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Abstract— The Institute of Product Development is dealing 
with the development, design and dimensioning of micro com-
ponents and systems as a member of the Collaborative Research 
Centre 499 “Design, Production and Quality Assurance of 
Molded micro components made of Metallic and Ceramic Ma-
terials”. Because of technological restrictions in the miniaturi-
zation of conventional manufacturing techniques, shape and 
material deviations cannot be scaled down in the same propor-
tion as the micro parts, rendering components with relatively 
wide tolerance fields. Systems that include such components 
should be designed with this particularity in mind, often re-
quiring large clearance. On the end, the output of such systems 
results variable and prone to dynamical instability. To save 
production time and resources, every study of these effects 
should happen early in the product development process and 
base on computer simulation to avoid costly prototypes. A 
suitable method is proposed here and exemplary applied to a 
micro technology demonstrator developed by the CRC499. It 
consists of a one stage planetary gear train in a sun-planet-ring 
configuration, with input through the sun gear and output 
through the carrier. The simulation procedure relies on ordi-
nary Multi Body Simulation methods and subsequently adds 
other techniques to further investigate details of the system’s 
behavior and to predict its response. The selection of the rele-
vant parameters and output functions followed the engineering 
standards for regular sized gear trains. The first step is to 
quantify the variability and to reveal the most critical points of 
the system, performed through a whole-mechanism Sensitivity 
Analysis. Due to the lack of previous knowledge about the sys-
tem’s behavior, different DOE methods involving small and 
large amount of experiments were selected to perform the SA. 
In this particular case the parameter space can be divided into 
two well defined groups, one of them containing the gear’s pro-
file information and the other the components’ spatial location. 
This has been exploited to explore the different DOE techniques 
more promptly. A reduced set of parameters is derived for 
further investigation and to feed the final optimization process, 
whether as optimization parameters or as external perturbation 
collective. The 10 most relevant perturbation factors and 4 to 6 
prospective variable parameters are considered in a new, sim-
plified model. All of the parameters are affected by the men-
tioned production variability. The objective functions of inter-
est are based on scalar output’s variability measures, so the 
problem becomes an optimization under robustness and relia-
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mechanisms composed of wide tolerated elements accounting 
for the robustness and reliability of the systems’ output. 
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I. INTRODUCTION

The development of smaller and smaller micro compo-
nents and systems is an ongoing process. Within the scope of 
the Collaborative Research Center 499 (CRC) “Design, 
Production and Quality Assurance of Molded Micro Com-
ponents made of Metallic and Ceramic Materials” funda-
mentals in a persistent process chain for micro components 
are acquired. As a participating member, the Institute of 
Product Development (IPEK) is dealing with the develop-
ment, design and dimensioning of micro components and 
systems. High precision and very tight tolerances are prop-
erties commonly related to micro technologies, at least for a 
group of manufacturing processes and materials. But this is 
not the only reality in the micro world. The production of 
metallic and ceramic micro molded components is still in its 
research phase, and the components obtained with the actual 
technologies are suffering of a lack of repeatability, and 
therefore specified with wide tolerances. Thus, when creating 
functional systems that contain such components, the de-
signer has to accommodate these wide tolerances, and allow 
significant clearance between the elements. A study of the 
effects of tolerance and clearance is therefore needed to un-
derstand the limits of such systems and to be able to forecast 
their output’s performance. The following study will present 
and compare the ability of some common Design of Expe-
riments techniques as a tool to qualify and quantify the re-
levance of varying parameters. With the reduced set of fac-
tors derived, investigations will be conducted to develop 
appropriate methods for determining the robustness or the 
reliability of the system as a whole. Finally, further reduction 
of the influence factor set and selection of prospective control 
ones’ will enable to optimize single component geometrical 
properties in order to improve the system response as desired. 

