
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

909

Abstract—A new hybrid coding method for compressing

animated polygonal meshes is presented. This paper assumes
the simplistic representation of the geometric data: a temporal
sequence of polygonal meshes for each discrete frame of the
animated sequence. The method utilizes a delta coding and an
octree-based method. In this hybrid method, both the octree
approach and the delta coding approach are applied to each
single frame in the animation sequence in parallel. The
approach that generates the smaller encoded file size is chosen
to encode the current frame. Given the same quality
requirement, the hybrid coding method can achieve much
higher compression ratio than the octree-only method or the
delta-only method. The hybrid approach can represent 3D
animated sequences with higher compression factors while
maintaining reasonable quality. It is easy to implement and have
a low cost encoding process and a fast decoding process, which
make it a better choice for real time application.

Keywords—animated polygonal meshes, compression, delta

coding, octree.

I. INTRODUCTION
D graphics are rapidly achieving mainstream success, both
in motion pictures and computer gaming. But, as 3D models

grow more complex, more detailed, and longer format, it
becomes increasingly difficult to efficiently store and transmit
these models. The focus of this paper is to design an efficient
and powerful algorithm for compressing and transmitting
animated geometric data. Geometry compression is the
compression of the 3D geometric data that provides a computer
graphics system with the scene description necessary to render
images. Animated 3D models require even larger memory and
transmission bandwidth since a sequence consists of a large
number of frames and every frame is a large static 3D object.
Animated geometry compression is the compression of
temporal sequences of geometric data. Therefore, efficient
compression techniques need to be applied to the 3D animation
sequence before distributing it over the network.

The general field of geometry compression is concerned with
efficient compression of 3D data, be it animated or static. Most

Jinghua Zhang is with the Department of Computer Science, Winston Salem

State University, Winston-Salem, NC 27110 USA; (corresponding author)
Phone: 336-750-3324; Fax: 336-750-2499; E-mail: zhangji@wssu.edu.

Charles B. Owen is with the Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI 48824 USA;
E-mail: cbowen@cse.msu.edu).

Jinsheng Xu is with the Department of Computer Science, North Carolina A
& T University, Greensboro, NC, 27401 USA; E-mail: jxu@ncat.edu.

initial work has been focused on static geometry. Deering first
proposed geometry compression techniques in 1995 with
compression ratios of 6-10 to 1 [1]. Since that time, various
strategies for geometry compression have been reported [2-5].
Boosen provides a comprehensive overview of the reported
geometry compression techniques [6]. Another geometry
compression survey paper was written by Shikhare [7]. Luebke
wrote a survey on polygonal simplification algorithms [8]. All
these techniques focus on static geometry. Less attention has
been paid to animated geometry compression [9-14].

Lengyel presented a prediction compression method that
splits vertices into sets and uses affine transformations to
approximate the vertex paths [9]. His method is effective only
when the animation is well represented by the supported
transformations. Alexa and Müller proposed an interpolation
predictor to represent animations by principal components [10].
Principal Component Analysis (PCA) makes their approach
expensive. It requires significant memory usage and processing
time. The PCA approach cannot achieve high compression
ratios if the number of frames is significantly smaller than the
number of vertices. Ibarria and Rossignac proposed a
time-space predictor for all the vertices and all the frames [11].
Briceño et al. proposed an algorithm to generate geometry video
from 3D animated meshes [12]. They extended the geometry
images proposed by Gu et al.[15]. To construct a geometry
video, all the frames in the animation sequence are replaced by
the corresponding geometry images. Conventional video
compression techniques are applied to encode geometry video.

Zhang and Owen proposed octree-based animated geometry
compression method [14].

The goal of this paper is to design hybrid compression
algorithms for animated geometry that improve on existing
methods, both in compression ratios and quality. The hybrid
approach combines the octree approach [14] with delta coding
method to achieve higher compression ratio given similar
quality requirement. Similar to the octree approach, this paper
focuses on the compression of vertex positions for each frame in
the animation sequence and the connectivity is assumed to be
the same for all the frames.

This paper is organized as follows. Section II reviews
octree-based motion representation method. Section III
describes a delta coding approach to represent animated
geometric data. It presents evaluation results between the
octree-based approach and the delta coding approach in terms
of compression ratio. Section IV presents a hybrid coding
approach that combines the octree-based approach and delta
coding approach. By selectively incorporating these two
mechanisms, the method is able to achieve better performance
than any of these methods individually. Evaluation results for
the mechanism are presented in detail. Section V includes the

Hybrid Coding for Animated Polygonal Meshes
Jinghua Zhang, Charles B. Owen, Jinsheng Xu

3

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

910

conclusions and describes possible extensions of the current
work.

