
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:6, 2007

293

 

 

  
Abstract—This paper features the proposed modeling and design 

of a Robust Decentralized Periodic Output Feedback (RDPOF) 
control technique for the active vibration control of smart flexible 
multimodel Euler-Bernoulli cantilever beams for a multivariable 
(MIMO) case by retaining the first 6 vibratory modes. The beam 
structure is modeled in state space form using the concept of 
piezoelectric theory, the Euler-Bernoulli beam theory and the Finite 
Element Method (FEM) technique by dividing the beam into 4 finite 
elements and placing the piezoelectric sensor / actuator at two finite 
element locations (positions 2 and 4) as collocated pairs, i.e., as 
surface mounted sensor / actuator, thus giving rise to a multivariable 
model of the smart structure plant with two inputs and two outputs.  
Five such multivariable models are obtained by varying the 
dimensions (aspect ratios) of the aluminum beam, thus giving rise to 
a multimodel of the smart structure system. Using model order 
reduction technique, the reduced order model of the higher order 
system is obtained based on dominant eigen value retention and the 
method of Davison. RDPOF controllers are designed for the above 5 
multivariable-multimodel plant.  The closed loop responses with the 
RDPOF feedback gain and the magnitudes of the control input are 
observed and the performance of the proposed multimodel smart 
structure system with the controller is evaluated for vibration control. 
 

Keywords—Smart structure, Euler-Bernoulli beam theory, 
Periodic output feedback control, Finite Element Method, State space 
model, SISO, Embedded sensors and actuators, Vibration control, 
Reduced order model 

I. INTRODUCTION 
IEZOELECTRIC materials are capable of altering the 
structure’s response through sensing, actuation and 

control. Piezoelectric elements can be incorporated into a 
laminated composite structure, either by embedding it or by 
mounting it onto the surface of the host structure [7]. 
Vibration control of any system is always a formidable 
challenge for any control system designer. Active control of 
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vibrations relieves a designer from strengthening the structure 
from dynamic forces and the structure itself from extra weight 
and cost. The need for intelligent structures such as smart 
structures arises from the high performance requirements of 
such structural members in numerous applications. Intelligent 
structures are those which incorporate actuators and sensors 
that are highly integrated into the structure and have structural 
functionality, as well as highly integrated control logic, signal 
conditioning and power amplification electronics [3].   

A vibration control system consists of 4 parts, viz., actuator, 
controller, sensor and the system or the plant, which is to be 
controlled. When an external force extf  is applied to the 
beam, it is subjected to vibrations. These vibrations should be 
suppressed. Fully active actuators like the Piezoelectrics, MR 
Fluids, Piezoceramics, ER Fluids, Shape Memory Alloys, 
PVDF, etc., can be used to generate a secondary vibrational 
response in a mechanical system. This could reduce the 
overall response of the system plant by the destructive 
interference with the original response of the system, caused 
by the primary source of vibration [2], [3], [10], [13]. 

Extensive research in modeling of piezoelectric materials in 
building actuators and sensors for structure is reported. 
Investigations of Crawley and Luis [3] emphasized on the 
derivation of sensor / actuator modeling of piezo-electric 
materials. Moreover, the control analysis of cantilever beams 
using these sensors / actuators have been studied by Bailey 
and Hubbard [2]. Culshaw [7] gave a brief introduction to the 
concept of smart structure, its benefits and applications. 
Hanagud, et al., [13] developed a Finite Element Model 
(FEM) for an active beam with many distributed piezoceramic 
sensors / actuators coupled by signal conditioning systems and 
applied optimal output feedback control.  

