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 Abstract—The MFCAV Riemann solver is practically used in 

many Lagrangian or ALE methods due to its merit of sharp shock 
profiles and rarefaction corners, though very often with numerical 
oscillations. By viewing it as a modification of the WWAM Riemann 
solver, we apply the MFCAV Riemann solver to the Lagrangian 
method recently developed by Maire. P. H et. al.. The numerical 
experiments show that the application is successful in that the shock 
profiles and rarefaction corners are sharpened compared with results 
obtained using other Riemann solvers. Though there are still 
numerical oscillations, they are within the range of the MFCAV 
applied in onther Lagrangian methods. 
 

Keywords—cell-centered Lagrangian method, approximated  
Riemann solver, HLLC  Riemann solver  

I. INTRODUCTION 
AGRANGIAN hydrodynamics algorithm have been widely 
used for a long time in the solution of complex problem of 

fluid flow. Lagrangian schemes are characterized by a mesh 
that follows the fluid flow. By this mean, these methods deal 
with interfaces in a natural manner. The main numerical 
difficulty lies in the node motion discretization, especially for 
multidimensional cases. There are two well-known finite 
volume schemes in Lagrangian formulism. One is the 
discretization on staggered grid proposed by von Neumann 
and Richtmyer, where the momentum is defined at the nodes 
and the other thermodynamic variables(density, pressure and 
specific internal energy ) are all cell-centered, so that the 
vertex velocity can be computed by a most natural way[2][3].  
It is based on an internal energy formulations. In its initial 
version, this scheme was not conservative and it admitted 
numerical spurious modes. Moreover, since a decade, many  
improvements have been done in order to solve the previous 
problems, for example, Caramana and Shashkov[4]show that 
with an appropriate discretization of the subzonal forces 
resulting from subzonal pressures, hourglass motion and 
spurious vorticity can be eliminated. 

An alternative to the staggered discretization is to use a 
conservative cell-centered discretization, in this method all 
the variables are defined in the cell centered [5], [6]. In this 
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classical cell-centered scheme, flux across the boundary of the 
cell is computed by solving exactly or approximated a 
one-dimensional Riemann problem in the direction normal to 
the boundary. The main problem with this type of method lies 
in the fact that the node velocity needed to move the mesh 
cannot be directly calculated.  In [8] and [9], the node velocity 
is computed via a special least squares procedure. It consists 
in minimizing the error between the normal velocity coming 
from the Riemann solver and the normal projection of the 
vertex velocity. It turns out that it leads to an artificial grid 
motion, which requires a very expensive treatment. Moreover, 
with this approach the flux calculation is not consistent with 
the node motion. 

Recently, a new two-dimensional Lagrangian cell-centered 
scheme, which is conservative and entropy consistent, of the 
finite volume type is derived in [1]. The vertex velocity and 
the numerical fluxes through the cell interfaces are not 
computed independently as usual but in a consistent manner 
with an original solver located at the nodes. The main new 
feature of the algorithm is the introduction of four pressures 
on each edge, two for each node on each side of the edge. This 
extra degree of freedom allows them to construct such a nodal 
solver that face fluxes and the nodal velocities are all 
evaluated in a coherent manner. The nodal solver is 
constructed by satisfying the global balance of momentum 
and entropy inequality. From the nodal solver the vertex 
velocity can be determined by the weighted least square 
method. In[1], the weight is set to the acoustic impedance then 
the velocity along the normal direction of the cell interfaces is 
just the velocity of the weak wave approximated Riemann 
solver(WWAM).  But different approximated Riemann solver 
behaves different numerical features which can obtain 
different efficiency of the numerical scheme for the fluid 
flows. Because WWAM can only simulate the problems in 
which the shocks are not complex.  So we hope to analyze 
some practical approximated Riemann solvers for the new 
Lagrangian method and to simulate  complex problems. We 
use several approximated Riemann solvers, for example 
HLLC Riemann solver, Duckowicz double shock Riemann 
solver and MFCAV Riemann solver,  under the condition that 
the weights of the Riemann invariants along the normal 
direction of the cell faces are still set to the acoustic 
impedance, to simulate the Sod shock tube problem, but the 
results do not approximate to the accurate solution. So we 
know that  the Riemann solvers discussed above are not 
applied to the new Lagrangian method directly. Based on the 
consideration above, we study deeply how to develop and 
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apply the Riemann solvers discussed above to the new 
Lagrangian method. For Duckowicz double shock Riemann 
solver which is second order accuracy and very complex,  we 
don’t consider it in this paper. But now we have found the 
techniques to apply  HLLC and MFCAV Riemann solver to 
the new Lagrangian method successfully and obtain good 
results. But the technique for  HLLC Riemann solver is 
simpler compared to the MFCAV Riemann solver, we don’t 
consider it in this paper, we refer the readers to see [15] for 
details. In this paper we will discuss deeply how to apply  
MFCAV Riemann solver to the new Lagrangian method. 