II. OCTREE-BASED ANIMATED GEOMETRY COMPRESSION
The octree approach takes advantage of the spatial and

temporal coherence present in the data. Two consecutive frames
are needed to generate a reduced set of motion vectors that
represent the motion from the previous frame to the current
frame. The motion vectors are used to predict the vertex
positions in the decoder side for each frame except for the first
frame. The process generates a hierarchical octree motion
representation for each frame.

A. Encoding process
In the motion modeling process, each frame except the first

frame is represented by a set of motion vectors, which are stored
in an octree. In a client–server scenario, when the server wishes
to send an animated 3D model to the client, it will send the
encoded first frame (using an intraframe encoding method)
together with an encoded octree for each of the subsequent
frames rather than sending vertex positions for each new frame.
The encoded octree is significantly smaller than the
corresponding original frame. The vertex locations for each
frame are approximated by the corresponding octree on the
client side.

 Fig. 1Logical flow of encoding process of the octree approach

The logical flow of the encoding process is illustrated in Fig.
1. To encode the current frame, the previous frame needs to be
available to the decoder, so the first frame is encoded using an
intra-frame coding technique. A complete system will include
occasional intra-coded frames so as to provide synchronization
points, as in MPEG video. The previous and current frames are
used to generate vertex delta values representing the differential
motion between the frames. Motion vectors are obtained by
using a Least Square Error estimation method to estimate the
motion of enclosed vertices. To continue encoding the
following frames, a local decoder is called to generate a
decoded version of the current frame as known to the receiving
system, which can be used to encode the next frame at the
encoder side. This process is repeated for each new frame. For
details, please refer to the paper [14].

III. DELTA APPROACH
This section presents a new delta coding approach and

evaluation of the performance of this method for animated
geometry compression. The delta coding approach generates
3D delta values from two consecutive frames. The method
achieves the compression by quantizing the 3D delta values.

Different frames in the animation sequence can use different
quantization levels. Quantized values are coded using
arithmetic coding to achieve further data reduction. This
method is simple and easy to implement. The delta coding
method does not achieve the consistent level of the performance
demonstrated by the octree approach. However, in limited
cases the delta approach does outperform. Hence, it is explored
here in isolation, and then incorporated into a hybrid
compression approach in Section IV.

A. Delta encoding process

Fig. 2 Logical flow of the encoding process of the delta method.

The logical flow of the encoding process is illustrated in Fig. 2.
To encode the current frame, the previous reconstructed frame
needs to be available in the encoder side. Therefore the first
frame is encoded differently from other frames in the sequence.
It is encoded using an intra-frame coding method. The first step
in the delta encoding process is to generate delta 3D values
between two consecutive frames, namely the reconstructed
previous frame and the current original frame. Delta 3D data
presents the differential motion between two frames. After the
first step, the delta approach seeks the best quantization level
with the minimum number of bits for the current delta 3D that
satisfies a predefined threshold. After the number of bits for the
quantization is determined, the linear quantization over the
range of each possible vertex is applied to the delta 3D as
illustrated in (1). The quantized values are encoded using
arithmetic coding to further achieve data reduction. To this
step, the current frame is completely delta encoded. In the local
decoding step, a linear inverse quantization is applied to the
quantized samples as shown in (2). The above steps are repeated
for every frame except for the first frame in the animation
sequence.

 ⎥
⎦

⎥
⎢
⎣

⎢
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

minmax

min2
xx
xx

x q (1)

 min
minmax

2
*)(

x
xxx

x q +
−

= (2)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

911

B. Evaluations
In order to compare the results of different approaches, the

same test data sets as those in octree approach are used to
evaluate the performance of the delta approach. The data sets
include “Chef”, “Chicken Crossing” and “Dance”. The Chef
data was generated from a 3D Studio Max animation. “Chicken
Crossing” was created by Andrew Glassner et al.[15]. The
“Dance” sequence was created by the MIT CSAIL Graphics
Lab. Table. 1 shows the properties of “Chef”, “Chicken
Crossing” and “Dance” animation sequences.