Fanson and Caughey [10] performed some experiments on 
a beam with piezoelectrics using positive position feedback.  
Hwang and Park [12] presented a FE model for piezoelectric 
sensors and actuators. Balas [16] presented the feedback 
control of flexible structures.  Choi et al. [8] discussed about 
the control techniques of flexible structures using distributed 
piezoelectric sensors / actuators. Feedback control of 
vibrations in mechanical systems has numerous applications, 
like in aircrafts, active noise and shape control, acoustic 
control, control of antennas, earthquake, structural health 
monitoring, control of space structures and in the control of 
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flexible manipulators. Fault tolerant control of smart 
structures using POF when one of the actuator fails to 
function was proposed in [19].  Manjunath and 
Bandyopadhyay proposed a AVC scheme for the best location 
(and for the best model) of the sensor / actuator pair on a 
beam modeled with Euler-Bernoulli beam theory in [17] and 
[18].  

The outline of the paper is as follows. A brief review of 
related literature was given in Section 1.  Section 2 gives a 
brief introduction to the modeling technique (sensor  / actuator 
model, finite element model, state space model) of the smart 
flexible cantilever beam for a multivariable case with two 
inputs and two outputs. A brief review of the controlling 
technique, viz., the periodic output feedback control 
technique, multimodel synthesis, design of the LMI 
formulation, RDPOF design, model order reduction technique 
and the design of the robust decentralized periodic output 
feedback controller to control the first 6 modes of vibration of 
the system via reduced order modeling is discussed in section 
4.  The simulation results are shown in section 5 followed by 
the concluding section.    

II. MATHEMATICAL MODELING OF SMART BEAM 

            

       
Fig.  1   A regular flexible beam and a smart flexible beam. 
F1 and  F2 :  Forces  at  node 1 and  2, M1  and M2 :  Moments at node 
1 and  2,  lb : Length of beam , lp : Length of piezo-layer 
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Fig.  2  A smart flexible beam divided into 4 FE with piezo patches 
placed at even FE positions 2 and 4 
   

Consider a flexible cantilever beam made of aluminum 
bonded with piezoelectric sensor / actuator all along the length 
of the beam as shown in Fig. 1.  The dimensions and 
properties of the flexible beam and piezoelectric sensor / 
actuator are given in Tables I and II respectively.  The flexible 

cantilever beam as shown in Fig. 1 is divided into a number of 
finite elements viz., 4 as shown in Fig. 2. The piezoelectric 
sensor / actuator is bonded to the master structure at finite 
element positions numbering 2 and 4, thus giving rise to a 
Multiple Input Multiple Output (MIMO) system with 2 
actuator inputs 21,uu to the actuators and 2 sensor outputs, 

21, yy  from the sensors. 
TABLE  I   

PHYSICAL  PARAMETERS 
PROPERTIES OF THE FLEXIBLE CANTILEVER BEAM ELEMENT 

Parameter  (with units) Symbol Numerical values 

Total length (m) 
bl  0.5 

Width (m) b  0.024 

Young’s modulus (GPa) 
bE  193.06 

Density (kg / m3) 
bρ  8030 

Constants used in *C  βα ,  0.001. 0.0001 
Thickness 

bt  Varying from  
0.5 mm to 1 mm, i.e., 
to give 5 models 

 
TABLE  II 

PROPERTIES OF THE  (PZT) PIEZO - SENSOR / ACTUATOR   

Parameter  (with units) Symbol Numerical 
values 

Length (m) 
pl  0.125 

Width (m) b  0.024 

Thickness (mm) 
sa tt ,  0.5 

Young’s modulus (GPa) 
pE  68 

Density (kg / m3) 
pρ  7700 

Piezoelectric stress constant (VmN–1) 31g  13105.10 −×   
Piezo strain constant (m / V) 

31d  1210125 −×  
 

A. Modeling of Regular and Piezo Elements of Beam 
To start with, we consider the modeling of the regular beam 

element and the piezoelectric beam element as shown in the 
Fig. 1.  The dynamic model for the smart structure is 
developed using the Finite Element Method (FEM) [12], [24].  
The smart cantilever beam model is developed using a 
piezoelectric beam element, which includes the sensor and 
actuator dynamics and a regular beam element based on Euler-
Bernoulli theory assumptions.  The piezoelectric beam 
element is used to model the regions where the piezoelectric 
element is bonded as sensor / actuator and the rest of the 
structure is modeled by the regular beam elements.  