The rest of this paper is organized as follows: In section2, 
we simply recall the new Lagrangian method. Then we 
analyze how to construct the nodal solver for general 
approximated Riemann solvers to be adapted to the new 
Lagrangian method.  In section4, we validate our new scheme 
with some test cases, and the numerical results demonstrate 
the robustness and the accuracy of the method. Finally the 
conclusion is given in section 5.  

II. SIMPLY RECALL THE NEW LAGRANGIAN METHOD 

A. Governing Equation 
The gas dynamics  equations  for  an  inviscid  compressible 

fluid equations written in Lagrangian formalism in integral 
form is  
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where ρ , E  and ),( vuV =   denote the density, the specific 
total energy and the fluid velocity respectively. We denote by 

VVEe ⋅−= 5.0  the specific internal energy and P the 
pressure given by the equation of state ),( ePP ρ= . Ω  is a 

control-volume and Ω∂  is the boundary of Ω , N is the unit 
outward normal to Ω∂  and dl  is the length element on 

Ω∂ ,  see [1]and [13] for the details. Let Ωm  denotes the 

mass of fluid enclosed in Ω . Let us introduce the area of 
domain Ω : 

 ∫ Ω= ΩΩ dA . 

We define the density ΩΩΩ = Am /ρ   and the specific 

volume ΩΩ = ρτ /1 , we also define the mass averaged 
velocity and total energy 
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B. Spatial Approximation 
Apply the classical finite volume scheme to discrete(2),see 

Fig.1, iΩ  is a polygonal cell whose vertices are denoted by 

)(,...,1, iRrM r = . We denote by R(i) the number of 

vertices(or faces) of the cell iΩ . The vertices are indexed 

counter clockwise. 1,,1, ++ rrrr TL  and 1, +rrN  represents the 

length, the unit tangent vector and the unit outward normal 
vector of any edge ],[ 1+rr MM  respectively. The fluid in cell 

iΩ  is described by the discrete variables ),,( iii EVτ , 
respectively the averaged specific volume, velocity and 
specific total energy. Then (2) can be discrete as (3), see [1] 
for details.  
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                    Fig.1:  Notations  
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For the classical Godunov method [5], [6], the normal 

velocity 1,
*

1, ++ ⋅ rrrr NV  is determined by a one-dimensional 

Riemann solver at faces. An immediate consequence is of 
course the conservation of the finite volume method (3). 
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Nevertheless, one drawback of such a method is that the 
Riemann solver provides only edge–centered normal 
component velocities, whereas the velocities of vertexes are 
needed to move the mesh. It is impossible, in the general case, 
to construct a node velocity whose projection in the normal 
direction of each face around the node is equal to the Riemann 
normal component velocity. For this reason most of the 
known methods consist of solving an optimization problem 
such as that in the CAVEAT code [8] and [9]. Thus, the 
variation of cell areas must be recomputed to keep the 
coherent with vertex motion.  

