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Simulation and Optimization of Mechanisms
made of Micro-molded Components

Albert Albers, Pablo Enrique Leslabay

Abstract— The Institute of Product Development is dealing
with the development, design and dimensioning of micro com-
ponents and systems as a member of the Collaborative Research
Centre 499 “Design, Production and Quality Assurance of
Molded micro components made of Metallic and Ceramic Ma-
terials”. Because of technological restrictions in the miniaturi-
zation of conventional manufacturing techniques, shape and
material deviations cannot be scaled down in the same propor-
tion as the micro parts, rendering components with relatively
wide tolerance fields. Systems that include such components
should be designed with this particularity in mind, often re-
quiring large clearance. On the end, the output of such systems
results variable and prone to dynamical instability. To save
production time and resources, every study of these effects
should happen early in the product development process and
base on computer simulation to avoid costly prototypes. A
suitable method is proposed here and exemplary applied to a
micro technology demonstrator developed by the CRC499. It
consists of a one stage planetary gear train in a sun-planet-ring
configuration, with input through the sun gear and output
through the carrier. The simulation procedure relies on ordi-
nary Multi Body Simulation methods and subsequently adds
other techniques to further investigate details of the system’s
behavior and to predict its response. The selection of the rele-
vant parameters and output functions followed the engineering
standards for regular sized gear trains. The first step is to
quantify the variability and to reveal the most critical points of
the system, performed through a whole-mechanism Sensitivity
Analysis. Due to the lack of previous knowledge about the sys-
tem’s behavior, different DOE methods involving small and
large amount of experiments were selected to perform the SA.
In this particular case the parameter space can be divided into
two well defined groups, one of them containing the gear’s pro-
file information and the other the components’ spatial location.
This has been exploited to explore the different DOE techniques
more promptly. A reduced set of parameters is derived for
further investigation and to feed the final optimization process,
whether as optimization parameters or as external perturbation
collective. The 10 most relevant perturbation factors and 4 to 6
prospective variable parameters are considered in a new, sim-
plified model. All of the parameters are affected by the men-
tioned production variability. The objective functions of inter-
est are based on scalar output’s variability measures, so the
problem becomes an optimization under robustness and relia-
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bility constrains. The study shows an initial step on the devel-
opment path of a method to design and optimize complex micro
mechanisms composed of wide tolerated elements accounting
for the robustness and reliability of the systems’ output.

Keywords— Micro molded components, Optimization, Ro-
bustness und Reliability, Simulation

I. INTRODUCTION

The development of smaller and smaller micro compo-
nents and systems is an ongoing process. Within the scope of
the Collaborative Research Center 499 (CRC) “Design,
Production and Quality Assurance of Molded Micro Com-
ponents made of Metallic and Ceramic Materials” funda-
mentals in a persistent process chain for micro components
are acquired. As a participating member, the Institute of
Product Development (IPEK) is dealing with the develop-
ment, design and dimensioning of micro components and
systems. High precision and very tight tolerances are prop-
erties commonly related to micro technologies, at least for a
group of manufacturing processes and materials. But this is
not the only reality in the micro world. The production of
metallic and ceramic micro molded components is still in its
research phase, and the components obtained with the actual
technologies are suffering of a lack of repeatability, and
therefore specified with wide tolerances. Thus, when creating
functional systems that contain such components, the de-
signer has to accommodate these wide tolerances, and allow
significant clearance between the elements. A study of the
effects of tolerance and clearance is therefore needed to un-
derstand the limits of such systems and to be able to forecast
their output’s performance. The following study will present
and compare the ability of some common Design of Expe-
riments techniques as a tool to qualify and quantify the re-
levance of varying parameters. With the reduced set of fac-
tors derived, investigations will be conducted to develop
appropriate methods for determining the robustness or the
reliability of the system as a whole. Finally, further reduction
of the influence factor set and selection of prospective control
ones’ will enable to optimize single component geometrical
properties in order to improve the system response as desired.

II. SIMULATION MODEL

In order to exemplify the capabilities of the different
techniques considered during the research, it is necessary to
introduce a system test case. To make the comparisons be-
tween methods even more meaningful, it is desirable that
system and model remain as constant as possible. In this case,
a technology demonstrator developed by the CRC499 is
taken as test case. It consists of a one stage planetary gear
train in a sun-planet-ring configuration, with input through
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the sun gear and output through the carrier. Table I gived3, Mslefar@9%vindows were not included. As a result of this

insights about the dimensions of the demonstrator, and Figure
1 shows an exploded view of the system. This demonstrator
allows for a good balance between the quantity of parameters
considered plus the output variability included and the mod-
eling complexity of the components intervening. It also
represents a system that has been deeply researched in the
macroscopic scale so comparison points and typical output
characteristics can be derived from the existing literature.
Another advantage of choosing this demonstrator is the fact
that it exist physically, and that it can be partially tested on a
test bench developed by the IPEK for that purpose. Results of
comparisons between simulation and test bench runs, based
on a standard double flank test, are published in [1]. The gear
train output load is set at 20 mNm, which is ambitious but
could be confirmed in static tests, while the input speed re-
mains constant. Rotation speed is kept low at 10 RPM as
dynamical effects are of less interest here. The flank geome-
try represented, despite being parametric and highly mod-
ifiable, is still away from the profiles measured on real probes
[2]. The intention of this setup is to assure that there is no
contact interruption during the time each tooth is engaged.