In modeling and analysis of the smart beam, the following 
assumptions are made.  The perfect bonding or the adhesive 
between the beam and the sensor / actuator and the thin film 
electrode surfaces have been assumed to add no mass or 
stiffness to the sensor / actuator, i.e., neglected. The cable 
capacitance between sensor and signal-conditioning device 
has been considered negligible and the temperature effects 
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have been neglected. The signal conditioning device gain 
)( cG is assumed as 100. The free vibration characteristics of a 

flexible beam is governed by the following fourth order 
differential equation [20], [25] 

 0),(),(
2

2

4

4
2 =

∂
∂

+
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∂
t

txw
x

txwc ,  (1) 

where w  is the transverse displacement of the beam and is a 
function x  and t , x  being the distance of the local 
coordinate from the fixed end, t  being the time and c  is a 

constant which is given by 
A

IE
ρ

.  

AIE and,, ρ  are the young’s modulus, moment of inertia, 
mass density and area of the beam respectively.  When a 
system vibrates, it undergoes to and fro motion and so all 
positions vary with time and therefore, the system has 
velocities and accelerations. Mass times acceleration as inertia 
force appears in the governing differential equation of the 
beam which is given in Eq. (1), i.e., the equation of motion 
involves a fourth order derivative w.r.t. x  and a second order 
derivative w.r.t. time. 

The piezoelectric element is obtained by sandwiching the 
regular beam element between two thin piezoelectric layers as 
shown in Fig. 2. The bottom layer is acting as a sensor and the 
top layer acts as an actuator.  The beam element is assumed to 
have two structural DOF ),( θw at each nodal point and an 
electrical DOF: a transverse deflection and an angle of 
rotation or slope. Since the voltage is constant over the 
electrode, the number of electrical DOF is one for each 
element.  

The electrical DOF is used as a sensor voltage or actuator 
voltage when the piezoelectric material attached to the 
structure behaves as sensor or actuator.  Corresponding to the 
2 DOF, a transverse shear force and a bending moment acts at 
each nodal point. At each nodal point, counteracting moments 
induced by the piezoelectric actuators will be acting.  The 
bending moment resulting from the applied voltage to the 
actuator adds a positive finite element being the moment at 
node 1 while subtracting it at node 2.   

The deflection behavior of the beam element is best 
described by a displacement function )(xW , which is the 
solution of Eq. (1). It is desirable that this function satisfies 
the differential equation of equilibrium for the beam element. 
The solution of the Eq. (1) is assumed as a cubic polynomial 
function of x  given by [20], [25] 
 3

4
2

321)( xaxaxaaxW +++= ,   (2) 

where the constants 1a to 4a are obtained using the boundary  
conditions  of the beam at the nodal points (fixed end and free 
end) as  
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where 11,θw  and  22 ,θw  are the DOF’s at the node 1 (fixed 
end) and node 2 (free end) respectively.  

The Eq. (2) is rearranged in the final form as 
 ][][)]([ qnTxW = ,  (4) 
where ][ Tn gives the shape functions of the beam  

4,..,1,)( =ixfi as   

 [ ])()()()(][ 4321 xfxfxfxfT =n , (5) 
where                                         
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where x  is the local axial coordinate of the finite element 
node from the fixed end, bl  being the length of the beam  and 

q  is the vector of displacements and slopes (nodal 
displacement vector)  and is  given  by   
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for the beam shown in Fig. 1. The displacement, its first, 
second spatial derivatives and its time derivative in matrix 
form is given by )(and)(),(),( tWxWxWxW &′′′  and is given 
by 
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B. Piezoelectric Strain Rate Sensors And Actuators 
The linear piezoelectric coupling [22] between the elastic 

field and the electric field is expressed by the direct and the 
converse piezoelectric equations as  
 ,ETdD Tε+= ,EdTsS E +=  (11) 

where T is the stress, S is the  strain, E  is  the  electric  
field, D  is  the  dielectric  displacement,ε  is  the  

permittivity  of  the medium, Es is  the  compliance  of  the  
medium  and  d  is  the  piezoelectric  constant .  