TABLE.I TEST DATA SETS INFORMATION

Data sets
Properties

Chef
animation

Chicken
animation

Dance
animation

Number of
vertices 4241 3030 7061

Number of
triangles 8162 5664 14118

Number of
frames 75 400 201

Total size
(bytes) 3,816,900 14,544,000 17,031,132

Compression ratio results of the delta approach
The compression ratio results for Chef, Chicken Crossing and

Dance animation sequences given different threshold settings
are shown in Table. 2, 3 and 4 respectively.

TABLE.II COMPRESSION RATIOS OF THE CHEF ANIMATION USING THE DELTA
APPROACH. THE CHEF ANIMATION HAS 75 FRAMES AND EACH FRAME HAS 8162
TRIANGLES AND 4241 VERTICES. THE OBJECT SIZE IS 440 UNITS IN X
DIMENSION, 148 UNITS IN Y DIMENSION AND 455 UNITS IN Z DIMENSION.
ORIGINAL FILE SIZE IS 3,816,900 BYTES. MAX DISTANCE THRESHOLD =P% *455
UNITS, WHERE P=1, 2, 3, …6

Max Distance Chef
sequence

1% 2% 3% 4% 5% 6%

Compression
Ratio 17:1 21:1 31:1 32:1 32:1 34:1

TABLEIII COMPRESSION RATIOS OF THE CHICKEN ANIMATION USING THE DELTA
APPROACH. THE CHICKEN CROSSING ANIMATION HAS 400 FRAMES AND EACH
FRAME HAS 5664 TRIANGLES AND 3030 VERTICES. THE OBJECT SIZE IS 2.556
UNITS IN X DIMENSION, 2.23 UNITS IN Y DIMENSION AND 1.07 UNITS IN Z
DIMENSION. THE ORIGINAL FILE SIZE IS 14,544,000 BYTES. MAX DISTANCE
THRESHOLD= P% *2.556 UNITS, WHERE P=2.5, 5, 7.5, 10, 15, 20

Max Distance Chicken
sequence

2.5% 5% 7.5% 10% 15% 20%

Compression
Ratio 21:1 26:1 28:1 30:1 33:1 35:1

TABLE IV COMPRESSION RATIOS OF THE DANCE ANIMATION USING THE DELTA
APPROACH. THE DANCE ANIMATION HAS 201 FRAMES AND EACH FRAME HAS
14118 TRIANGLES AND 7061VERTICES. THE OBJECT SIZE IS 0.0758 UNITS IN X
DIMENSION, 0.172 UNITS IN Y DIMENSION AND 0.074 UNITS IN Z DIMENSION.
ORIGINAL FILE SIZE IS 17,031,132 BYTES. MAX DISTANCE
THRESHOLD=P%*0.172 UNITS, WHERE P=1, 2, 3, 4, 5, 6

Max Distance Dance
 sequence

1% 2% 3% 4% 5% 6%

Compression
 Ratio

10:1 15:1 18:1 19:1 21:1 23:1

Overall compression ratio comparison: delta vs. octree
Compression ratio is one of the most important measurements to
evaluate the performance of an approach. The overall
compression ratio comparison between the delta approach and
the octree approach are shown in Fig. 3, 4 and 5respectively.

Fig. 3 Compression ratio comparison between the delta and octree
approach using the Chef animation.

Fig. 4 Compression ratio comparison between the delta and octree
approach using the Chicken animation.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

912

Fig. 5 Compression ratio comparison between the delta and octree
approach using the Dance animation.

Frame-wise compression ratio comparison: delta vs. octree
The overall compression ratio comparison results show that

the delta coding method does not achieve the consistent level of
performance demonstrated by the octree approach. However, in
limited cases the delta approach does outperform. The
frame-wise compression ratio comparisons were conducted.
Fig. 6 shows the frame-wise compression ratio comparison
between the delta and octree approach given the same threshold
settings for the Chef animation. In this case, the delta approach
is better than the octree approach for 18% frames. Fig. 7 shows
the frame-wise comparison results for the Chicken Crossing
animation. For 22% frames, the delta approach can achieve
higher compression ratios given the same threshold settings.

Fig. 8 shows the comparison results for the Dance animation.
The delta approach is better than the octree approach for 9%
frames.

Fig. 6 Frame-wise compression ratio comparison between the delta
and octree approach using the Chef animation given the same
threshold settings. (threshold=2%)

 Fig. 7 Frame-wise compression ratio comparison between the delta
and octree approach using the Chicken animation given the same
threshold settings. (threshold=5%).