II. SIMULATION MODEL

In order to exemplify the capabilities of the different 
techniques considered during the research, it is necessary to 
introduce a system test case. To make the comparisons be-
tween methods even more meaningful, it is desirable that 
system and model remain as constant as possible. In this case, 
a technology demonstrator developed by the CRC499 is 
taken as test case. It consists of a one stage planetary gear 
train in a sun-planet-ring configuration, with input through 
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the sun gear and output through the carrier. Table I gives 
insights about the dimensions of the demonstrator, and Figure 
1 shows an exploded view of the system. This demonstrator 
allows for a good balance between the quantity of parameters 
considered plus the output variability included and the mod-
eling complexity of the components intervening. It also 
represents a system that has been deeply researched in the 
macroscopic scale so comparison points and typical output 
characteristics can be derived from the existing literature. 
Another advantage of choosing this demonstrator is the fact 
that it exist physically, and that it can be partially tested on a 
test bench developed by the IPEK for that purpose. Results of 
comparisons between simulation and test bench runs, based 
on a standard double flank test, are published in [1]. The gear 
train output load is set at 20 mNm, which is ambitious but 
could be confirmed in static tests, while the input speed re-
mains constant. Rotation speed is kept low at 10 RPM as 
dynamical effects are of less interest here. The flank geome-
try represented, despite being parametric and highly mod-
ifiable, is still away from the profiles measured on real probes 
[2]. The intention of this setup is to assure that there is no 
contact interruption during the time each tooth is engaged. 

Fig. 1 CRC499 Demonstrator: compressed air driven turbine and one stage 
planetary gear train assembly. 

TABLE I GEOMETRICAL CONFIGURATION OF THE PLANETARY GEAR TRAIN

 Sun Planet Ring Carrier 
Pitch [mm] 5.917 5.917 5.917 0.177 
N 14 12 37 1 
Depth [mm] 0.156 0.156 0.200 0.140 
Mass [mg] 5.54 2.79 - 24.73 

A. Parameter selection 
The selection of relevant variation parameters for the de-

monstrator described above began by consulting german 
normative [3, 4, 5] and classical textbooks about macroscopic 
gear trains [6, 7]. With this information, the specifics of mi-
cro gears and gear trains were investigated, again citing ex-
isting literature [8, 9, 10] and the internal experience col-
lected by the CRC499. To avoid adding unnecessary com-
plexity to the model, those parameters accounting for small 

tolerance windows were not included. As a result of this 
selection work, following parameters were considered as 
relevant variation agents: radial and tangential position of 
two of the three planet pins on the carrier; clearance in each 
of the planet bearings; position of the planet bearing related 
to its pitch diameter; concentricity of the carrier output shaft 
to the pins’ locator diameter; clearance in the output bearing; 
concentricity of the input shaft to the sun’s pitch diameter and 
of the input bearing to its theoretical central position; clear-
ance in the input bearing; 4 geometrical parameters for the 
profile description of each of the five present gears. This 
gives a grand total of 43 degrees of freedom. Figure 2 de-
scribes the meaning of these parameters graphically. 

Following the same procedure, outputs of interest could be 
selected: maximal stress in the tooth’s root zone, for dura-
bility concerns; highest contact pressure registered, for wear 
estimation; output waviness (shaft angular deviation from its 
ideal mathematical position) as an estimative of system’s 
transfer quality. In order to differentiate the effects of all of 
these parameters, it is necessary to let several teeth to engage 
and disengage. Actually, it is sought that every component 
rotates for about 90°, so that non-concentricity effects can be 
covered with two orthogonal parameters. 

Fig. 2 Geometrical parameters considered in the model: a) bearing position 
in planet gear; b) axis position on sun gear; c) pin and axis position on 
carrier; d) profile description parameter with profile variation examples. 

