum: 180 seconds  

Sampling rate of 
resource usage 

15 samples per miniute 

. 
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shorter the jobs, the higher the overhead in the case of Condor-
G since each job requires a jobmanager process being active 
during the phase of job submission, file staging, and the 
cleanup upon job completion. Consequently, as long as shorter 
jobs are in the majority, the resource usage with higher 
workload is expected to be similar to (if not higher than) the 
empirical results presented here. Lastly, since a jobmanager 
and its child processes appear at various stages of a Condor-G 
job prior to its completion, both the CPU and memory usage 
tend to fluctuate more than those in the PF submission mode, 
resulting in higher sampling errors. 

V. EXPERIENCE 

The development of the PanDA system dates back to the late 
2005 to meet ATLAS requirements for efficient processing 
and management of large-scaled production tasks and 
distributed scientific analysis. The PanDA architecture gives 
rise to a dynamic workload management system that optimizes 
resource utilization through data-driven scheduling and just-in-
time resource allocation with the pilot mechanism. The 
benefits of PanDA’s architecture have led to its widening use 
in OSG [27] and EGEE [18], etc. In particular, PanDA has 
processed more than 70 million jobs as of late 2009, currently 
at a typical rate of about 1M jobs per week for production at 
approximately 120 sites around the world, and about 20K jobs 
per day for distributed analysis. In view of the potentiality of 
combining broader forms of compute resources across 
geographic boundaries, the PanDA architecture is further 
extended to a more generic framework that adapts to the 
heterogeneity of Grid infrastructures, thereby providing a 
uniform job-management service layer and achieving 
optimization of resource allocations with a late-binding 
strategy as emphasized in this paper. These efforts lead to a 
collaborative research with the Condor team and the 
development of applications in glidein technology such as the 
Pilot Factory as described in Section 3. 

VI. RELATED WORK 

The late-binding strategy used in PanDA for resource 
allocation is realized in two contexts: data-driven scheduling, 
and just-in-time match-making. In the PanDA framework, both 
the aforementioned services are in part delegated to the 
distributed pilots at the candidate resources in the sense that 
pilots can be configured to initiate data movements and collect 
real-time resource profile for match-making purposes. The 
concept of the pilot mechanism, in its late-binding with data, 
can be traced back to the experience in DIRAC [28] used for 
the LHCb experiment. DIRAC provides several architecture-
level solutions for reliable data distribution, data integrity and 
access in order to minimize waste of resource due to failure 
modes during data staging process. Once the required sets of 
data become available and are validated, the workload agent in 
DIRAC then submits to the Grid the jobs that have been 
waiting for these data.  
    From the prospective of the late-binding between jobs and 
resources, the pilot identity is analogous to the role of remote 
client agents (or workers) in Volunteer Computing systems 

such as BOINC [9], SETI@home [4], and Distributed.net [29]. 
In these systems, each volunteer host is attached to the servers 
from which tasks can be downloaded. Various CPU scheduling 
schemes on the level of work-fetch policy, CPU time-slicing, 
estimate of completion time, etc, are then enforced by the 
client agent running on the volunteer host [30]. The acquired 
tasks, as a result, can be tightly matched with real-time 
machine properties of the volunteer host. Such a client-server 
model also exists in the form of the pilot mechanism in the 
PanDA architecture; yet the pilot approach works slightly 
differently in that there is no pre-defined agreement that 
associates user tasks with the target machines where pilots are 
injected. Consequently, the real-time resource information 
collected by pilot jobs is sent back to the PanDA server where 
scheduling strategy is dynamically determined by selecting the 
best-fit user task mutually agreeable to the target resource. In 
this manner, scheduling algorithms are then decoupled from 
the client agent (i.e. the pilot) that initiates requests for user 
jobs.   