Fig. 8 Frame-wise compression ratio comparison between the delta
and octree approach using the Dance animation given the same
threshold settings. (threshold=1%).

The delta approach is straight forward and is easy to
implement. But it has its limitation. The big problem is that it
can not achieve consistently high compression ratios. From the
compression ratio comparisons with the octree approach, the
compression ratio curves for the delta approach stop growing
after they achieve certain level. Obviously the delta approach
could not be used alone to achieve animated geometry
compression.

However, frame-wise compression ratio comparison results
between the delta approach and octree approach showed that the
delta approach could achieve higher compression ratios for
some frames of the animation sequence. Although the delta
approach does not have good performance when it is used alone,
it may increase the performance of the octree approach if they
are combined. The delta approach, like the octree approach, is a
pair-wise approach and can be applied to frames in isolation. In
the following section, a hybrid approach is presented based on
the combination of these two mechanisms.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

913

IV. HYBRID APPROACH
This section presents a hybrid coding approach to compress
animated geometric data by combining the octree and delta
coding approaches. The motivation of this approach comes
from the observation that the encoded octree size is sometimes
larger than the encoded size of the delta encoding. The encoding
process of the hybrid approach is presented. The results of this
approach and the comparison among the octree approach, delta
approach and hybrid approach are also included.

Apply Octree
Coding to the
current Frame

Apply Delta
Coding to the
current Frame

Reconstructed
Previous Frame

Current
Frame

De Frame Z-1 Decoder Encoded
Current
Frame

If Delta Size > Octree Size?

size

siz
e

Octree coded
frame

Yes

No

Delta coded frame

Encoded
Animation
Sequence

 Fig. 9 Logical flow of the hybrid encoding process.

A. Hybrid encoding process
Fig. 9 illustrates the logical flow of the hybrid encoding

process. This approach uses a threshold to control the quality of
the output. The threshold is used to control the subdividing
process of the octree coding and the number of bits used in the
quantization step of the delta coding. For the octree encoding
process, if the error (Euclidean distance) of any reconstructed
vertex is larger than the threshold, it will subdivide the current
bounding box and repeat the motion vector computation step.
For the delta encoding process, if the error of any reconstructed
vertex is larger than the threshold, it will continue search for the
best quantization level that drops the reconstruction error below
the threshold. Therefore, any reconstructed vertex in any frame
in the reconstructed animation sequence satisfies the criteria
that the error between this vertex and the corresponding original
vertex is smaller than the threshold as shown in (3). The
threshold in the hybrid coding method is set to be the maximum
allowed distance between the reconstructed vertex and its
corresponding original vertex. It is represented by the
percentage of the edge length of the initial cubic bounding box
of the object as illustrated in (4).

thresholdvvvvvv

cellcurrentv

zzyyxx <−+−+−

∈∀
2'2'2')()()(

(3)

v and 'v represent the original vertex and the corresponding
reconstructed vertex.

LengthThreshold %= (4)

To encode each frame except the first frame in the sequence,
both the octree coding method and delta coding method are
applied in parallel. If the size of the encoded delta is smaller
than the encoded octree, the encoded octree is replaced with the
encoded delta. A single bit in the output data stream is used to
indicate if it is an octree coding or delta coding.

B. Evaluations
This section presents the compression ratio results of the

hybrid approach. It also includes the compression ratio
comparison among the hybrid, octree and delta approach given
the same threshold settings.

Hybrid approach results
The hybrid method generates a mixed sequence of the octree

encoded and delta encoded frames. Table. 5 shows the
percentage of the octree encoded and delta encoded frames for
different animation sequences and different thresholds. The
delta encoding contributes significantly to the hybrid method. It
takes up to 41% of the encoded frames. However, as the
threshold increases, the percentage of the delta coded frames in
the encoded sequence decreases. This is because the
performance of the octree approach is much better than the delta
coding approach as the threshold increases.