Fig. 1 CRC499 Demonstrator: compressed air driven turbine and one stage
planetary gear train assembly.

TABLE I GEOMETRICAL CONFIGURATION OF THE PLANETARY GEAR TRAIN

Sun Planet Ring Carrier
Pitch [mm] 5917 5917 5917 0.177
N 14 12 37 1
Depth [mm] 0.156 0.156 0.200 0.140
Mass [mg] 5.54 2.79 - 24.73

A. Parameter selection

The selection of relevant variation parameters for the de-
monstrator described above began by consulting german
normative [3, 4, 5] and classical textbooks about macroscopic
gear trains [6, 7]. With this information, the specifics of mi-
cro gears and gear trains were investigated, again citing ex-
isting literature [8, 9, 10] and the internal experience col-
lected by the CRC499. To avoid adding unnecessary com-
plexity to the model, those parameters accounting for small

selection work, following parameters were considered as
relevant variation agents: radial and tangential position of
two of the three planet pins on the carrier; clearance in each
of the planet bearings; position of the planet bearing related
to its pitch diameter; concentricity of the carrier output shaft
to the pins’ locator diameter; clearance in the output bearing;
concentricity of the input shaft to the sun’s pitch diameter and
of the input bearing to its theoretical central position; clear-
ance in the input bearing; 4 geometrical parameters for the
profile description of each of the five present gears. This
gives a grand total of 43 degrees of freedom. Figure 2 de-
scribes the meaning of these parameters graphically.

Following the same procedure, outputs of interest could be
selected: maximal stress in the tooth’s root zone, for dura-
bility concerns; highest contact pressure registered, for wear
estimation; output waviness (shaft angular deviation from its
ideal mathematical position) as an estimative of system’s
transfer quality. In order to differentiate the effects of all of
these parameters, it is necessary to let several teeth to engage
and disengage. Actually, it is sought that every component
rotates for about 90°, so that non-concentricity effects can be
covered with two orthogonal parameters.

P4

Fig. 2 Geometrical parameters considered in the model: a) bearing position
in planet gear; b) axis position on sun gear; ¢) pin and axis position on
carrier; d) profile description parameter with profile variation examples.

B. Simulation process

The investigation is based on a hybrid FEM-MBS proce-
dure. The FEM mesh with higher order elements on the
contour assures an adequate approximation of the gear flank
in all conditions, while the MBS solver handles the contact
force reactions and the component’s positions. The 200 steps
simulation with step time At = 7.5 ms runs a four point dis-
cretization scheme after the Houbolt decomposition [11]
which is a special case of the four-point one to assure un-
conditional stability. It becomes a requisite to run a fully
scriptable simulation tool to perform a complete sensitivity
analysis and optimization task. Specialized gear train simu-
lation software from Advanced Numerical Solutions LLC
seems adequate for the task. The gear geometry generation
module Multyx and the dynamic and contact solver Calyx
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were adapted to reduce the computation time as muchVed 3, NRigtedBO8f interactions and synergies between factors. Their

possible. Step time was increased just until the relevant de-
tails began to vanish. Contrary as in other FEM based ap-
proaches [12], the simulation step width At is not a trouble
source for the solver due to the manner in which the static and
dynamic effects are computed, see eq. 1.

Mx + CX + Kx = _fgxt + f;nertiul (1)

where x is the vector of d.o.f. of the structure, f.,, is the vector
of externally applied loads, fi,a 1S the vector of inertial
loads, M is the structure mass matrix, C the damping matrix
and K the stiffness matrix. By the end, the simulation time
was reduced to 23% of its original, from 30 to 7 minutes.
Currently the process has a weakness, because the geometry
files corresponding to the 4 profile parameters have to be
created previously. For a level study this is not a problem, but
when it comes to the optimization, the geometry parameters
will vary in a continuous form, thus requiring new geometry
files for each iteration. The creation of these files requires
with the actual state-of-the-art about the same time as the
simulation itself. A direct mesh morpher is very hard to im-
plement because of the higher order FE mesh used by Calyx.
The direct variation of the internal parameters in the geome-
try generator Multyx does not assure a 2-way correlation
between the changed values and the profile generated, ren-
dering the approach useless. To overcome the problem, the
81 geometry variations for each gear were pre-computed
drawing on an intermediate MatLab step that includes an
optimization cycle using the simplex search method [13] to
near the Multyx geometry to the desired one. Figure 3 shows
the complete simulation process graphically. Up to 4 parallel
Calyx solver runs could be managed.

Base mesh DOE selection
1 . - .
Multix: | MatLab: | MatLab: Experiment design
Geometry Parametric ~ y }
\ generation | | morphing | p .
| I MatLab: Calyx parameter file
[ MatlLab: Profiles comparison J_ I !
1,,,0 | OS: Queue administration
" MatlLab: Parameter optimizer] ) I l o I ) I )
| | Sotver || Solver || Solver || Solver |
[ MatlLab: Post processing |
DOE results

Fig. 3 Simulation and profile variation processes.

