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Abstract—In this study, the densitydependentnonlinearreaction-
diffusion equation,which arisesin the insect dispersalmodels, is
solved using the combined application of differential quadrature
method(DQM) and implicit Euler method. The polynomial based
DQM is usedto discretizethespatialderivativesof theproblem.The
resulting time-dependentnonlinear systemof ordinary differential
equations(ODE’s) is solved by using implicit Euler method. The
computationsarecarriedout for a Cauchy problemdefinedby a one-
dimensionaldensitydependentnonlinearreaction-diffusion equation
which hasan exact solution.The DQM solution is found to be in a
very good agreementwith the exact solution in termsof maximum
absoluteerror. TheDQM solutionexhibits superioraccuracy at large
time levels tending to steady-state.Furthermore,using an implicit
methodin the solutionprocedureleadsto stablesolutionsandlarger
time stepscould be used.

Keywords—Density Dependent Nonlinear Reaction-Diffusion
Equation,Differential QuadratureMethod, Implicit Euler Method.

I . INTRODUCTION

SOLVING the nonlinearreaction-diffusion equation

u̇ =
∂

∂x

(
D

∂u

∂x

)
+ f(u) (u̇ =

∂u

∂t
) (1)

is a demandingtask among researcherssince the equation
arisesin more and more modelling situationsin many areas,
such as biology, chemistry, medicine and ecology. For in-
stance,if D is space-dependentthenthemodelhasbiomedical
importanceor if D is constantandf(u) = ru(1−u/K) (r is
the linear reproductionrateandK is the carryingcapacityof
the environment) the resulting equation(Fisher-Kolmogoroff
equation)modelsthespreadof anadventageousgenein a pop-
ulation [1]. An extensionto the above mentionedcasesis the
insectdispersalmodelwhich includesan increasein diffusion
dueto thepopulationpressure.Sucha modelhasgrowth terms
and populationdependeddiffusion coefficient D(u) [1], and
theresultingequationis calledthedensitydependentnonlinear
reaction-diffusion equation.The density-dependentnonlinear
reaction-diffusion equationis rather complicatedbecause of
the strongernonlinearity and most often only the numerical
solutionsareavailable.

In [2], Petrov-Galerkin method is used for the solution
of one-dimensionalnonlinearreaction-diffusion equation and
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the convergenceof the methodis discussed.Later, the com-
bined applicationof DQM with an explicit finite difference
method(FDM) is presentedfor the solution of nonlinear
reaction-diffusion equationin one- and two-dimensions[3].
There, since an explicit time integration method is used,a
relaxation parameteris proposed,in order to overcomethe
stability problems.However, it is observed that it is harder to
find the parameterwhenthe problemgetsharder. Thenin [4]
both nonlinearreaction-diffusion equationandwave equation
are solved using DQM with three different time integration
schemes(FDM with a relaxation parameter, least squares
method(LSM), finite elementmethod (FEM)) and all three
methodsarecomparedin termsof accuracy andcomputational
cost. In both [3] and [4] the nonlinearity is evaluatedat the
previous known level, in order to obtain a linear systemof
equations.

On theotherhand,Painlevéanalysisis appliedto getseveral
explicit solutionsfor thedensitydependentnonlinearreaction-
diffusion equationfor the caseD(u) = u by Satsuma[5].
Later in [6] necessaryand sufficient conditionsfor the exis-
tenceof travelling wave solutionsfor thenonlineardegenerate
reaction-diffusionequation,which is a specialform of density
dependentnonlinear reaction-diffusion equation, is investi-
gated.Moreover, solution of the Cauchy problemdefinedby
the nonlineardegeneratereaction-diffusion equationfound to
beapproaching1 ast → ∞ for any boundedinitial condition.

In thisstudy, thecombinedapplicationof DQM andImplicit
Euler methodis usedto solve the Cauchy problemdefinedby
the density dependentnonlinear reaction-diffusion equation.
The differentialquadraturemethod,which wasfirst proposed
by Bellman and his associates[7], [8] in the early 1970’s,
approximatesthe solution of a partial differential equation
using high order polynomial approximationor using Fourier
seriesexpansion.The spatialderivativesin the densitydepen-
dentnonlinearreaction-diffusionequationarediscretizedusing
polynomialbasedDQM. Oneof theadvantageof DQM is that
it is also applicablein the absenceof boundaryconditions
which is not thecasefor otherdomaindiscretizationmethods.
Theotheradvantageof themethodis that themethodleadsto
accuratenumericalsolutionsusingconsiderablysmallnumber
of grid points [9]. For the time discretizationof the system
of ordinary differential equationsobtained after the DQM
discretization,implicit Euler methodis applied.ThenNewton
methodis madeuseof to solve the resultingnonlinearsystem
of equationsfor therequiredtime level startingfrom theinitial
condition.
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The proposed method is tested on an example problem. The
numerical solution is seen to be in a very good agreement with
the exact solution in terms of maximum absolute error with a
small number of discretization points and the solution shows
superior accuracy at large time levels tending to steady-state.
Since an implicit method is used, the solution does not depend
on the time increment and comparing to the previous studies
[3], [4] larger time increments could be used.