TABLE V PERCENTAGE OF THE OCTREE ENCODED AND DELTA ENCODED

FRAMES

Hybrid Threshold Octree Delta

1% 59% 41%
2% 82% 18%
3% 86% 14%

Chef

4% 90% 10%
2.5% 64% 36%
5% 78% 22%

7.5% 85% 15%
Chicken

10% 88% 12%
1% 91% 9%
2% 92% 8%
3% 95% 5%

Dance

4% 97% 3%

Table 6, 7 and 8 present the compression ratios of the Chef,
Chicken Crossing and Dance animation sequence using the
hybrid approach. Some reconstructed sample frames of the
Chef, Chicken Crossing and Dance animation sequence using
the hybrid approach are shown in Fig. 10, 11 and 12
respectively.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

914

TABLE VI COMPRESSION RATIOS OF THE CHEF ANIMATION USING THE HYBRID
APPROACH. THE CHEF ANIMATION SEQUENCE HAS 75 FRAMES AND EACH FRAME
HAS 8162 TRIANGLES AND 4241 VERTICES. THE OBJECT SIZE IS 440 UNITS IN X
DIMENSION, 148 UNITS IN Y DIMENSION AND 455 UNITS IN Z DIMENSION.
ORIGINAL FILE SIZE IS 3,816,900 BYTES. MAX DISTANCE THRESHOLD =P% *455
UNITS, WHERE P=1, 2, 3, …6

Max Distance
Hybrid

Chef animation
1% 2% 3% 4% 5% 6%

Compression
Ratio 22:1 32:1 41:1 65:1 78:1 96:1

TABLE VII COMPRESSION RATIOS OF THE CHICKEN CROSSING ANIMATION
USING THE HYBRID APPROACH. THE CHICKEN CROSSING ANIMATION HAS 400
FRAMES AND EACH FRAME HAS 5664 TRIANGLES AND 3030 VERTICES. THE
OBJECT SIZE IS 2.556 UNITS IN X DIMENSION, 2.23 UNITS IN Y DIMENSION AND
1.07 UNITS IN Z DIMENSION. THE ORIGINAL FILE SIZE IS 14,544,000 BYTES. MAX
DISTANCE THRESHOLD= P% *2.556 UNITS, WHERE P=2.5, 5, 7.5, 10, 15, 20

Max Distance Hybrid
Chicken animation

2.5% 5% 7.5% 10% 15% 20%

Compression
 Ratio 29:1 47:1 60:1 77:1 112:1 153:1

TABLE VIII COMPRESSION RATIOS OF THE DANCE ANIMATION USING THE
HYBRID APPROACH. THE DANCE ANIMATION HAS 201 FRAMES AND EACH
FRAME HAS 14118 TRIANGLES AND 7061VERTICES. THE OBJECT SIZE IS 0.0758
UNITS IN X DIMENSION, 0.172 UNITS IN Y DIMENSION AND 0.074 UNITS IN Z
DIMENSION. ORIGINAL FILE SIZE IS 17,031,132 BYTES. MAX DISTANCE
THRESHOLD=P%*0.172 UNITS, WHERE P=1, 2, 3, 4, 5, 6

Max Distance
Hybrid

Dance animation
1% 2% 3% 4% 5% 6%

Compression
Ratio 17:1 28:1 37:1 48:1 62:1 72:1

Fig. 10 A selected set of reconstructed Chef animation using the hybrid
approach. The top row is the original animation. The reconstructed
animation by using Max Distance threshold = 1% and 5% are shown in
row 2and 3 respectively. The compression ratio is 22:1 and 78:1 in row
2 and 3 respectively

Fig. 11 A selected set of reconstructed Chicken Crossing animation
using the hybrid approach. The top row is the original one. The
reconstructed animation by using Max Distance threshold = 5%, 10%
and 15% are shown in row 2, 3, and 4 respectively. The compression
ratio is 47:1, 77:1 and 112:1 in row 2, 3 and 4 respectively.

Fig. 15 A selected set of reconstructed Dance animation using the
hybrid approach. The top row is the original animation. The
reconstructed animation by using max distance threshold = 1% and 3%
are shown in row 2 and 3 respectively. The compression ratio is 17:1
and 37:1 in row 2 and 3 respectively

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

915

Compression ratio comparison: hybrid, octree and delta

This section presents the compression ratio comparison
results among the hybrid, octree and delta approaches. Fig. 13,
14 and 15 show the results using the Chef, Chicken Crossing
and Dance animation respectively.

Fig. 13 Compression ratio comparison among the hybrid, octree and
delta approach using the Chef animation.

Fig. 14 Compression ratio comparison among the hybrid, octree and
delta approach using the Chicken animation.