In [1] a new method is proposed，where the vertex 
velocities   are at first evaluated using some still-to-define 
solver.  The face velocity are then computed from node 
velocity by 

                   )(
2
1 *

1
**

1, ++ += rrrr VVV ,                            (4) 

where (4) can be obtained by geometry conservation law and 
(3)-(i), so the flux of cell faces and the flux at node are in a 
coherent manner. 

 Similarly, the pressure and energy of the cell faces are 
discrete as  
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where the pressure i
rrP*,

2/1, + and i
rrP*,

1,2/1 ++ represents the 

pressure on the half face ],[ 2/1+rr MM  and ],[ 12/1 ++ rr MM  

see from the cell iΩ , see Fig.2. Then equation (3) can be 
shifted to such form 
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Fig.2 Pressures at faces 

 

C. Construction of a Solver at the Vertices 
In (5), the conservation equation is shifted to the form of 

vertex flux from the form of face flux. The key point is how to 
compute the vertex pressure ),( *,

1,2/1
*,

2/1,
i

rr
i
rr PP +++  and vertex 

velocity *
rV . In [1], the vertex pressure ),( *,

1,2/1
*,

2/1,
i

rr
i

rr PP +++
and 

vertex velocity *
rV  are computed by constructing solver at 

the vertices under the conditions of global balance of 
momentum and satisfying entropy inequality.  We simplify 
describe it, see [1] for details. 

Notations around vertex qM is defined as in Fig.3. The 

global balance of momentum is shifted to vertex,  then it takes 
as such form        
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The (global) conservation of momentum is satisfied 
provided the right hand side vanishes. A sufficient condition 
is  
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This summation is done over all the cells k  surrounding 
vertex qM . Relation (7)  can be interpreted as the local 

equilibrium of vertex qM  under pressure force. This is also a 

local conservation relation. The condition (7) also implies the 
global conservation of total energy.      

From the entropy condition, such relation is obtained  
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where iσ and iε are the entropy, the internal energy  in cell 

iΩ  respectively. iT  is the cell average temperature. 
   A sufficient condition for the right hand side of this 

relation to be positive is  

       
)(...1,)(

)(...1,)(

1,
**,

2
1

,

,1
**,

,
2
1

iRrNVVPP

iRrNVVPP

rriri
i

rr
i

rriri
i

rr
i

=⋅−=−

=⋅−=−

+
+

−
−

α

α
 ,           (9) 

where iα is a positive coefficient that has the dimension of a 
mass flux. These tworelation can be interpreted as Riemann 
invariants along the directions rrN ,1−  and 1, +rrN .  If  we 

rewrite the condition (9) using notations around a generic 
vertex qM , we obtain 
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If we shift index ( 1−→ kk ) in the second term of (6) and  
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*
kV  is the normal velocity given by the classical one 

dimensional acoustic Riemann solver for face ],[ kq MM  
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A straightforward calculation shows that the left hand side of 
this last equation is the gradient of the following quadratic  
functional  
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 Fig.3 States around internal node qM     

III. THE DEVELOPMENT AND  APPLICATION OF THE 
MFCAV  RIEMANN SOLVER    

From the above discussion , we see that  for  (10) and (12), 
the key point is how to select the weight kα . In [1] kα is set to 
the acoustic impedance, then (13) is just the velocity of the 
weak wave approximated Riemann solver(WWAM) 
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The pressure of the weak wave approximated Riemann 

solver(WWAM)is interpreted as 
 

kj
kjkj

kjkjkjkj

kj
q

cc

PcPc
P

,
2
1

2
1,

2
1

2
1,

2
1

2
1,

2
1

2
1,

2
1

2
1,

2
1

2
1,

2
1

,
2
1 )()(

)()(

−
−−+−

−−+−+−−−

−
+

+

+
=

ρρ

ρρ      (17) 