B. Simulation process 
The investigation is based on a hybrid FEM-MBS proce-

dure. The FEM mesh with higher order elements on the 
contour assures an adequate approximation of the gear flank 
in all conditions, while the MBS solver handles the contact 
force reactions and the component’s positions. The 200 steps 
simulation with step time t = 7.5 ms runs a four point dis-
cretization scheme after the Houbolt decomposition [11] 
which is a special case of the four-point one to assure un-
conditional stability. It becomes a requisite to run a fully 
scriptable simulation tool to perform a complete sensitivity 
analysis and optimization task. Specialized gear train simu-
lation software from Advanced Numerical Solutions LLC 
seems adequate for the task. The gear geometry generation 
module Multyx and the dynamic and contact solver Calyx 
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commonly used for this purpose. If two level full factorials 
where difficult to conduct, three or more levels are com-
pletely impracticable; fractional designs become very tricky 
to define and are not rotatable. Two multilevel design fami-
lies derived from other methods are widely adopted: the 
Central Composite Designs (CCD) and the Box-Behnken 
designs. From the three CCD variations existing, circum-
scribed, inscribed and face centered, the latter (CCF) has 
been selected due to its minimal level requirements. The CCF 
design starts from a two level full factorial and adds 24 runs 
for the 12 star points and 236 centre point runs. Its major 
withdraw is its lack of rotatability. Box-Behnken (BB) de-
signs are independent quadratic designs that do not contain an 
embedded factorial or fractional factorial design, their mayor 
withdraw is its poor prediction capability at the corners of the 
parameter space due to the missing probes. The design used 
for this study contains 192 edge runs and 12 centre point runs. 
There is another family of experiment designs, more ade-
quate for a response surface fitting, which offers a better 
distribution of the prediction error. Called optimality criteria 
designs, are based either on the prediction variance as defined 
in Eq. 2 or on information about the variance of the regres-
sion parameters described by the covariance matrix. To mi-
nimize Cov( ), a characteristic scalar value for the matrix 
evaluation has to be chosen. 

12 XXCov T   (2) 

Among the many possibilities (a short description of each 
is included in [20]), the D-Optimality criteria is adopted. It 
maximizes the determinant of Fisher's information matrix 
XTX. This matrix is proportional to the inverse of the cova-
riance matrix of the parameters. So maximizing its determi-
nant is equivalent to minimizing the determinant of the co-
variance of the parameters [21] and also minimizes the vo-
lume of the regression estimates’ confidence ellipsoid for the 
linear model parameters . Several approaches exist to find 
this optimal designs; this study uses the coordinate exchange 
algorithm [22] as implemented in MatLab. Two different 
designs have been created, one with 256 and another with 512 
experiments, both of them aimed to accommodate a quadratic 
response surface. After analyzing the results obtained, a 
progressive augmentation up to 4096 experiments of the later 
design has been conducted for further investigation. Com-
plete results can be found in §IV and §V. 

B. Analysis of geometrical parameters 
Besides of benchmarking different DOE methods for the 

specific problem of wide tolerances, the analysis of §III.A 
identified the essential parameters in representing the gear’s 
profile variations. The next step is to repeat the study for the 
geometry parameters. This is accomplished with the best 
performing method, the 3 level D-Optimality criteria, for a 
set of 29 parameters including the 4 relevant profile para-
meters. One important geometrical parameter, the planet’s 
centre radius, is excluded from this part of the study as it is 
the principal target candidate for the coming optimization 
step. The first attempt involved a design with 1500 probes, 
but difficulties with the solver arose. Up to 40% of the pa-
rameter combinations could not be solved for, due to instable 

or even impossible starting conditions. In other cases, al-
though being able to start, the solver diverged at some point, 
mostly when one of the planets could not establish contact 
with either sun or ring. Both situations were also observed in 
some physical tests and contributed to trigger this research 
work. The set of failed runs and its variance were investigated 
to pinpoint the parameters responsible for the abnormal 
condition. Unfortunately, no conclusive responsible could be 
drawn. To resolve the problem in the simulations, every side 
of parameter space metacube was gradually reduced to its 
half, thus losing some significance in the space corners. The 
modification reduced the amount of failed simulations to 
about 25%, and the total number of probes was increased to 
2400 in an attempt to compensate for the lost information. 
Refer to §IV and §V for the final results of the procedure. 