V. CONCLUSION AND FUTURE WORK
This section presents some conclusions that can be drawn

from this paper and some possible future extensions to the
current work. A delta coding mechanism was introduced that
represents the data coherence in a 3D animation sequence and is
efficient as a compression mechanism on some pair-wise frame
sequences. This approach was evaluated by comparing its
performance to the octree-based approach in terms of overall

and frame-wise compression ratios. In some pair-wise frame
cases it did out-perform the octree-based method. However, it is
shown that it is not suitable as a general solution because the
compression ratio does not scale with the number of vertices of
a frame. Although the delta coding approach could not achieve
good performance when it is used alone, it can increase the
performance of the octree-based approach when they are
combined.

 Fig. 15 Compression ratio comparison among the hybrid, octree and
delta approach using the Dance animation.

A hybrid approach was then presented that combines the
octree-based method and delta coding method. The results show
that the hybrid approach outperforms both the octree-based and
delta-encoding approaches in terms of compression ratio. This
hybrid approach provides a better technique to predict the
differential motion of any consecutive frames in the animation
sequence.

One possible extension to the current work is to implement a
frame-based geometry system using hybrid coding approach
with particular emphasis on support for practical playback
requirements including stream joining, playback controls, and
error correction.

ACKNOWLEDGMENT

We want to thank Andrew Glassner for giving us access to the
Chicken data. The chicken character was created by Andrew
Glassner, Tom McClure, Scott Benza, and Mark Van
Langeveld. This short sequence of connectivity and vertex
position data is distributed solely for the purpose of comparison
of geometry compression techniques. We also want to thank
MIT CSAIL Graphics Lab for the dance and cow sequences.

REFERENCES

[1] M. Deering, "Geometry Compression," Proceedings of ACM

SIGGRAPH'95, pp. 13-20, 1995.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

916

[2] G. Taubin and J. Rossignac, "Geometric compression through
topological surgery," ACM Transactions on Graphics, vol. 17, no. 2, pp.
84-115, 1998.

[3] G. Taubin and J. Rossignac, "3D Geometry Compression," ACM
SIGGRPAH'98 Course Notes 21, Orlando, Florida, 1998.

[4] C. Touma and C. Gotsman, "Triangle Mesh Compression.," Proceedings
of 24th Conference on Graphics Interface (GI-98), pp. 26-34, San
Francisco, 1998.

[5] J. Rossignac, "Edgebreaker: Connectivity Compression for Triangle
Meshes," IEEE Transactions on Visualization and Computer Graphics,
vol. 5, no. 1, pp. 47-61, 1998.

 [6] F. Bossen, "On The Art Of Compressing Three-Dimensional Polygonal
Meshes And Their Associated Properties," Ph.D. Thesis, cole
Polytechnique Fdrale de Lausanne (EPFL), 1999.

[7] D. Shikhare, "State of the Art in Geometry Compression," National
Centre for Software Technology, 2000.

[8] D. Luebke, "A survey of polygonal simplification algorithms," Dept.
Computer Science, University of North Carolina, Chapel Hill, Tech.
Report TR97-045, 1997.

 [9] J. E. Lengyel, "Compression of Time-Dependent Geometry,"
Proceedings of ACM Symposium on Interactive 3D Graphics, pp. 89
-95, New York, ACM Press, 1999.

[10] M. Alexa and W. Müller, "Representing Animations by Principal
Components," Computer Graphics Forum, vol. 19, no. 3, pp. 411-418,
2000.

[11] L. Ibarria and J. Rossignac, "Dynapack:Space-Time Compression of the
3D animations of triangle meshes with fixed connectivity," Proceedings
of Eurographics/SIGGRAPH Symposium on Computer Animation,
2003.

[12] H. M. Briceño, P. V. Sander, L. McMillan, S. Gortler, and H. Hoppe,
"Geometry Videos: A new representation for 3D Animations,"
Proceedings of Eurographics/SIGGRAPH Symposium on Computer
Animation(SCA03), San Diego, California, 2003.

[13] Z. Karni and C. Gotsman, "Compression of soft-body animation
sequences," Computers & Graphics, vol. 28, pp. 25-34, 2004.

[14] J. Zhang and C.B. Owen, “Octree-based Animated Geometry
Compression”, Computers & Graphics, Volume 31, Issue 3, pp 463-479,
June 2007.

[15] A. Glassner, T. McClure, S. Benza, and M. V. Langeveld, "Chicken
Crossing," SIGGRAPH Video Review, 1996.