III. DESIGN OF EXPERIMENTS

Design of Experiment (DOE) is a structured, organized
method used to determine the relationship between the dif-
ferent factors (X’s) affecting a process and the output of that
process (Y). This method was first developed in the 1920s
and 1930s, by Sir Ronald A. Fisher, a renowned mathemati-
cian and geneticist. Design of Experiment involves designing
a set of experiments in which all relevant factors are varied
systematically. The results of these experiments help to
identify optimal conditions, the factors that most influence
the results, and those that do not, as well as details such as the

ability to determine which factors are relevant to the desired
output and which not is the reason for their introduction into
this study. Reducing the initial set of 41 parameters present in
the model can be very advantageous for future nomin-
al-geometry optimization steps, which is the ultimate goal of
the study. This goal constitutes a priori a typical screening
exercise and the corresponding techniques are the first to be
explored. No special care needs to be taken about rando-
mizing or blocking the simulation runs, because there are no
uncontrolled factors affecting the simulation model. Actual-
ly, there is no reason to repeat experiments neither (replica-
tion), because no divergent points have been detected during
a run; runs with the same initial parameter set generate ex-
actly the same results [14]. Although it is possible and
computationally affordable to study the influence of all fac-
tors simultaneously, more methods can be tested and com-
pared when operating with smaller subsets of similar para-
meters. In the case of the micro planetary gear train, it is
possible to divide the set into two sections, one containing the
parameters purely related with the teeth profile and the other
merging the geometrical ones. This particularity has been
exploited to derive a subset of 12 contour parameters, 4 for
each of the gear types involved (sun, planet, ring), affecting
the root, tip relief and real profile angle as depicted in Figure
2d. The following part of the study involving factorial and
related designs have been conducted for this subset.

A. Analysis of profile parameters

To start with the simplest design case, two possibilities for
screening procedures have been considered. Firstly, a typical
Resolution IIT fractional factorial design with 16 runs for the
12 parameters is created. As the tables summarized in [15,
16] do not contain this case explicitly, the design is created
from a mathematical algorithm within MatLab. The design
produced maintains equivalent properties. Secondly, a ‘sa-
turated main effect’ or Plackett-Burman design is generated.
Due to the parameters number this accomplishes not from the
tables published in [17] but from a Hadamard [18] matrix.
Starting with a 16 by 16 matrix, any 12 columns except for
the first one can be selected to create the desired design. After
screening, the study focuses on gaining more insight in the
model’s outputs, being the next simplest design to consider
the 2 level fractional and full factorial designs. The intention
is to compare the prediction quality of several fractional
designs with the objective of avoiding unnecessary compu-
tations in the future. A full factorial study (4096 runs) will be
conducted for this case only as a comparison base, and then,
fractional designs of Resolution IV (32 runs), V (256 runs)
and VI (512 runs) will be extracted and their predictions
compared. Keeping in mind the ultimate target of the inves-
tigation, the optimization of the system’s outputs, considera-
tions about the design requirements for the generation of
response surfaces should be taken into account when ana-
lyzing different experiment designs. Box summarized these
requirements in [19]: rotatability, residuals minimization,
proper ‘lack of fit” detection, internal error estimation, con-
stant variance check, sequential construction for higher order
designs, blocking capability, etc. Two level designs are
clearly not adequate for the task; three to five levels are
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commonly used for this purpose. If two level full factori4d:3, Ne:év@®Qhpossible starting conditions. In other cases, al-

where difficult to conduct, three or more levels are com-
pletely impracticable; fractional designs become very tricky
to define and are not rotatable. Two multilevel design fami-
lies derived from other methods are widely adopted: the
Central Composite Designs (CCD) and the Box-Behnken
designs. From the three CCD variations existing, circum-
scribed, inscribed and face centered, the latter (CCF) has
been selected due to its minimal level requirements. The CCF
design starts from a two level full factorial and adds 24 runs
for the 12 star points and 236 centre point runs. Its major
withdraw is its lack of rotatability. Box-Behnken (BB) de-
signs are independent quadratic designs that do not contain an
embedded factorial or fractional factorial design, their mayor
withdraw is its poor prediction capability at the corners of the
parameter space due to the missing probes. The design used
for this study contains 192 edge runs and 12 centre point runs.
There is another family of experiment designs, more ade-
quate for a response surface fitting, which offers a better
distribution of the prediction error. Called optimality criteria
designs, are based either on the prediction variance as defined
in Eq. 2 or on information about the variance of the regres-
sion parameters described by the covariance matrix. To mi-
nimize Cov(p), a characteristic scalar value for the matrix
evaluation has to be chosen.

Cov(,b’) =o’ (XTX)_1 )

Among the many possibilities (a short description of each
is included in [20]), the D-Optimality criteria is adopted. It
maximizes the determinant of Fisher's information matrix
X"X. This matrix is proportional to the inverse of the cova-
riance matrix of the parameters. So maximizing its determi-
nant is equivalent to minimizing the determinant of the co-
variance of the parameters [21] and also minimizes the vo-
lume of the regression estimates’ confidence ellipsoid for the
linear model parameters . Several approaches exist to find
this optimal designs; this study uses the coordinate exchange
algorithm [22] as implemented in MatLab. Two different
designs have been created, one with 256 and another with 512
experiments, both of them aimed to accommodate a quadratic
response surface. After analyzing the results obtained, a
progressive augmentation up to 4096 experiments of the later
design has been conducted for further investigation. Com-
plete results can be found in §IV and §V.

