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Abstract—In this study the densitydependentonlinearreaction-
diffusion equation,which arisesin the insect dispersalmodels, is
solved using the combined application of differential quadrature
method(DQM) and implicit Euler method. The polynomial based
DQM is usedto discretizethe spatialderivativesof the problem.The
resulting time-dependennonlinear systemof ordinary differential
equations(ODE) is solved by using implicit Euler method. The
computationsre carriedout for a Caucly problemdefinedby a one-
dimensionaldensity dependennonlinearreaction-difusion equation
which hasan exact solution. The DQM solutionis foundto bein a
very good agreementvith the exact solutionin termsof maximum
absoluteerror The DQM solutionexhibits superioraccurag at large
time levels tending to steady-stateFurthermore,using an implicit
methodin the solution procedurdeadsto stablesolutionsandlarger
time stepscould be used.

Keywords—Density Dependent Nonlinear Reaction-Difusion
Equation, Differential QuadratureMethod, Implicit Euler Method.

I. INTRODUCTION
SOLVING the nonlinearreaction-difusion equation
ou _ Ou

iz (%?) i) =2 (1)

is a demandingtask among researchersince the equation
arisesin more and more modelling situationsin mary areas,
such as biology, chemistry medicine and ecology For in-
stancejf D is space-dependettienthe modelhasbiomedical
importanceor if D is constantand f(u) = ru(l —u/K) (r is
the linear reproductionrate and K is the carrying capacityof
the ervironment) the resulting equation(FisherKolmogooff
equation)modelsthe spreacf anadwentageougenein a pop-
ulation [1]. An extensionto the abore mentionedcasess the
insectdispersaimodelwhich includesanincreasen diffusion
dueto the populationpressureSucha modelhasgronth terms
and populationdependediffusion coeficient D(u) [1], and
theresultingequationis calledthe densitydependentoninear
reaction-difusion equation.The density-dependemoninear
reaction-difusion equationis rather complicatedbecaue of
the strongernonlinearity and most often only the numerical
solutionsare available.

In [2], Petrov-Galerkin method is used for the solution
of one-dimensionahonlinearreaction-difusion equatio and
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the corvergenceof the methodis discussedLater, the com-
bined applicationof DQM with an explicit finite difference
method(FDM) is presentedfor the solution of nonlinear
reaction-difusion equationin one- and two-dimensions[3].

There, since an explicit time integration methodis used,a

relaxation parameteris proposed,in order to overcomethe

stability problems.However, it is obsered thatit is harde to

find the parametemwhenthe problemgetsharder Thenin [4]

both nonlinearreaction-difusion equationand wave equaion

are solved using DQM with three different time integration
schemes(FDM with a relaxation parameter least squares
method(LSM), finite elementmethod (FEM)) and all three
methodsarecomparedn termsof accurag andcomputational
cost. In both [3] and [4] the nonlinearityis evaluatedat the

previous known level, in order to obtain a linear systemof

equations.

Ontheotherhand,Painlevé analysiss appliedto getseveral
explicit solutionsfor the densitydependennonlinearreection-
diffusion equationfor the case D(u) = u by Satsuma[5].
Later in [6] necessaryand sufficient conditionsfor the exis-
tenceof travelling wave solutionsfor the nonlineardegeneate
reaction-difusion equationwhich is a specialform of dersity
dependentnonlinear reaction-difusion equation, is investi-
gated.Moreover, solution of the Caucly problemdefinedby
the nonlineardegeneratereaction-difusion equationfound to
be approachindl ast — oo for any boundednitial condition.

In this study the combinedapplicationof DQM andImplicit
Euler methodis usedto solve the Caucly problemdefinedby
the density dependentonlinear reaction-difusion equaion.
The differential quadraturemethod,which wasfirst propose
by Bellman and his associateg7], [8] in the early 19705,
approximatesthe solution of a partial differential equaton
using high order polynomial approximationor using Fourier
seriesexpansion.The spatialderivativesin the densitydepen-
dentnonlineamreaction-difusionequatiorarediscretizdusing
polynomialbasedDQM. Oneof the advantageof DQM is that
it is also applicablein the absenceof boundaryconditions
which is not the casefor otherdomaindiscretizatiormethod.
The otheradwantageof the methodis thatthe methodleadsto
accuratenumericalsolutionsusingconsiderablysmall number
of grid points [9]. For the time discretizationof the system
of ordinary differential equationsobtained after the DQM
discretizationjmplicit Euler methodis applied.Then Newton
methodis madeuseof to solve the resultingnonlinearsystem
of equationdor the requiredtime level startingfrom theinitial
condition.
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. N
The proposed method is tested on an example problem. The N 1y,
numerical solution is seen to be in a very good agreement with Uz () = Z ry o (@) u(ag), (7)