II. PROBLEM DEFINITION

The one-dimensional density dependent nonlinear reaction-
diffusion equation modelling the insect dispersal, is given in
the form [1]

u̇ =
∂

∂x

(
D(u)

∂u

∂x

)
+ f(u). (2)

In equation (2) the upper dot is used for the time deriva-
tive, D(u) = D0u

m (D0, m are positive constants) is the
diffusion coefficient which depends on the populationu and
f(u) = kup(1 − uq) (p, q are positive constants) represents
the growth term. After a suitable rescaling oft andx, (2) takes
the following general form [1]

u̇ =
∂

∂x

(
um ∂u

∂x

)
+ up(1 − uq) (3)

or

u̇ = um ∂2u

∂x2
+ mum−1

(
∂u

∂x

)2

+ up(1 − uq). (4)

Equations of the form (4) are complicated to solve and most
often only the numerical solutions are available. In the follow-
ing sections, a numerical procedure using the combination of
DQM and implicit Euler method for the solution of the Cauchy
problem defined by (4), i.e.,


u̇ = um ∂2u

∂x2
+ mum−1

(
∂u

∂x

)2

+ up(1 − uq)

x ∈ R, t > 0,

u(x, 0) = u0(x) x ∈ R

(5)

is proposed. In (5),u0(x) is the given initial condition de-
pending on the space variablex.

III. DQM F ORMULATION

For the DQM discretization of the spatial derivatives of
density dependent nonlinear reaction-diffusion equationgiven
in Section II polynomial based DQM is used. To this end,
one should assume thatN -th degree polynomials are used to
approximate the first and second order spatial derivatives of
the solution. Then the DQM approach at a grid pointxi reads
as

u (xi) =

N∑
j=1

rj (xi) u (xj) , (6)

ux (xi) =

N∑
j=1

r
(1)
j (xi) u (xj) , (7)

uxx (xi) =
N∑

j=1

r
(2)
j (xi) u (xj) , (8)

where i = 1, ..., N , N is the number of grid points in
the whole domain andrj (x)’s are the Lagrange interpolated
polynomials. In equations (7) and (8),r

(n)
j (xi) (n = 1, 2)

are the weighting coefficients at the grid pointsx = xi

(i = 1, 2, ..., N) to be determined by DQM by using a
practical notation [9] and are given as follows;

r
(1)
j (xi) =

M (1) (xi)

(xi − xj) M (1) (xj)
i 6= j, i, j = 1, 2, ..., N,

(9)

r
(1)
i (xi) = −

N∑
j=1,i6=j

r
(1)
j (xi) , (10)

M (1) (xj) =

N∏
k=1,k 6=j

(xj − xk) , (11)

r
(2)
j (xi) = 2r

(1)
j (xi)

(
r
(1)
i (xi) − 1

xi−xj

)
i 6= j,

i, j = 1, 2, ..., N,
(12)

r
(2)
i (xi) = −

N∑
j=1,i6=j

r
(2)
j (xi) . (13)

When the DQM is applied to discretize the spatial deriva-
tives of the density dependent nonlinear reaction-diffusion
equation, then one has the following nonlinear system of ODEs

u̇i = um
i

N∑
j=1

r
(2)
ij uj + mum−1

i

 N∑
j=1

r
(1)
ij uj

2

+ up
i (1 − uq

i )

(14)
wherer

(2)
ij = r

(2)
j (xi), ui = u(xi), i = 1, 2, ..., N.

IV. T IME INTEGRATION AND THE SOLUTION PROCEDURE

For the discretization of the time derivative in equation (14)
implicit Euler method [10] is used, i.e.,

ui,n+1 − ui,n

∆t
= um

i,n+1

N∑
j=1

r
(2)
ij uj,n+1

+mum−1
i,n+1

 N∑
j=1

r
(1)
ij uj,n+1

2

+ up
i,n+1(1 − uq

i,n+1)

(15)
where ′n′ stands for then-th time level andtn = n∆t, ∆t
being the time step. Equation (15) can be reorganized as

ϕi,n+1 = ϕi(u1,n+1, u2,n+1, ..., uN,n+1) = 0 (16)

with
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ϕi(u1,n+1, u2,n+1, ..., uN,n+1) = ui,n − ui,n+1

+∆tum
i,n+1

N∑
j=1

r
(2)
ij uj,n+1 + m∆tum−1

i,n+1

 N∑
j=1

r
(1)
ij uj,n+1

2

+∆tup
i,n+1(1 − uq

i,n+1).
(17)

In order to solve the nonlinear system of equations (16),
Newton’s method [10] is applied. To this end, the Jacobian
matrix is constructed as

Jn =



∂ϕ1,n

∂u1,n

∂ϕ1,n

∂u2,n

...
∂ϕ1,n

∂uN,n

∂ϕ2,n

∂u1,n

∂ϕ2,n

∂u2,n

...
∂ϕ2,n

∂uN,n

... ... ... ...