B. Analysis of geometrical parameters

Besides of benchmarking different DOE methods for the
specific problem of wide tolerances, the analysis of §III.A
identified the essential parameters in representing the gear’s
profile variations. The next step is to repeat the study for the
geometry parameters. This is accomplished with the best
performing method, the 3 level D-Optimality criteria, for a
set of 29 parameters including the 4 relevant profile para-
meters. One important geometrical parameter, the planet’s
centre radius, is excluded from this part of the study as it is
the principal target candidate for the coming optimization
step. The first attempt involved a design with 1500 probes,
but difficulties with the solver arose. Up to 40% of the pa-
rameter combinations could not be solved for, due to instable

though being able to start, the solver diverged at some point,
mostly when one of the planets could not establish contact
with either sun or ring. Both situations were also observed in
some physical tests and contributed to trigger this research
work. The set of failed runs and its variance were investigated
to pinpoint the parameters responsible for the abnormal
condition. Unfortunately, no conclusive responsible could be
drawn. To resolve the problem in the simulations, every side
of parameter space metacube was gradually reduced to its
half, thus losing some significance in the space corners. The
modification reduced the amount of failed simulations to
about 25%, and the total number of probes was increased to
2400 in an attempt to compensate for the lost information.
Refer to §1V and §V for the final results of the procedure.

IV. BENCHMARK OF METAMODELING METHODS

The 3 outputs of interest mentioned in §II.A give place to 8
different output data families which in turn allow 54 post
processing rules for the 200 measurement points per run.
Different regression models can be fitted to each of these
outputs: linear, linear interactions, extended interactions (3, 4
and 5 way aliasing free models) and quadratic models with
and without extended interactions. They will be called here:
Lin, Int, Int3 /-4/-5, Quad, QI3 /-4/-5. The whole procedure is
then repeated for different experiment design creation me-
thods. All the possible combinations would be worth a DOE
study themselves! Due to its simple evaluation and easy
comparison, the criteria to benchmark the metamodels will be
the R*2 and Radj"2 statistics. We concentrate here in show-
ing differences in the prediction ability of the methods and
select therefore just 3 prospective data fields, from the 54
available, to compare them. The outputs are the carrier axe
angular position error variation during the run (Outl), the
teeth contact force (Out2), and the tooth bending moment
(Out3). In all three cases, the 10 maximal values registered in
the run are averaged to avoid peaks arising from numerical
instability or other solver induced noise. Starting with the
screening exercise, the only possible prediction is about the
main factors so a linear regression model is selected. As seen
in Table II, both models fit the data quite well, being the
Plackett-Burman slightly more robust.

TABLE II MODEL FIT STATISTICS FOR SCREENING DOE

Outl Out2 Out3
Res Res Res
P m PB PB m
R™2 0.978 09185 0.986 0.8801 0.926 0.8783

Radj*2 0.890 0.5926 0.928  0.4004 0.630  0.3915

Then the attention is focused on the level 2 factorial de-
signs. As the number of probes increases, more comprehen-
sive models can be fitted and the importance of the Radj"2
statistical becomes clear, as an indicator of unnecessary re-
gressor terms. Table III summarizes the model fit statistics
for increasingly complex models and four different experi-
ment designs. The fractional factorial design definition is
given in §1IL.A, “Full” means a full factorial design. To save
space, only the worst performing output from the screening
fit is displayed here, to show the effects of increasing the
design resolution. Augmenting the design resolution above

790



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950

the theoretical needs is not beneficial for the linear modeVet:-3,_ N0:7 TABOOIV _MODEL FIT STATISTICS FOR 3 LEVEL DOE, OUTPUT 3

for the linear interactions model. It is not clear why the Res Out3
VI dt?s.ign was not .able tohﬁt an Int3 model by yiel.ding a l?ad Model  Stat. CCF BB D256 D-512 D-2048
conditioned matrix. This prevented another interesting R*2 06566 08134 07153 06156
comparison point with the full factorial design. The latter Int4 Radj*2  0.6419 - 03821 0.5632 0.5790
design shows no trend of getting ‘saturated’ as the model Quad R"2  0.6048 0.6871 0.6504 0.5898 0.5412
terms augment and the Radj*2 value does not start to sink, Radj"2  0.5964 0.4379 04598 05021 0.5201
indicating that higher order interactions are relevant for the QI3 R"2 —0.6870 - 07955 0.6938  0.6206
model. Radj*2  0.6763 - 0.5260 0.5725 0.5917
Q4 R"2 0.6961 - 0.8742 0.7315 0.6324
TABLE ITI MODEL FIT STATISTICS FOR FACTORIAL DOE, OUTPUT 3 Radj"2  0.6822 B 0.5063 05726 0.5948
QIs R"2 0.7052 - 0.9412 0.7729 0.6474
Out3 Radji*2  0.6890 - 04833 0.5928  0.6036
Model Stat. Res IV Res V Res VI Full
Lin R"2 0.3946 0.3394 0.2583 0.2764 TABLE V_MODEL FIT STATISTICS FOR GEOMETRICAL DOE
Radj"2 0.0122 0.3068 0.2405 0.2743 Outl Out2 out3
R"2 - 0.7512 0.6033 0.5895
Int Radj®2 ] 06415 05319 05815 Att.1  Att.2  Att.1  Att.2  Att. 1 Att.2
RA2 ] ) x 06753  R2 07724 07226 08972 08878 09347 09126
G padir ] ] x 06644 _Radi®2 04945 04607 07716 0.7819  0.8549 0.8302
R"2 - - - 0.6847
Int4 Radj2 - ; - 0.6704
Ints R"2 - - - 0.6942 V. SENSITIVITY ANALYSIS RESULTS
Radj"2 - - - 0.6773