the exact solution in terms of maximum absolute error with a =t
small number of discretization points and the solution show N
superior accuracy at large time levels tending to steaaig-st Ugy (T5) = ZTJ@) (ws)u(x4), (8)
Since an implicit method is used, the solution does not d&pen j=1
on the time increment and comparing to the previous studighere ; = 1,...,N, N is the number of grid points in
(3], [4] larger time increments could be used. the whole domain and, (x)'s are the Lagrange interpolated
polynomials. In equations (7) and (8)§") (x;) (n=1,2)
Il. PROBLEM DEFINITION are the weighting coefficients at the grid points = z;

The one-dimensional density dependent nonlinear reactiéh = 1,2, V) to be determined by DQM_ by using a
diffusion equation modelling the insect dispersal, is give Practical notation [9] and are given as follows;
the form [1]

) (s
) MW (2;) S
0 ou T (‘Tz): 27&.]7 Z?j:172a“’7Na
1= — | D(u)=— u). 2 J xp — ;) MO (25
i= 2 (00 2) + 5w @ e o
In equation (2) the upper dot is used for the time deriva- ey () = — Z e () (10)
tive, D(u) = Dou™ (Do, m are positive constants) is the e A v
diffusion coefficient which depends on the populatiorand T
f(u) = kuP(1 — u9) (p, ¢q are positive constants) represents " N
the growth term. After a suitable rescalingtadndz, (2) takes MW (z)= ] (& —a), (11)
the following general form [1] k=1,k#j
i= (umgﬁ> (1 —u?) @ e =2 @) (@) - i) i g
r r i,j=1,2,...,N,
or
(2) - (2)
2 2 N .2 )
U= um@ +mu™ ! (@> +uP (1 —uf) 4) i () = , Z 7 (@) (13
Ox? / Ox ' J=1,i#j

Equations of the form (4) are complicated to solve and mostWhe? tEe BQM. IS prl'e% to d|scr?t|ze the sp§t|ald%(;r|\_/a-
often only the numerical solutions are available. In théofe tives of the density dependent nonlinear reaction- St

ing sections, a numerical procedure using the combination giuation, then one has the following nonlinear system of ©DE

DQM and implicit Euler method for the solution of the Cauchy

problem defined by (4), i.e., 2

N
iy = ul" Z r@uj + mu*t Z r(,l)uj +ul(1—ul)

ij i

m 02 , ou\? i=1 i=1
o= u’"a—g + mu™! (8711) +uP (1 —uf) @ @ (14)
z x — N O N
tER t>0, (5) wherer;;” =17 (z;), u; = u(z;), i =1,2,..., N.
u(w,O) _ Uo(x) reR IV. TIME INTEGRATION AND THE SOLUTION PROCEDURE

For the discretization of the time derivative in equatiod)(1

is proposed. In (5)uq(x) is the given initial condition de- implicit Euler method [10] is used, i.e.,

pending on the space variable

N
Wi n — Ui n
I1l. DQM FORMULATION , +1At o ’“Z?LHZTS)UMH
For the DQM discretization of the spatial derivatives of =t
density dependent nonlinear reaction-diffusion equagjiwen N
in Section Il polynomial based DQM is used. To this end, -+mu]’ ng;)uj,n+1 +uf (T —uf, )
one should assume that-th degree polynomials are used to j=1
approximate the first and second order spatial derivatifes o (15)
the solution. Then the DQM approach at a grid painteads Where’n” stands for then-th time level andt, = nAt, At
as being the time step. Equation (15) can be reorganized as

Cin+1 = QiU nt1, U241 s UN 1) =0 (16)

N
u(x;) = 75 (zi) u (xj), 6
(zi) ;()() ()With
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V. NUMERICAL RESULTS

Ci(UL,m41> U2t 1y ooy UN 1) = Wipn — Wi nt1 We consider the Cauchy problem defined by the density
dependent nonlinear reaction-diffusion equation moagithe
2 insect dispersal including logistic population growth twjit =