C. Sensor Equation 
 

The direct piezoelectric equation is used to calculate the 
output charge created by the strain in the structure [20], [25].  
Since no external field is applied to the sensor layer, the 
electric displacement developed on the sensor surface is 
directly proportional to the strain acting on the sensor.  If the 
poling is done along the thickness direction of the sensors 
with the electrodes on the upper and lower surfaces, the 
electric displacement is given as 
 xxpz eEdD εε 3131 * == , (12) 

where 31e  is the piezoelectric  stress / charge  constant, pE  is  

the Young’s  modulus and xε  is the strain of the testing 
structure at a point on the beam.  

 The total charge )(tQ developed on the sensor surface is 
the spatial summation of all the point charges developed on 

the sensor layer.  Since the current 
dt

tQdti )()( = suggests that 

the closed-circuit current signal generated in a piezoelectric 
lamina is proportional to the strain rate of the testing structure, 
we obtain 

 ∫=
pl

T dxbezti
0

131)( qn & , (13) 

where a
b t

t
z +=

2
, b  is the width of the beam, pl being the 

length of the piezo-sensor and T
1n is the second spatial 

derivative of shape function of the flexible beam. This current 
is converted into the open circuit sensor voltage sV using a 
signal-conditioning device with the gain cG and applied to the 

actuator with the controller gain cK .  The   sensor output 
voltage is obtained as 

 ∫=
pl

T
c

s dxbzeGtV
0

131)( qn & , (14) 

which is nothing but the signal conditioning gain cG  

multiplied by the closed circuit current )(ti  generated by the 

piezoelectric lamina. Substituting for T
1n from Eq. (9) and 

q& from Eq. (10) and simplifying, we get the sensor voltage for 

a two node finite element of the beam as  
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which can be further expressed as a scalar-vector product 
 qp &TtV s =)( , (16) 

where q&  is the time derivative of the modal coordinate vector 
q , Tp is a constant vector which depends on the type of 
sensor, its characteristics and its location on the beam.  Note 
that the sensor output is a function of the second spatial 
derivative of the mode shape.   This sensor voltage is given 
as input to the controller and the output of the controller 
(which is nothing but the control input to the actuator, i.e., the 
actuator voltage) is the controller gain cK  multiplied by the 

sensor voltage )(tV s .   Thus, the input voltage to the actuator 

)(tV a is given by  

 )()( tVKtV s
c

a = . (17) 

Substituting for )(tV s  from Eq. (14) in Eq. (17), we get 

 ∫=
pl

T
cc

a dxbzeGKtV
0

131)( qn & . (18) 

D. Actuator Equation 
The actuator strain is derived from the converse 

piezoelectric equation.  The strain developed aε on the 
actuator layer is given by [20], [25]  
 fa Ed31=ε , (19) 

where 31d and fE are the piezo strain constant and the 

electric field respectively.  When the input to the piezoelectric 
actuator )(tV a is applied in the thickness direction at , the 

electric field, fE which is the voltage applied )(tV a divided 

by the thickness of the actuator at ; and  the stress, aσ  which 

is the actuator strain multiplied by the young’s modulus pE of 

the piezo actuator layer are given by  
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The resultant moment AM acting on the beam is determined 
by integrating the stress throughout the structure thickness as 
 )(31 tVzdEM a

pA = , (22) 

where 
2

)( ba tt
z

+
= , is the distance between the neutral axis 

of the beam and the piezoelectric layer.  Finally, the control 
force applied by the actuator is obtained as  
 )(231 tVdxzbdE a

l
pctrl

p

∫= nf  (23) 

or can be expressed as a scalar vector product as 
 )()( tutV a

ctrl hhf ==  , (24) 

where T
2n is the first spatial derivative of the shape function 

of the flexible beam, Th is a constant vector which depends on 
the type of actuator and its location on the beam, given by 