Linear models are very efficient for sorting out relevant
parameters, but are not adequate for more complicated tasks
like robustness or reliability assessment or optimization. A
good method to check if a linear model is able to deliver a
good system prediction is to compare the prediction for the
parameter space’s centre point with a simulation run. The
result in this case is that the linear model is a poor metamodel
for the system’s behavior. Therefore, the study is augmented
by including designs that can accommodate quadratic mod-
els. Table IV summarizes the model fit statistics for increa-
singly complex models and five different experiment de-
signs, see §III.A for a terms explanation. Increasing the de-
sign complexity enhances the fit’s quality, as indicated by the
rising Radj”2 statistic. The decreasing R*2 is due to the in-
crease in the probes to interpolate, but its meaning should not
be misunderstood. As for the model complexity, only the
larger experiment designs provide enough information for the
higher order model to fit. In most of the cases a QI3 model is
enough as indicated by the staging or falling Radj”2 statistic.
Adding more model terms is redundant and only increases
R"2 falsely. The full factorial roots of the CCF design are
reflected in its ability to accommodate higher models. The
Box-Behnken design is only suited for the targeted quadratic
model, and the D-optimal designs become rapidly saturated
for complex models.

Finally, from the knowledge won so far, the model fitting
procedure for the second part of the DOE as explained in
§II1.B went straightforward. Table V shows the 3 considered
outputs fit statistics, both for the first failed attempt as for the
more successful second one. As the parameter space is now
considerably larger, higher order interaction models would
require too many experiments, and thus the modeling effort is
limited to QI3 models. From the table it is clear that output 1
is not being well fitted, and this tendency sustained for other
related outputs not considered for this work. Conclusion
should be extracted carefully from them. For the remaining
outputs, the selected model fits the data very satisfactorily.

After analyzing the results seeking for the most adequate
metamodels to predict the system’s behavior, the factors are
sorted after their for the outputs’ variance relevance. This
more challenging task will yield now some previously fa-
vored models as inadequate. To better understand the fol-
lowing tables, the parameter ordering remains the same
through the gear profile study, with factor X1 corresponding
to P1 for the ring gear, factor X2 to P2, ..., factor X5 to P1 for
the sun, ..., factor X9 to P1 for the planet, and so on. Please
refer to Figure 2 for details about the geometry parameters P.
Looking at the screening results in Table VI, the methods do
not agree in the importance assigned to the factors and no
clear tendency across the three outputs could be found. The
reliability of screening methods is then for our test case low
and no conclusions should be extracted from such a study.

TABLE VI RESULTS FOR SCREENING DOE

Outl Out2 Out3

P-B Res 111 P-B Res 111 P-B Res 111
X3 X1 X1 X1 X11 X11
X1 X9 X3 X8 X6 X10
X11 X8 X2 X9 X10 X6
X12 X11 X11 X11 X1 X5
X5 X2 X10 X4 X9 X8
X8 X12 X9 X12 X5 X9
X7 X10 X12 X3 X4 X7
X4 X3 X8 X7 X7 X2

As can be seen in Table VII, higher resolution fractional
factorial designs perform as well as the full factorial, saving
up to 7/8 of the experiments. The ranks for the resolution VI
and the full factorial designs are quite concordant, despite the
different models used. The Res VI design can only fit an
interactions model, while the full factorial became an I5
model. The importance of the interaction terms for this sys-
tem can be confirmed when comparing the new ranked list
against the one obtained from the screening experiment. The
following tables will constrain the output to the 10 most
relevant factors.
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Vol:3, No:7, 2009ABLE IX FINAL RESULTS FOR THE PROFILES DOE

Out3 Outl Out2 Out3

Res 111 Res IV Res V Res VI Full Res V D-2048 Res V D-2048 Res V D-2048
X11 X11 X10 X10 X10 X1 X1 X1 X1 X10 X272
X10 X1 X9 X9 X9 X1X10 X1X2 X1X2 X1X2 X9 X10
X6 X5 X6 X11X12 X11X12 X1X2 X172 X1X3 X2 X6 X9
X5 X10 X1X2 X2X9 X1X2 X1X3 X1X10 X2 X172 X1X2 X172
X8 X9 X11X12 X2X4 X2X10 X12 X272 X1X10 X372 X11X12 X1X2
X9 X12 X2X9 X1X4 X2X9 X3 X722 X2X9 X2X10 X2X9 X11X12
X7 X8 X1X10 X9X12 X2X4 X1X9 X1X9 X2X10  XI1X10 X1X10 X2X4
X2 X6 X2X10 X2X10 X1X4 X11X12 X12 X12 X9X12 X2X10 X1X10
X4 X2 X1X4 X1 X1X10 X4X10 X9X12 X3 X2X9 X1X4 X2X10
X3 X4 X11 X5 X1X2X10 X4X9 X2 X3X9 X2X3 X11 X1X4