WWAM Riemann solver is  first proposed by Godunov [], 
in which the central idea is to use the simple characteristic 
relation to replace the shock and rarefaction relations, then the 
velocity and pressure can be interpreted  as  
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where ( )LLLLL cPVU ,,,ρ= and ( )RRRRR cPVU ,,,ρ= are the 
left and right states of the Riemann solver respectively. This is 
the linear approximated scheme of the discontinuity 
decomposition, which is also called  the weak wave 
approximated Riemann solver(WWAM).But due to much 
viscosity, WWAM can only simulate  theproblems in which the 
shocks are not complex. Different approximated Riemann 
solver behaves different numerical features which can affect  
the numerical scheme for simulating the fluid flows. So we 
hope to analyze some practical approximated Riemann solvers 
for the new Lagrangian method and to simulate the complex 
problems. We have used several approximated Riemann 
solvers, for example HLLC Riemann solver, Duckowicz 
double shock Riemann solver and MFCAV Riemann solver, 
under the condition that the weight kα  is still set to the acoustic 
impedance, to simulate the standard numerical examples such 
as Sod shock tube problem, but the results are not approximated 
to the accuracte solution.  It is  shown that the Riemann solvers 
discussed above are not applied to the new Lagrangian method 
directly. Based on the consideration above, we study deeply 
how to develop and apply the Riemann solvers discussed above 
to the new Lagrangian method. For Duckowicz double shock 
Riemann solver which is second order accuracy and very 
complex,  we don’t consider it in this paper. But now we have 
found the techniques to develop and  apply the HLLC and 
MFCAV Riemann solvers to the new Lagrangian method 
successfully and obtain good results. But the technique for  
HLLC Riemann solver is simpler compared to the one for the 
MFCAV Riemann solver, we don’t consider it in this paper, we 
refer the readers to see [15] for details. In this section we will 
discuss deeply the technique to develop and apply the MFCAV 
Riemann solver to the new Lagrangian method. 
A  The  MFCAV  Approximated Riemann Solver 

The MFCAV Riemann solver is practically used in many 
Lagrangian or ALE methods due to its merit of sharp shock 
profiles and rarefaction corners, though very often with 
numerical oscillations, see [14]. In two dimension, for such 
meshs displayed in Fig.4, the pressure and velocity on the 
normal direction of  the lines in k direction, are computed by 
the MFCAV, which take as  
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    In (20), except for  an  inverse interpolate term of the 
weight cρ , a term of Von Neumann artifical pressure is 
attacted to it to modify the pressure, where b is an adjustable 
constant. In (19),  besides an  inverse interpolate term of the 
weight cρ , a  term of  acceleration is attacted to it to modify the 
velocity. So the MFCAVcan be adapted to the cases to  which 
the WWAM cannot be adapted, see the comparing between 
MFCAV and WWAM in [14]. 

Similarly the pressure and velocity on the normal direction 
of the lines in j direction computed by the MFCAV  can be 
seen in[14]. 

     
    
           Fig. 4 the meshes 

   Now in the next section , we will deeply discuss the technique 
to develop and apply the MFCAV  to the new Lagrangian 
method. 
 
B   The  development and  application of the MFCAV      

1. The MFCAV in one dimension  

We first discuss the technique in one dimension. From  
section A, in one dimension, the velocity and pressure of 
MFCAV can be interpreted as 

 
RL

RL
RL

RL

RRLLMFCAV PPVV
V

ββ
κ

ββ
ββ

+
−

+
+
+

= ,
                   (21) 

q
PP

P
RL

LRRLMFCAV +
+
+

=
ββ
ββ                                      

(22) 
where ( )LLLLL cPVU ,,,ρ= and ( )RRRRR cPVU ,,,ρ= are the 
left and right states of the Riemann solver respectively and  
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RL cc , is the sound speeds of the left and right states, tΔ is the 
time interval, Von Neumann artifical viscousity q is 
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Now we will discuss the technique to develop  and  apply  
MFCAV to the new Lagrangian method by viewing it as a 
modification of  WWAM Riemann solver. We first consider 
the case of 0=q . Let  

LLLL QVVPP +−−=− )*(* β                        (24) 
and  

RRRR QVVPP +−=− )*(* β                          (25) 

Where LQ and RQ are the modification to be determined. If 

LQ and RQ  are all set to be zero, then (24)and (25) are the 
Riemann invariants of WWAM, and the  velocity  and pressure 
of the intermidate state are (18)and (19) respectively. 