IV. BENCHMARK OF METAMODELING METHODS

The 3 outputs of interest mentioned in §II.A give place to 8 
different output data families which in turn allow 54 post 
processing rules for the 200 measurement points per run. 
Different regression models can be fitted to each of these 
outputs: linear, linear interactions, extended interactions (3, 4 
and 5 way aliasing free models) and quadratic models with 
and without extended interactions. They will be called here: 
Lin, Int, Int3 /-4/-5, Quad, QI3 /-4/-5. The whole procedure is 
then repeated for different experiment design creation me-
thods. All the possible combinations would be worth a DOE 
study themselves! Due to its simple evaluation and easy 
comparison, the criteria to benchmark the metamodels will be 
the R^2 and Radj^2 statistics. We concentrate here in show-
ing differences in the prediction ability of the methods and 
select therefore just 3 prospective data fields, from the 54 
available, to compare them. The outputs are the carrier axe 
angular position error variation during the run (Out1), the 
teeth contact force (Out2), and the tooth bending moment 
(Out3). In all three cases, the 10 maximal values registered in 
the run are averaged to avoid peaks arising from numerical 
instability or other solver induced noise. Starting with the 
screening exercise, the only possible prediction is about the 
main factors so a linear regression model is selected. As seen 
in Table II, both models fit the data quite well, being the 
Plackett-Burman slightly more robust. 

TABLE II MODEL FIT STATISTICS FOR SCREENING DOE 

Out1 Out2 Out3 

P-B Res
III P-B Res

III P-B Res
III 

R^2 0.978 0.9185 0.986 0.8801 0.926 0.8783 
Radj^2 0.890 0.5926 0.928 0.4004 0.630 0.3915 

Then the attention is focused on the level 2 factorial de-
signs. As the number of probes increases, more comprehen-
sive models can be fitted and the importance of the Radj^2 
statistical becomes clear, as an indicator of unnecessary re-
gressor terms. Table III summarizes the model fit statistics 
for increasingly complex models and four different experi-
ment designs. The fractional factorial design definition is 
given in §III.A, “Full” means a full factorial design. To save 
space, only the worst performing output from the screening 
fit is displayed here, to show the effects of increasing the 
design resolution. Augmenting the design resolution above 
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the theoretical needs is not beneficial for the linear model or 
for the linear interactions model. It is not clear why the Res 
VI design was not able to fit an Int3 model by yielding a bad 
conditioned matrix. This prevented another interesting 
comparison point with the full factorial design. The latter 
design shows no trend of getting ‘saturated’ as the model 
terms augment and the Radj^2 value does not start to sink, 
indicating that higher order interactions are relevant for the 
model. 

TABLE III MODEL FIT STATISTICS FOR FACTORIAL DOE, OUTPUT 3

Out3
Model Stat. Res IV Res V Res VI Full 

Lin R^2 0.3946 0.3394 0.2583 0.2764 
Radj^2 0.0122 0.3068 0.2405 0.2743 

Int R^2 - 0.7512 0.6033 0.5895 
Radj^2 - 0.6415 0.5319 0.5815 

Int3 R^2 - - * 0.6753 
Radj^2 - - * 0.6644 

Int4 R^2 - - - 0.6847 
Radj^2 - - - 0.6704 

Int5 R^2 - - - 0.6942 
Radj^2 - - - 0.6773 

Linear models are very efficient for sorting out relevant 
parameters, but are not adequate for more complicated tasks 
like robustness or reliability assessment or optimization. A 
good method to check if a linear model is able to deliver a 
good system prediction is to compare the prediction for the 
parameter space’s centre point with a simulation run. The 
result in this case is that the linear model is a poor metamodel 
for the system’s behavior. Therefore, the study is augmented 
by including designs that can accommodate quadratic mod-
els. Table IV summarizes the model fit statistics for increa-
singly complex models and five different experiment de-
signs, see §III.A for a terms explanation. Increasing the de-
sign complexity enhances the fit’s quality, as indicated by the 
rising Radj^2 statistic. The decreasing R^2 is due to the in-
crease in the probes to interpolate, but its meaning should not 
be misunderstood. As for the model complexity, only the 
larger experiment designs provide enough information for the 
higher order model to fit. In most of the cases a QI3 model is 
enough as indicated by the staging or falling Radj^2 statistic. 
Adding more model terms is redundant and only increases 
R^2 falsely. The full factorial roots of the CCF design are 
reflected in its ability to accommodate higher models. The 
Box-Behnken design is only suited for the targeted quadratic 
model, and the D-optimal designs become rapidly saturated 
for complex models. 