N
1 =m = i
+AW, Z g+ mAt L S D g=m=1[1]ie,

j=1
. 0 ou
+Atu€,n+1(1 - ug,n+1>' “= 01 |: 6L:| + 7.L(1 B U> Te (_007 OO)’ £>0
17)
In order to solve the nonlinear system of equations (16}, u(z,0) =1— e®/V2, z € (—00,00).
Newton’s method [10] is applied. To this end, the Jacobian (22)
matrix is constructed as With this choice of the reaction terny (u) = u(1 — u)),
the population disperses more rapidly to the regions of fowe
[ Op1n  Opin 91 T density as the population gets more crowded [1].
Ourpn  Ougp OuNn The exact solution to this problem is [1]
Opan 0P O¢a.n u(z,t) =1— e(z_Ct)/ﬂ, c= i (23)
3, = Ouy,  Ougp OuN ‘ (18) V2
To measure the quality of the numerical solution maximum
absolute errorr, for the n-th time level
i 86211\7”: aai;\i: gii: | Tn = 1I<11122X ‘ucuut(xhtn) uDQ]\i(xivtn)l (24)
where is used. In equation (24)czqct(zi,ty) and upgu (i, ty,)

denote the exact and the numerical solutions obtained by the
method proposed in this paper at the grid pain{i=1,2,...,N)
o m .(2) m—1 (2) for the n-th time level, respectively.
(Tn)is = =1+ Atuifyry” + mAtuf, Z Tig in In order to compute the solution one has to use a finite inter-
val, which is chosen here as1,1]. In [9], it is indicated that
the use of the nonuniform mesh in the polynomial based DQM
+2mA ! erjl)ujn 1(21) gives rise to more stable results. In this study to construct
a nonuniform mesh Chebyshev-Gauss-Lobatto (CGL) points
are used to discretize the spatial domain. The CGL points are
2 the points with the propertyTy (z,)] =1, n=1,2,..,N
whereTy (z) is the N-th degree Chebyshev polynomial and

— DA™ / . .
+m(m i ZTU Ui the CGL points are given in [9] as

n—1
+Atpul )t — At(p + q)ul 14 Ln = COS (%) n=1..,N (25)

— At(r@ym +2mA 1 r(l)u, r for the interval[—1, 1].
(T (rij i) Z S In the computations the advantage of using an implicit

i#4, =12, N. scheme has been once more observed. Stability problems are
"7 (19) notencountered due to the use of implicit time integratiep s

Then the solution of the density dependent nonlinednd larger time increments can be used. Especially, for time
reaction-diffusion equation is found at each time step vlgvels through steady-state considerably large time steps

solving the linear system of equations be used, e.g. fot = 30, At = 3.0 can be taken.
Table | shows the maximum absolute errors for a fixed time

J.Au, = -, (20) (t = 30.0) for various numbers of grid points. The accuracies

) by using N = 5,8,11 are almost the same and there is a

for Au,, where drop for N = 15. From the table, DQM is observed to give
very good accuracy with a small number of grid points. For

Au, = Upiq — Uy, (21) N = 15, the drop of accuracy is due to the ill-conditioned
Vandermonde-system obtained after the DQM discretization
starting with the initial conditioniy given in (5). Hereu,, is which is the known nature of DQM for larg®'.

the vector containing the solution at the discretized ofat Table Il and Il give the comparison of the DQM solution
then-th time level and® is the N x 1 vector with components with the exact solution in terms of maximum absolute error
vin (i=1,2,...,N). given in (24) for small time levels and for the times tending
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TABLE |
MAXIMUM ABSOLUTE ERRORS FOR DIFFERENT NUMBER OF GRID POINTS
t =30.0 N=5 N=28 N=11 N=15
Tn 6.0x 1077 | 47x1077 | 1.2x107° | 3.1 x 1072

to steady-state, respectively. The computations areechaut
with N =5 and it is seen to be enough to obtain the solution
with eleven digits accuracy at steady-state.

TABLE I
MAXIMUM ABSOLUTE ERRORS FOR SMALL TIME LEVELS

N=5 t =0.01 t=0.1 t=0.5 t=1.0

Tn 1.9x107% | 36 x1073 | 53x1072 | 9.7 x 1072

TABLE Il
MAXIMUM ABSOLUTE ERRORS FOR INCREASING TIMES

N =5 t=>5.0 t=12.0 t = 20.0 t = 50.0

Tn 84x1072 | 25x 1073 | 6.7x 1075 | 2.8 x 10~ 11

Fig. 1 and Fig. 2 exhibit the behaviour of the solution
for small times and for the times tending to steady-state,
respectively. The steady-state value which is 1 is obtained
aroundt = 16. The agreement between the exact and DQM
solutions in terms of graphics is very well especially aadie
state.

2 —

— : Exact Solution

1.5F *: DQM Solution
1 |-

I I I I I I |
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Fig. 1. Solution at small time levels

572



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:4, No:5, 2010

l=-=-=-=-@=-====== e i da i R R I S °
0.99-
— : Exact Solution
0.98- * : DQM Solution
0.97F
0.96
095 L L L L L L L L L I
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 2. Solution at steady-state
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