From (24)and (25), the velocity and pressure of the 
intermidate state for MFCAV can be computed as 
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From (26)and (27) which are combined with (21)and (22),we 
can obtain the linear equations of LQ and RQ  
                            ))(1( , RLRLRL PPQQ −−=− κ                 (28a) 

)( RLRLRLLR VVQQ −−=+ ββββ             (28b) 

From which LQ and RQ are solved out as 
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Similarly for the case of 0≠q , LQ and RQ  take as  
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where    22 ))((5.0 LRLR VVbA −+= ρρ  
 
2. The MFCAV is applied to the new method 

In this section we will applied the part 1 to the new 
Lagrangian method.  
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We first consider the case of 0=q . From the above  
discussion, (10) can be replaced by 
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Now we substituted (31) to (11), and arrive at 
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We set, as in [1], 
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However, in the present case, we have by noting(32)  
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and therefore,we have from (34)  
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which  is just the normal velocity given by the one-dimensional 
MFCAV Riemann solver for face [ ]kq MM , . With this 

notation, we can rewrite (33) and give an interesting 
interpretation of it: 
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A straightforward calculation shows that the left-hand side of 
(37) is the gradient of the following quadratic functional  
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where ),( **
qq vu  denotes the components of *

qV .Consequently, 

the solution of (37) reaches the minimum of the functional 
),( **

qq vuF . 

      From the above discussion, we note that for MFCAV 
compared with WWAM, the diffenece between them is that the 
computation of the pressure. For WWAM, the pressure is 
computed by (9), but the pressure of MFCAV is computed by 
(10). 

IV. NUMERICAL EXAMPLES 
In this section, we present some numerical examples of 

multi-material flows to demonstrate the performance of our 
numerical scheme. The goal of this paper is only develop and 
apply the MFCAV Riemann solver to the new Lagrangian 
method. So from the numerical examples displayed in this 
section we see that the numerical results not only maitain the 
merits such as sharp shock profiles and rarefaction corners but 

also maitain the shortage such as numerical oscillations. But 
this shortage is not  caused by the development and application, 
it is actually caused by the artifical viscosity  which  is  within 
the range of the MFCAV applied in onther Lagrangian 
methods. 

  

A  One-Dimensional Examples  
1 Sod’s Shock Tube Problem  

We consider Sod’s shock tube problem in the unit interval. 
The initial condition is                
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The computed results by WWAM and MFCAV at 0.2t =  are 
shown in Fig.5 with 400 and 20 mesh cells in x and y direction 
respectively, where (a), (b), (c)are the density, pressure and 
velocity.  It is obvious that MFCAV Riemann solver exhibits a 
slightly better accuracy than WWAM solver near the 
rarefaction wave, but due to the artifical viscosity, MFCAV 
gives a slightly spurious osciallion near the contact 
discontinuity and shock wave.  
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 Fig.5 the results of  0.2t = : (a)density;(b)pressure ;(c) velocity  
 

2 Lax’ Shock Tube    
The initial condition is 
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The computed results by WWAMand MFCAV for Lax’s 
problem are shown in Fig.6 with 400 and 20 mesh cells 
in x and y direction respectively, where (a), (b)and(c) are the 
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density, pressure and velocity. It is obvious that MFCAV 
Riemann solver exhibits a slightly better accuracy than 
WWAM solver near the rarefaction wave,contact discontinuity 
and shock wave, but due to the artifical viscosity, MFCAV 
gives a slightly spurious osciallion near the contact 
discontinuity and shock wave.  
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Fig.6 the results of 0.15t =  : (a)density;(b)pressure;(c) velocity 
 