Finally, from the knowledge won so far, the model fitting 
procedure for the second part of the DOE as explained in 
§III.B went straightforward. Table V shows the 3 considered 
outputs fit statistics, both for the first failed attempt as for the 
more successful second one. As the parameter space is now 
considerably larger, higher order interaction models would 
require too many experiments, and thus the modeling effort is 
limited to QI3 models. From the table it is clear that output 1 
is not being well fitted, and this tendency sustained for other 
related outputs not considered for this work. Conclusion 
should be extracted carefully from them. For the remaining 
outputs, the selected model fits the data very satisfactorily. 

TABLE IV MODEL FIT STATISTICS FOR 3 LEVEL DOE, OUTPUT 3

Out3
Model Stat. CCF BB D-256 D-512 D-2048 

Int4 R^2 0.6566 - 0.8134 0.7153 0.6156 
Radj^2 0.6419 - 0.3821 0.5632 0.5790 

Quad R^2 0.6048 0.6871 0.6504 0.5898 0.5412 
Radj^2 0.5964 0.4379 0.4598 0.5021 0.5201 

QI3 R^2 0.6870 - 0.7955 0.6938 0.6206 
Radj^2 0.6763 - 0.5260 0.5725 0.5917 

QI4 R^2 0.6961 - 0.8742 0.7315 0.6324 
Radj^2 0.6822 - 0.5063 0.5726 0.5948 

QI5 R^2 0.7052 - 0.9412 0.7729 0.6474 
Radj^2 0.6890 - 0.4833 0.5928 0.6036 

TABLE V MODEL FIT STATISTICS FOR GEOMETRICAL DOE 

Out1 Out2 Out3 
Att. 1 Att. 2 Att. 1 Att. 2 Att. 1 Att. 2 

R^2 0.7724 0.7226 0.8972 0.8878 0.9347 0.9126 
Radj^2 0.4945 0.4607 0.7716 0.7819 0.8549 0.8302 

V. SENSITIVITY ANALYSIS RESULTS

After analyzing the results seeking for the most adequate 
metamodels to predict the system’s behavior, the factors are 
sorted after their for the outputs’ variance relevance. This 
more challenging task will yield now some previously fa-
vored models as inadequate. To better understand the fol-
lowing tables, the parameter ordering remains the same 
through the gear profile study, with factor X1 corresponding 
to P1 for the ring gear, factor X2 to P2, …, factor X5 to P1 for 
the sun, …, factor X9 to P1 for the planet, and so on. Please 
refer to Figure 2 for details about the geometry parameters P. 
Looking at the screening results in Table VI, the methods do 
not agree in the importance assigned to the factors and no 
clear tendency across the three outputs could be found. The 
reliability of screening methods is then for our test case low 
and no conclusions should be extracted from such a study. 

TABLE VI RESULTS FOR SCREENING DOE 

Out1 Out2 Out3 

P-B Res III P-B Res III P-B Res III 
X3 X1 X1 X1 X11 X11 
X1 X9 X3 X8 X6 X10 

X11 X8 X2 X9 X10 X6 
X12 X11 X11 X11 X1 X5 
X5 X2 X10 X4 X9 X8 
X8 X12 X9 X12 X5 X9 
X7 X10 X12 X3 X4 X7 
X4 X3 X8 X7 X7 X2 