Efficient cross-domain resource allocation is a key aspect 
for minimizing heterogeneity of the resource-sharing 
environment.  This subject has been addressed by many related 
research including Condor-G, BDII [31], and other edge 
services such as MDS (Monitoring and Discovery Service) 
from the Globus project [11]. Condor-G now incorporates a 
site-level resource allocation mechanism by which user jobs 
are matched to the desirable sites without having to explicitly 
select the target site. Grid resources identify themselves by 
advertising their available services, requirements and 
preferences over jobs in the form of ClassAds while user jobs 
also specify the likes; a match occurs when the overall 
requirements between a job and a Grid resource are 
compatible with each other. However, achieving this high-
level brokerage requires the sites to cooperate by providing 
consistent and pre-defined resource descriptions that 
accurately reflect the capacity of their managed resources. 
BDII, on the other hand, periodically polls resource attributes, 
such as free CPUs, supported Virtual Organizations, etc, 
through LDAP servers gathering information from 
computational clusters. However, using the BDII approach for 
resource allocation still requires an agreement and consistency 
over the resource profiles from their providers. In addition, the 
real-time resource information is obtained through constant 
polling (e.g. using periodical cron jobs) to the related servers 
in the target site domain. This architecture, when compared to 
the pilot mechanism, would require dedicated servers per site 
and thus, may not generalize as well to the general resource-
sharing environment such as the network of volunteer hosts. 

VII.  CONCLUSION AND FUTURE WORK 

Abstraction of the resource-sharing infrastructure for a 
homogeneous representation has been one of the primary goals 
in the Grid computing community. The PanDA-PF architecture 
is presented here to achieve a uniform view of the Grid and 
better resource utilization through the layer of distributed 
pilots and their efficient dispatch. The pilot mechanism 
accelerates distant resource discovery and, through late-
binding between tasks and their target machines, minimizes 
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computing resource wasted in various failure modes. 
Concurrently, pilots gather real-time resource properties so as 
to make achievable a seamless match-making procedure. 
Heterogeneity of the Grid is encapsulated in the layer of the 
distributed pilots so that users do not have to deal with the 
differences in the underlying schedulers and other specifics in 
the fabric layer [16] of the Grid. Further, the PanDA-PF 
architecture also aims to generalize resource utilization to a 
broader form of distributed resources such as volunteering 
computing nodes across the Internet where pilots can act as 
client agents that initiate requests for user jobs.  
    The Pilot Factory is a glidein-based solution to a more 
scalable pilot dispatch than the conventional Grid-job 
approach. In the Pilot Factory mode, the glideins as dynamic 
job queues are first installed at the target cluster head nodes 
prior to pilot dispatch. This is mainly accomplished through 
appropriately configured Condor-G jobs using Condor schedd 
and its related daemons as executables. Subsequently, the 
light-weight repetitive jobs such as pilots will then flow 
through glideins to the native scheduler without excessive 
monitoring/control on the per-job basis. Treating each pilot 
individually as a Grid job often leads to scalability issues due 
to the correspondingly large GRAM traffic, which is required 
in pilot disseminations to cope with large and constant job 
flow. In particular, heavy workload is often expected during 
the course of large-scale and complex scientific projects such 
as the ATLAS experiment.  

The PanDA-PF WMS provides users with an architectural 
foundation for resource acquisition, validation and allocation 
with user jobs. However, there are other dimensions in 
harnessing distributed resources not yet fully investigated 
within the PanDA framework such as the following: i) strategic 
expansion of resource boundary (i.e. increasing the set of 
available resources) by distributing Condor glideins (or VMs 
in general) on compute resources fitted for user jobs, and ii) 
adaptive match-making policy that improves itself through 
learning the dynamics of jobs and computing resources.  

In support of the preceding objectives, glideinWMS [32] 
can be used to expand the resource boundary by skillfully 
distributing Condor glideins at the target computational 
clusters as locally-accessible virtual machines. Furthermore, 
the decision-making process that integrates reinforcement 
learning with the cluster-based conceptual model [33] provides 
an initial effort towards solving the match-making 
optimization problem characterized by morphing resource 
boundary formed by distributed pilots or glideins. These 
techniques could potentially increase the productivity of the 
PanDA-PF WMS by several magnitudes through a strategic 
pilot dispatch with the Pilot Factory in addition to the optimal 
resource allocation within the PanDA framework.   
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