Table VIII shows the performance of the 3 level designs
fitted with the best meaningful models possible. These are
QI4, Quad, QI3, QI3 and QI4 respectively. The CCF model
over estimates the importance of the quadratic factors, maybe
because of the small amount of information added by the 24
star-point runs. The Box-Behnken design overcomes this
problem but the ranking derived shows no convergent ten-
dency with the D-optimal designs. These in fact tend to repeat
the ranking as the design size and model fit quality increases.
This behavior gives some confidence about the decisions
derived from those designs.

TABLE VIII RESULTS FOR FACTORIAL DOE, OUTPUT 3

Out3
CCF BB D-256 D-512 D-2048
X212 X272 X172 X272 X212
X1172 X2X3 X272 X10 X10
X372 X672 X72 X9 X9
X172 X10X12 X472 X172 X172
X10 X4X12 X372 X1X2 X1X2
X672 X572 X10 X1X10 X11X12
X572 X9X11 X9 X4r2 X2X4
X9 X10X11 X1X2X10 X11X12 X1X10
X8"2 X1X12 X1X10 X722 X2X10
X11X12 X11X12 X11X12 X2X10 X1X4

The geometrical DOE was constructed around the know-
ledge obtained so far, so no linear designs were included, just
D-optimal. The factors X have now a new physical correla-
tion: X1 to X3 represent the carrier axis position and bearing
clearance, X4 to X7 the pin position as shown in Figure 2.c;
X8 to X12 the sun axis and bearing position and clearance
(Fig 2.b); X13 to X21 the bearing position and gap for each
planet as shown in Fig 2.a; and finally X22 to X29 the gear
profile variations for the ring gear and each of the planets.
Table X is the homonymous to Table IX and related to Table
V for the latest results. Again, only the information about the
outputs described in this work is included, but the study was
quite extensive before choosing the final parameters to
transfer to the reliability and robustness assessment and op-
timization procedures. These parameters are, sorted after
importance, X4 and X6, X1 and X2, X22, X16 and X8. Later,
X5, X7, X9 and X17 were included to completely define the
corresponding spatial positions. Besides the initially desig-
nated planets centre radius, other 5 parameters were identi-
fied as possible optimization control factors. These are the 5
bearing clearances X3, X12, X15, X18 and X21.

TABLE X RESULTS FOR GEOMETRICAL DOE

Finally, from the analysis performed for tables VII and
VIII, two designs and their correspondent metamodel were
selected to complete the sensitivity analysis and extract the
four or five most important parameters affecting the gear’s
profile. A resolution V design fitted with a linear interactions
model represents the 2 level designs. Until the Res VI be-
comes able to fit the 13 design, there are no advantages in
using it. From the quadratic designs, the D-Optimal method
consisting of 2048 probes and fitted with a QI4 model is
selected. The ranking from both designs for the 3 outputs
considered are shown in Table IX. The same analysis was
repeated for other output values as well, before the final
decision about the parameters to continue proceeding with
was taken. These are parameters X1 and X2, corresponding
to the ring’s main profile, and X9 and X10, the homonymous
for the planets. It is, as usual in engineering, a compromise
solution, as the sun in example is no longer represented. The
sun’s parameters are only relevant for a few outputs, but the
selected ones are present in every list and represent a large
proportion of the model’s variance.

Outl Out2 Out3

Att. 1 Att. 2 Att. 1 Att. 2 Att. 1 Att. 2
X672 X2272 X1772 X4 X4 X4
X572 X8"2 X572 X6 X6 X6
X2272 X772 X4 X2272 X1 X672
X1572 X472 X6 X472 X162 X472

X1 X272 X16"2 X772 X772 X2272
X772 X572 X1 X672 X572 X1
X18"2 X972 X18"2 X8"2 X10"2 X4X6
X372 X672 X1072 X1 X372 X572
X28"2 X18"2 X772 X1272 X872 X262
X2572 X1472 X8"2 X1072 X172 X372

VI. FIRST OPTIMIZATION ATTEMPTS

The optimization of systems resting only upon direct ex-
perimental data can become very time consuming if the
number of control inputs is high. If the system under study
includes parameters (whether control or noise) with stochas-
tic characteristics, the rapidly increasing amount of observa-
tions will turn this absolutely unviable. The methods de-
scribed so far are intended to be applied to such systems and
to help reducing the amount of relevant parameters to con-
sider. Until now, the study relied on deterministic designs,
where the factor’s values were logically assigned. But these
factors represent the components physical tolerance field
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arising from manufacturing uncertainty. So any general \4gl:3, NDSBL2BDSTOCHASTIC VARIATION OF PROPOSED CONTROL PARAMETERS

sertion about the system’s outputs will have to deal with the
random variation of these parameters. Different strategies
exist to accomplish this task [23, 24] that will not be dis-
cussed here. All of them end up providing some scalar values
that represent the output’s variability due to (random) para-
meter variation. These values are then feed to the optimiza-
tion algorithms. Spall explores in [25] methods to exploit
knowledge about the stochastic variation’s nature including it
into the search and optimization procedure.