As can be seen in Table VII, higher resolution fractional 
factorial designs perform as well as the full factorial, saving 
up to 7/8 of the experiments. The ranks for the resolution VI 
and the full factorial designs are quite concordant, despite the 
different models used. The Res VI design can only fit an 
interactions model, while the full factorial became an I5 
model. The importance of the interaction terms for this sys-
tem can be confirmed when comparing the new ranked list 
against the one obtained from the screening experiment. The 
following tables will constrain the output to the 10 most 
relevant factors. 
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TABLE VII RESULTS FOR FACTORIAL DOE, OUTPUT 3

Out3
Res III Res IV Res V Res VI Full 

X11 X11 X10 X10 X10 
X10 X1 X9 X9 X9 
X6 X5 X6 X11X12 X11X12 
X5 X10 X1X2 X2X9 X1X2 
X8 X9 X11X12 X2X4 X2X10 
X9 X12 X2X9 X1X4 X2X9 
X7 X8 X1X10 X9X12 X2X4 
X2 X6 X2X10 X2X10 X1X4 
X4 X2 X1X4 X1 X1X10 
X3 X4 X11 X5 X1X2X10 

Table VIII shows the performance of the 3 level designs 
fitted with the best meaningful models possible. These are 
QI4, Quad, QI3, QI3 and QI4 respectively. The CCF model 
over estimates the importance of the quadratic factors, maybe 
because of the small amount of information added by the 24 
star-point runs. The Box-Behnken design overcomes this 
problem but the ranking derived shows no convergent ten-
dency with the D-optimal designs. These in fact tend to repeat 
the ranking as the design size and model fit quality increases. 
This behavior gives some confidence about the decisions 
derived from those designs. 

TABLE VIII RESULTS FOR FACTORIAL DOE, OUTPUT 3

Out3
CCF BB D-256 D-512 D-2048 
X2^2 X2^2 X1^2 X2^2 X2^2 

X11^2 X2X3 X2^2 X10 X10 
X3^2 X6^2 X7^2 X9 X9 
X1^2 X10X12 X4^2 X1^2 X1^2 
X10 X4X12 X3^2 X1X2 X1X2 
X6^2 X5^2 X10 X1X10 X11X12 
X5^2 X9X11 X9 X4^2 X2X4 
X9 X10X11 X1X2X10 X11X12 X1X10 

X8^2 X1X12 X1X10 X7^2 X2X10 
X11X12 X11X12 X11X12 X2X10 X1X4 

Finally, from the analysis performed for tables VII and 
VIII, two designs and their correspondent metamodel were 
selected to complete the sensitivity analysis and extract the 
four or five most important parameters affecting the gear’s 
profile. A resolution V design fitted with a linear interactions 
model represents the 2 level designs. Until the Res VI be-
comes able to fit the I3 design, there are no advantages in 
using it. From the quadratic designs, the D-Optimal method 
consisting of 2048 probes and fitted with a QI4 model is 
selected. The ranking from both designs for the 3 outputs 
considered are shown in Table IX. The same analysis was 
repeated for other output values as well, before the final 
decision about the parameters to continue proceeding with 
was taken. These are parameters X1 and X2, corresponding 
to the ring’s main profile, and X9 and X10, the homonymous 
for the planets. It is, as usual in engineering, a compromise 
solution, as the sun in example is no longer represented. The 
sun’s parameters are only relevant for a few outputs, but the 
selected ones are present in every list and represent a large 
proportion of the model’s variance. 

TABLE IX FINAL RESULTS FOR THE PROFILES DOE

Out1 Out2 Out3 
Res V D-2048 Res V D-2048 Res V D-2048 

X1 X1 X1 X1 X10 X2^2 
X1X10 X1X2 X1X2 X1X2 X9 X10 
X1X2 X1^2 X1X3 X2 X6 X9 
X1X3 X1X10 X2 X1^2 X1X2 X1^2 
X12 X2^2 X1X10 X3^2 X11X12 X1X2 
X3 X7^2 X2X9 X2X10 X2X9 X11X12 

X1X9 X1X9 X2X10 X1X10 X1X10 X2X4 
X11X12 X12 X12 X9X12 X2X10 X1X10 
X4X10 X9X12 X3 X2X9 X1X4 X2X10 
X4X9 X2 X3X9 X2X3 X11 X1X4 