∂ϕN,n

∂u1,n

∂ϕN,n

∂u2,n

...
∂ϕN,n

∂uN,n


. (18)

where

(Jn)ii = −1 + ∆tum
i,nr

(2)
ii + m∆tum−1

i,n

N∑
j=1

r
(2)
ij uj,n

+2m∆tum−1
i,n

 N∑
j=1

r
(1)
ij uj,n

 r
(1)
ii

+m(m − 1)∆tum−2
i,n

 N∑
j=1

r
(1)
ij uj,n

2

+∆tpup−1
i,n − ∆t(p + q)up+q−1

i,n

(Jn)ij = ∆t(r
(2)
ij um

i,n) + 2m∆tum−1
i,n

 N∑
j=1

r
(1)
ij uj,n

 r
(1)
ij ,

i 6= j, i, j = 1, 2, ..., N.
(19)

Then the solution of the density dependent nonlinear
reaction-diffusion equation is found at each time step via
solving the linear system of equations

Jn∆un = −Φn (20)

for ∆un where

∆un = un+1 − un (21)

starting with the initial conditionu0 given in (5). Hereun is
the vector containing the solution at the discretized points for
then-th time level andΦ is theN×1 vector with components
ϕi,n (i = 1, 2, ..., N).

V. NUMERICAL RESULTS

We consider the Cauchy problem defined by the density
dependent nonlinear reaction-diffusion equation modelling the
insect dispersal including logistic population growth with p =
q = m = 1 [1] i.e.,


u̇ =

∂

∂x

[
u

∂u

∂x

]
+ u(1 − u) x ∈ (−∞,∞), t > 0

u(x, 0) = 1 − ex/
√

2, x ∈ (−∞,∞).
(22)

With this choice of the reaction term (f(u) = u(1 − u)),
the population disperses more rapidly to the regions of lower
density as the population gets more crowded [1].

The exact solution to this problem is [1]

u(x, t) = 1 − e(x−ct)/
√

2, c =
1√
2
. (23)

To measure the quality of the numerical solution maximum
absolute errorτn for the n-th time level

τn = max
1≤i≤N

|uexact(xi, tn) − uDQM (xi, tn)| (24)

is used. In equation (24)uexact(xi, tn) and uDQM (xi, tn)
denote the exact and the numerical solutions obtained by the
method proposed in this paper at the grid pointxi (i=1,2,...,N)
for the n-th time level, respectively.

In order to compute the solution one has to use a finite inter-
val, which is chosen here as[−1, 1]. In [9], it is indicated that
the use of the nonuniform mesh in the polynomial based DQM
gives rise to more stable results. In this study to construct
a nonuniform mesh Chebyshev-Gauss-Lobatto (CGL) points
are used to discretize the spatial domain. The CGL points are
the points with the property|TN (xn)| = 1, n = 1, 2, ..., N
whereTN (x) is theN -th degree Chebyshev polynomial and
the CGL points are given in [9] as

xn = cos

(
(n − 1) π

N − 1

)
n = 1, ..., N (25)

for the interval[−1, 1].
In the computations the advantage of using an implicit

scheme has been once more observed. Stability problems are
not encountered due to the use of implicit time integration step
and larger time increments can be used. Especially, for time
levels through steady-state considerably large time stepscan
be used, e.g. fort = 30, ∆t = 3.0 can be taken.

Table I shows the maximum absolute errors for a fixed time
(t = 30.0) for various numbers of grid points. The accuracies
by using N = 5, 8, 11 are almost the same and there is a
drop for N = 15. From the table, DQM is observed to give
very good accuracy with a small number of grid points. For
N = 15, the drop of accuracy is due to the ill-conditioned
Vandermonde-system obtained after the DQM discretization,
which is the known nature of DQM for largeN .

Table II and III give the comparison of the DQM solution
with the exact solution in terms of maximum absolute error
given in (24) for small time levels and for the times tending
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TABLE I
MAXIMUM ABSOLUTE ERRORS FOR DIFFERENT NUMBER OF GRID POINTS

t = 30.0 N = 5 N = 8 N = 11 N = 15

τn 6.0× 10−7 4.7× 10−7 1.2× 10−5 3.1× 10−2

to steady-state, respectively. The computations are carried out
with N = 5 and it is seen to be enough to obtain the solution
with eleven digits accuracy at steady-state.

TABLE II
MAXIMUM ABSOLUTE ERRORS FOR SMALL TIME LEVELS

N = 5 t = 0.01 t = 0.1 t = 0.5 t = 1.0

τn 1.9× 10−4 3.6× 10−3 5.3× 10−2 9.7× 10−2

TABLE III
MAXIMUM ABSOLUTE ERRORS FOR INCREASING TIMES

N = 5 t = 5.0 t = 12.0 t = 20.0 t = 50.0

τn 8.4× 10−2 2.5× 10−3 6.7× 10−5 2.8× 10−11

Fig. 1 and Fig. 2 exhibit the behaviour of the solution
for small times and for the times tending to steady-state,
respectively. The steady-state value which is 1 is obtained
aroundt = 16. The agreement between the exact and DQM
solutions in terms of graphics is very well especially at steady-
state.
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Fig. 1. Solution at small time levels
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Fig. 2. Solution at steady-state
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