An important amend needs to be implemented to the si-
mulation model as for now on the parameters will not vary
between fixed levels anymore, but continuously along the
complete tolerance field. This sets a high hurdle as already
explained in §II.B the possibility to vary the gears’ profiles
stepless is not given yet. To overcome the obstacle the profile
variation’s range was laboriously discretized into 10 levels
for the planet and ring gears’ main profile, generating 100
contour variations for each gear. In §V, a set of plausible
control factors has been derived from the analysis. The first
step of the optimization procedure will be then to confirm the
potential of these factors under service conditions, which is
with stochastically variating noise parameters, not the de-
sign-assigned anymore. Five candidates were considered: the
planets distance to the carrier axis; the clearance or gap in the
bearings from carrier, sun and planets; and finally the overall
size of the planets. This last should not be confounded with
the parameter study of §III.A. These parameters are not de-
terministic themselves and have also a variation range. To
account for all of the variation sources, noise and control, the
nominal point around which the affected control tolerance
field is defined, is displaced alternatively to the extremes of
the original field (called xx+ and xx- later) thus extending it
by one half its width in each direction, see Figure 4. During
the computation of the designs for §III.B, it was noticed that
difficulties arise with extreme geometrical conditions. This
would be aggravated for this part of the investigation as the
search field becomes extended. To minimize possible prob-
lems, the variations were conducted one factor at a time,
accepting the lost of the interaction information but achieving
very less failed simulations, fewer than 5% of the total. Table
11 summarizes the variation that was registered in the mean
value and the standard deviation, typical robustness indica-
tors, of the three outputs under investigation. The calcula-
tions were also used to test methods to spare probes in the
assessment of the output’s variability as mentioned before.
As the planets’ size results to be not more important than the
other candidates and the difficulty of modelling it is quite
large, it has been removed from the control parameters for the
initial attempts.

e

Fig. 4 Geometry nominal point displaced to field ends.

Outl Out2 Out3

Mean Std. Mean Std. Mean Std.

Nominal 2.536 1.027 3.340 1.225 5.070 1.807
CenterD- 2676 0972 3378 1238 4992 1.773
CenterD+ 2,650 1.077 3.410 1.249 5254 1.872
GapCar- 2373 1269 3362 1210 5.122  1.855
GapCar+ 2697 1.085 3281 1.096 5.006 1.654
GapPla- 2546 1.092 3327 1.252 5.048 1.842
GapPla+ 2521  1.040 3382 1.194 5176 1.770
GapSun- 2.160 0941 3388 1217 5116 1.752
GapSunt+  3.101  1.224 3389 1.216 5.168 1.781
PlaSize- 2,625 1.113 3285 1.198 4958 1.735
PlaSize+ 2326 1.027 3333 1207 5709 1.798

The payoff of having eliminated irrelevant parameters
from the model becomes now evident. Determination of the
scalar variability indicators require in the best case (FOSM
based on gradients) one solver run per control or noise sto-
chastic variable. Every parameter, including the optimization
control ones, is affected by stochastical variation and in-
cluded in the FOSM determination. If gradients are not
adequate, the Latin Hypercube method will use about 2
probes per variable, and a pure random Monte Carlo needs
around 5. In our test case it implies 16, 32 or 80 solver passes
for each determination! Thus, the possible use of metamodel
based approaches like Response Surfaces should be kept in
eye. Unfortunately, a FOSM approach is not applicable in
this case. The reason can be best visualized in Figure 5. The
method is originally conceived for tolerance fields narrow
enough for a linear approximation (gradient) to be valid; the
gradient calculation is then repeated as the X value changes,
see the light probability distribution curves in the figure. But
for tolerance fields that are comparable in width to the opti-
mization space itself, the method’s linear behaviour ground
hypothesis is not sustainable, as the example with the darker
pdf curve shows, where the gradient obtained approximates
the right-hand one precisely, but the left-hand one not at all.
Accepting it will imply that a linear approximation is a valid
response model for Y, which has been already proven false in
§IV, and that the optimization could be also performed very
quickly and inexpensively over a linear metamodel.

YJL

Deviation or
Objective Function

/\ Design

Variable
L= A | e
Lower Nominal Upper x

Fig. 5 First order second moment (FOSM) method limitations due to exces-
sively wide approximation space.