The geometrical DOE was constructed around the know-
ledge obtained so far, so no linear designs were included, just 
D-optimal. The factors X have now a new physical correla-
tion: X1 to X3 represent the carrier axis position and bearing 
clearance, X4 to X7 the pin position as shown in Figure 2.c; 
X8 to X12 the sun axis and bearing position and clearance 
(Fig 2.b); X13 to X21 the bearing position and gap for each 
planet as shown in Fig 2.a; and finally X22 to X29 the gear 
profile variations for the ring gear and each of the planets. 
Table X is the homonymous to Table IX and related to Table 
V for the latest results. Again, only the information about the 
outputs described in this work is included, but the study was 
quite extensive before choosing the final parameters to 
transfer to the reliability and robustness assessment and op-
timization procedures. These parameters are, sorted after 
importance, X4 and X6, X1 and X2, X22, X16 and X8. Later, 
X5, X7, X9 and X17 were included to completely define the 
corresponding spatial positions. Besides the initially desig-
nated planets centre radius, other 5 parameters were identi-
fied as possible optimization control factors. These are the 5 
bearing clearances X3, X12, X15, X18 and X21. 

TABLE X RESULTS FOR GEOMETRICAL DOE 

Out1 Out2 Out3 
Att. 1 Att. 2 Att. 1 Att. 2 Att. 1 Att. 2 
X6^2 X22^2 X17^2 X4 X4 X4 
X5^2 X8^2 X5^2 X6 X6 X6 

X22^2 X7^2 X4 X22^2 X1 X6^2 
X15^2 X4^2 X6 X4^2 X16^2 X4^2 

X1 X2^2 X16^2 X7^2 X7^2 X22^2 
X7^2 X5^2 X1 X6^2 X5^2 X1 

X18^2 X9^2 X18^2 X8^2 X10^2 X4X6 
X3^2 X6^2 X10^2 X1 X3^2 X5^2 

X28^2 X18^2 X7^2 X12^2 X8^2 X26^2 
X25^2 X14^2 X8^2 X10^2 X17^2 X3^2 

VI. FIRST OPTIMIZATION ATTEMPTS

The optimization of systems resting only upon direct ex-
perimental data can become very time consuming if the 
number of control inputs is high. If the system under study 
includes parameters (whether control or noise) with stochas-
tic characteristics, the rapidly increasing amount of observa-
tions will turn this absolutely unviable. The methods de-
scribed so far are intended to be applied to such systems and 
to help reducing the amount of relevant parameters to con-
sider. Until now, the study relied on deterministic designs, 
where the factor’s values were logically assigned. But these 
factors represent the components physical tolerance field 
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VII. CONCLUSION

The computer simulation model of a micro planetary gear 
train introduced in this work could be successfully deployed 
as a technical example of a mechanical system that is affected 
by imprecise components manufacture. Such a system should 
be deeply investigated before starting with the mass produc-
tion to assure that its correct function will be assured up to a 
desired level. A possible methodology to perform this task 
has been proposed, successfully demonstrated and its results 
analyzed.

A key step in the procedure is to eliminate variation ele-
ments that increase the complexity but not contribute to the 
solution from the model. A Design of Experiments and a 
subsequent sensitivity analysis are very adequate methods for 
this task. The application of both has been extensively dis-
cussed in chapters III to VI. As of DOE concerns, optimality 
criteria designs have been proved better performing than 
classical screening, (fractional) factorial and 3 level tabulated 
designs.

It has not been extensively discussed in this study, but the 
selection of the functions representing the system’s output(s) 
of interest indicates the importance of counting with the 
complete dataset to easily play variations with. 

The work denotes a possible way for first optimization 
trials on dynamically unstable system, relying on the expe-
rience won with the model through the sensitivity analysis 
step of the process. Thus the optimization process will be 
very dependent on the output focused in, and further research 
is required when trying to optimize for multiple outputs. 