3   Blast Wave Problem of Woodward and Colella [12] 

This problem is the left part of the Woodward –Colella 
interacing shock wave problem, the initial condition is       
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This problem exhibits very high pressure ratio, it is a very 
challenging problem for numerical methods as the 
compressions are exceptionally high in very small volumes. 
The results of 038.0=t  are shown in Fig.7, where (a), (b), (c)  
are the density, pressure and velocity  respectively. It is obvious 
that MFCAV Riemann solver exhibits a slightly better accuracy 
than WWAM solver, but due to the artifical viscosity, MFCAV 
gives a slightly spurious osciallion. 
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Fig.7 The results of 038.0=t : (a)density;(b)pressure;(c) velocity 
  

  4 Double Shock Wave Problem [10]          
The initial data is  

(5.99924,19.5975,460.894,1.4),
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This example with a very large pressure ratio is designed to 

test the robustness of numerical methods. The solution contains 
a left shock, a contact discontinuity, and a right shock. The 
results is shown in Fig.8, where (a), (b), (c) are the density, 
velocity and pressure. The cells in x and y  direction are 

)20400( × . We see that the numerical results are generally in 
good agreement with the exact solution. It is obvious that 
MFCAV Riemann solver exhibits a slightly better accuracy 
than WWAM solver, but also gives a slightly spurious 
osciallion. 
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Fig.8 The results of 0.025t = : (a)density;(b)pressure;(c) velocity 
 

5 Double Rarefaction Wave Problem [10]    
The initial data is  
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This test also called 123 problem, has solution consisting of 
two strong rarefactions and a trivial stationary contact 
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discontinuity. The pressure is very small (close to vacuum), and 
a number of methods are known to have difficulties with this 
kind of symmetric Riemann problems[]. Fig.9 shows results 
obtained with the MFCAV and WWAM.  It is obvious that 
MFCAV Riemann solver exhibits better accuracy than 
WWAM solver, specially for denstiy  at rarefaction and  pressure 
at contact. 
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       (e) 

Fig.9 The solution at 15.0=t ;(a)density ; (b)pressure; (c)The 
amplified figure of density at rarefaction; (d)The amplified figure of 

pressure at contact; (e)velocity 
 
B  Two-Dimensional Examples 
1 Sedov’s Blast Wave Problem  

Consider a uniform medium in space with zero initial 
pressure. At time 0=t , a fixed amount of energy is deposited 
at the origin, 0=r .  As time increases, a blast wave expands 
away from the origin. Because the initial pressure is zero, the 
shock associated with the blast wave is infinite in strength, and 
a similarity solution for the post shock profile can be obtained. 
The solution was first found by Sedov in 1959 for a −γ law 
gas and is particularly useful for testing the accuracy of 
multidimensional numerical schemes [8]. Here, we run a 
two-dimensional calculation and compare the numerical results 
obtained using the Riemann solvers discussed above.  

An illustrative choice for a computational mesh is the one in 
which the plane coordinates are Nyx /1.1=Δ=Δ  with 22=N  

in a quadrant. A single unit of energy is deposited in the 
central cell of the mesh. According to the analytic theory, the 
blast shock wave should expand with radius equal to 1 at 
time 1=t . The results of  MFCAV and WWAM Riemann 
solvers at time 1=t  is shown in Fig.10, in which  the 
corresponding density distributions and mesh cells are shown. 
The blast wave should be spherical at all times. We see that all 
the schemes can correctly reproduce the shape and position of 
the shock wave. The shock position computed by WWAM is 
equal to 1 at time  1=t . But the shock speed of MFCAVis 
slightly  larger than the one of WWAM. 
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(a)                                               (b)  

 Fig.10 The results at 0.1=t ; (a)the solution of WWAM; 
(b)the solution of MFCAV 

 
2 Noh’s Test Case 

  Noh’s test case is the implosion of a cylinder of unit radius. 
The cylinder is filled with a monoatomic perfect gas )3/5( =γ . 
The in initial state is ),0,1(),,( 000 eRVP −=ρ , where eR  
represents the radial unit vector. This case, defined by Noh in 
[11], admits a self-similar solution: a shock wave moves 
inwards at the constant speed 3/1=D . 