The same argumentation undermines the sense of intro-
ducing gradient based optimization methods. However, some
of them were tested (with scepticism) against random based
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evolutionary algorithms to confirm that none is converginy @:3, M@ 4n2@1%earch of the algorithm remains unchanged, both

a global solution. To simplify the task, the stochastic varia-
tion of the parameters of interested was ignored for this
example. Slightly changing the starting point yields different
results, and the methods do not obtain the same solution from
identical starting conditions. Tables XII and XIII illustrate
these sayings. From a Mixed Integer Programming (to give
the gear profile parameters a chance), a Nonlinear Pro-
gramming Quadratic Line Search, a Simulated Annealing, a
Differential Evolution strategy and a Self Adaptive Evolu-
tion, the NPQLS performed the best regarding amount of
required probes and progress stability, but with a very limited
search space. A global search process relying solely on evo-
lutionary algorithms or other stochastically driven methods
cannot be sustained due the enormous computational ex-
pense, as every element requires the mentioned solver passes
to determine the robustness indicators. As seen in Table XII,
an extremely optimistic minimum of 200 probes are required
for such a search, which multiplied by the 30 solver passes
needed to determine the robustness via Latin Hypercube,
rockets the total calculations to at least 6000!

TABLE XII OPTIMIZATION STRATEGIES COMPARISON

Algorithm Probes  Start End Improvement
Mixed Integer 180  0.8086 0.5072 37%
NLPQL 210  0.8086 0.4366 46%
Simulated annealing 200 0.8086  0.4305 47%
Diff. Evolution 1200  0.8086 0.2340 1%
Self. Adap evo 400  0.8086 0.2714 66%

The introduction of metamodels in the optimization loop
becomes mandatory. Preliminary results obtained from a
broadly accepted algorithm known as Efficient Global Op-
timization (EGO) [26], which bases on a kriging hypersur-
face and the expected improvement criterion, are very
promising. The output’s variability could be reduced for
every output individually, up over 60% from the nominal
design’s mark, but the parameter configurations obtained
diverge considerably, see Table XIII. The parameter values
in italics have reached the field limit. The difference between
the procedures labelled EGO and EGO 2 resides in the me-
thodology followed to determine the position of the addi-
tional interpolation points as the optimization advances, also
called iterations. For the first one, the new promising point is
the result of a global optimization on a surface which is the
Kriging model minus a selectable number of times the esti-
mated standard deviation. In the second case the point is
determined via a global optimization on the expected im-
provement function, which is a probabilistic unction using
the Kriging surface and the estimated standard deviation. As

cases start the actual optimization from the same point, but
arrive to different results. Under Probes, the (small) amount
of interpolation points and the correspondent charge of solver
passes is indicated. Increasing it is not always a guarantee of
better results, a desirable behavior.

Performing a multi-criteria optimization to overcome this
limitation is unfortunately not realistic in the near future with
the current solution times as it would imply performing sev-
eral nested optimization with similar consequences as the
global search.

Figure 6 shows a typical EGO progress chart. The para-
meter space limits are represented by the x-axis and the dot-
ted lines, the dashes indicate the output values from the cur-
rent iteration, the solid lines the position of the best combi-
nation so far. It is interesting to note that, after EGO com-
pletes the initial search and optimization, most of the confi-
gurations explored (iterations) render worse solutions than
the best mark so far, which should not be confounded with
the initial nominal configuration!, showing again the com-
plexity of the objective functions under study. It can be also
read from the last Tables, that the starting point from the
EGO is usually worse than the condition at the nominal point,
so the improvement achieved by the method should be read
carefully. It becomes also important to allocate enough re-
sources to the determination of this starting point.

Giaafiun

Fig. 6 Typical EGO progress chart.

TABLE XIII OPTIMIZATION RESULTS FROM TWO EGO METHODS

Algorithm Probes Goal Nominal Start End Improvement Parl Par2 Par3 Par4
EGO 35/1050 mp5 0.240 0.294 0.230 4% 6.000 4.118 5.726 2.110
EGO 35/1050  dCml0 1.034 1.250 1.004 3% 5.244 4.468 3.398 2.106
EGO 50/ 1500 ps 1.585 1.570 1.496 6% 4118 4.015 2.440 2.107
EGO 40/1200 dSm5 0.538 0.322 0.200 63% 4318 5.283 6.000 2.096
EGO 2 35/1050  dCml0 1.034 1.250 0.847 18% 4.700 4.088 3.548 2.106
EGO 2 50/ 1500 pS 1.585 1.570 1.530 3% 5.418 4.042 5.915 2.118
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VII. CONCLUSION

The computer simulation model of a micro planetary gear
train introduced in this work could be successfully deployed
as a technical example of a mechanical system that is affected
by imprecise components manufacture. Such a system should
be deeply investigated before starting with the mass produc-
tion to assure that its correct function will be assured up to a
desired level. A possible methodology to perform this task
has been proposed, successfully demonstrated and its results
analyzed.

A key step in the procedure is to eliminate variation ele-
ments that increase the complexity but not contribute to the
solution from the model. A Design of Experiments and a
subsequent sensitivity analysis are very adequate methods for
this task. The application of both has been extensively dis-
cussed in chapters I1I to VI. As of DOE concerns, optimality
criteria designs have been proved better performing than
classical screening, (fractional) factorial and 3 level tabulated
designs.

It has not been extensively discussed in this study, but the
selection of the functions representing the system’s output(s)
of interest indicates the importance of counting with the
complete dataset to easily play variations with.

The work denotes a possible way for first optimization
trials on dynamically unstable system, relying on the expe-
rience won with the model through the sensitivity analysis
step of the process. Thus the optimization process will be
very dependent on the output focused in, and further research
is required when trying to optimize for multiple outputs.
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