REFERENCES

[1] Albers, A.; et all, An integrated Approach for Validating Micro Me-
chanical Systems based on Simulation and Test, MicroSystem Tech-
nologies, Springer, 2008. 

[2] Albers, A.; et all, Dealing with Uncertainty of Micro Gears - Integra-
tion of Dimensional Measurement, Virtual and Physical Testing, ASME 
International Mechanical Engineering Congress & Exposition, 2008. 

[3] DIN 867:1986-02, Basic rack tooth profiles for involute teeth of cy-
lindrical gears for general engineering and heavy engineering, Beuth 
Verlag, 1986. 

[4] DIN 3960:1987-03, Definitions, parameters and equations for involute 
cylindrical gears and gear pairs, Beuth Verlag, 1987. 

[5] DIN 3990 series, Calculation of load capacity of cylindrical gears,
Beuth Verlag, 1987. 

[6] Bausch, T. et all, Moderne Zahnradfertigung, 2. Auflage, Expert Ver-
lag, 1994. 

[7] Roth, K., Zahnradtechnik Band II, Springer Verlag, 1989. 
[8] DIN 58400:1984-06, Basic rack for involute teeth of cylindrical gears 

for fine mechanics, Beuth Verlag, 1984. 
[9] DIN 58425 series, Gears with round flanks for fine mechanics, Beuth 

Verlag, 1980. 
[10] Menz, W., et all, Mikrosystemtechnik für Ingenieure, 3. Auflage, Wi-

ley-VCH, 2005. 
[11] Houbolt, J.C., A recurrence matrix solution for the dynamic response 

of elastic aircraft, J. Aeron. Sci. Vol. 17, pp. 540-550, 1950. 
[12] Albers, A.; Enkler, H.-G.; Leslabay, P., On the Simulation of Molded 

Micro Components and Systems, MicroSystem Technologies, Springer, 
2008. 

[13] Lagarias, J.C., et all, Convergence Properties of the Nelder-Mead 
Simplex Method in Low Dimensions, SIAM Journal of Optimization,
Vol. 9 Number 1, pp. 112-147, 1998. 

[14] Sacks, J., et all, Design and Analysis of Computer Experiments, Sta-
tistical Science, Vol. 4 Number 4, 1989. 

[15] Box, G. A. F., W. G. Hunter, and J. S. Hunter, Statistics for Experi-
menters, Wiley, 1978. 

[16] Montgomery, D. C., Design and Analysis of Experiments, Wiley, 2001. 

[17] Plackett, R.L., Burman, J.P., The Design of Optimal Multifactorial 
Experiments, Biometrika Vol. 33, 1946. 

[18] Ryser, H. J., Combinatorial Mathematics, John Wiley & Sons, 1963. 
[19] Box, G. E. P., Draper, N.R., Empirical Model Building and Response 

Surfaces, John Wiley & Sons, New York, 1987. 
[20] Jurecka, F., Robust design optimization based on metamodeling tech-

niques, Dissertation, TU München, 2007. 
[21] Box, M.J., Draper, N.R., Factorial designs, the |xtx| criterion, and some 

related matters, Technometrics, Vol. 13, pp. 731-742, 1971. 
[22] Atkinson, A. C., and A. N. Donev, Optimum Experimental Designs,

Oxford University Press, 1992. 
[23] Doltsinis, I., Kang, Z., Robust design of structures using optimization 

methods, Comput. Methods Appl. Mech. Engrg. Vol 193, pp. 
2221–2237, 2004. 

[24] Unger, J., Roos, D., Investigation and benchmark of algorithms for 
reliability analysis, Weimarer Optimierungs- und Stochastiktage 1.0,
2004. 

[25] Spall, J. C., Introduction to Stochastic search and Optimization, Wiley, 
2003. 

[26] Jones, D.R., Schonlau, M., Welch, W.J., Efficient global optimization 
of expensive black-box functions, Journal of Global Optimization, Vol. 
13-4, pp455-492, 1998. 