   In order to assess the robustness of our scheme, we run the 
Noh problem on a    Cartesian grid. This configuration leads to 
a more sever test case since the mesh is not aligned with the 
flow. We have displayed the grid and the density map in Fig.11. 
We note that the cylindrical symmetry is quite well preserved 
and that the shock is located at a circle whose radius is 
approximately 0.2. The grid for this test case are slightly better 
than those obtained by the high-order cell-centered Lagrangian 
scheme proposed by Mair. H.[14].  From the zoomed figure, we 
see that due to the spurious osciallion  the flexibility of the grid 
computed by the WWAM is better than those obtained by 
MFCAV.   
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  (c)                                              (d)  
Fig.11 The mesh and density contour at 6.0=t ; (a)the solution of 

WWAM; (b)the solution of MFCAV;  (c)the amplified figure of      
WWAM; (c)the amplified figure of MFCAV; 

 
3 Saltzman’s Shock Tube 

We consider now the movement of a planar shock wave on a 
Cartesian grid that has been stretched[8]. This is a well known 
difficult test case that enables to validate the robustness of our 
scheme when the mesh is not aligned with the fluid flow. The 
computational domain is defined by ]1.0,0[]1,0[),( ×∈yx . 
The skewed initial mesh, shown on Fig.12, is obtained by 
transforming a uniform 10100 ×  Cartesian grid with the 
mapping 

           01.0
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For the material we use the equation of state of a 

monoatomic gas )3/5( =γ . The initial state 
is )0,0,1(),,( 000 =VPρ . The boundary condition at 0=x   is a 
normal velocity 1* −=v  (inflow velocity). On all the other 
boundary, we set up wall conditions. 

 The exact solution is a planar shock wave that moves at 
speed 3/4=D  from left to right. Thus the shock wave hits the 
face 1=x  at time 75.0=t . Behind the shock, the density is 
equal to 4. We have displayed in Fig.13 and Fig.14 the density 
map and the mesh at time 7.0=t  obtained by MFCAV and 
WWAM. We note the one-dimensional solution is very well 
preserved. Moreover, the location of the shock wave and the 
shock plateau are in good agreement with the analytical 
solution.  But for MFCAV, the density contour gives some 
spurious oscillation which caused by the artifical viscosity. 
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Fig. 12 The mesh of initional time 0.0=t    
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Fig. 13 The mesh at 7.0=t ; (a)WWAM; (b) MFCAV               
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Fig. 14 The density contour at 7.0=t ; (a)WWAM; (b) MFCAV 

         

V. CONCLUSION    
In a new cell-centered Lagrangian method proposed by 

Maire P. H. et al [1] which possess some good new fearures 
compared with calssical cell-centered Lagrangian method, we 
use several Riemann solvers to simulate the standard numerical 
examples such as Sod shock tube problem, but the results are 
not approximated to the accuracte solution.  It is  shown that the 
Riemann solvers  are not applied to the new Lagrangian method 
directly. Based on the consideration above, we study deeply 
how to develop and apply the Riemann solvers to the new 
Lagrangian method.  By viewing it as a modification of the 
WWAM Riemann solver, we apply the MFCAV Riemann 
solver to the Lagrangian method. The numerical experiments 
show that the application is successful in that the shock profiles 
and rarefaction corners are sharpened compared with results 
obtained using other Riemann solvers. Though there are still 
numerical oscillations, they are within the range of the MFCAV 
applied in other Lagrangian methods. The numerical 
oscillations are caused by the artifical viscosity, so we will 
modify the MFCAV Riemann solver  by considering the 
entropy  to eliminate the oscillations in the future.  
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