[ ]00 3131 zbdEzbdE pp−=h  and )(tu  is nothing 

but the control input to the actuator, i.e., )(tV a from the 
controller.  If any external forces described by the vector 

extf are acting on the beam, then the total force vector 
becomes  
 ctrlext

t fff += . (25) 
 

E. Dynamic Equation of Smart Structure 
The strain energy U and the kinetic energy T  for the beam 

element with uniform cross section in bending is [20], [25] 
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The equation of motion of the regular beam element is 
obtained by the Lagrangian equation for the regular beam 
element as 
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which after simplification yields as           
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Finally, after simplification, we get 
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and   
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where bb KM , are the local mass matrix, the local stiffness 
matrix of the regular beam element.   

Similarly, the lagrangian equation of motion for the 
piezoelectric beam element is obtained as 
 ),(tfqKqM ppp =+&&  (36) 

where pM and pK  are the piezoelectric beam element mass 
matrix and stiffness matrix and are given as 
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where 
 ,2 ppbb IEIEEI +=  (39) 
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and                                                 
 ( )apbb ttbA ρρρ 2+= . (41) 

The  dynamic equation of the smart structure is obtained by 
using both the regular and piezoelectric beam elements given 
by Eqs. (29) and (36).  The mass and stiffness of the bonding 
or the adhesive between the master structure and the sensor / 
actuator pair is neglected.  The mass and stiffness of the entire 
beam, which is divided into 4 finite elements is assembled 
using the FEM technique [12], [24] and the assembled 
matrices (global matrices), M and K are obtained.  The 
equation of motion of the smart structure is finally given by 
 t

ctrlext fffKqqM =+=+&& ,  (42) 

where t
ext ctrl

fffqKM ,, ,,,  are the global mass matrix, 

global stiffness matrix of the smart beam, the vector of 
displacements and slopes, the external force applied to the 
beam, the controlling force from the actuator  and  the  total  
force  coefficient  vector  respectively.   The mass matrix M ,  
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stiffness matrix K  and the control force vector Th  in the 
system equation can be varied by changing the position and 
number of regular and piezoelectric beam elements.  

The generalized coordinates are introduced into the Eq. (42) 
using a transformation gTq =  in order to reduce it further 
such that the resultant equation represents the dynamics of the 
first 6 vibratory modes 1ω  to 6ω of the smart flexible 
cantilever beam. T is the modal matrix containing the eigen 
vectors representing the first 6 vibratory modes. This method 
is used to derive the uncoupled equations governing the 
motion of the free vibrations of the system in terms of 
principal coordinates by introducing a linear transformation 
between the generalized coordinates q and the principal 
coordinates g .  The Eq. (42) now becomes  

 21 ctrlctrlext fffgTKgTM ++=+&& ,  (43)  

where 1ctrlf and 2ctrlf are the control force coefficient vectors 

to the actuators from the controller. 
Multiplying Eq. (43) by TT on both sides and further 

simplifying, we get 

 ****
21 ctrlctrlext fffgKgM * ++=+&& ,  (44) 

where ,* TMTM T= T,KTK* T=  ,*
ext

T
ext fTf =   

ictrl
T

ictrl fTf =*   .2to1=i  

****
21,,, ctrlctrlext fff,KM * represents the generalized 

mass matrix, the generalized stiffness matrix, the generalized 
external force vector and the generalized control force vectors 
respectively. 

The generalized structural modal damping matrix 
*C (Raleigh proportional damping) is introduced into the Eq. 

(44) by using 

 *** KMC βα += , (45) 
where α and β are the damping constant respectively. 

The dynamic equation of the smart flexible cantilever beam 
developed is as 

 **
ctrlext ffgKgCgM *** +=++ &&& , (46) 

where  ***
21 ctrlctrlctrl fff += .  

 

F. State Space Model of the Smart Structure 
The state space model of the smart flexible cantilever beam 

is obtained as follows [20], [25]. Let                                                                   
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Thus,           

 
.,,

,,,

126115104

938271

xxxxxx
xxxxxx

===
===
&&&

&&&
  (49)  

and Eq. (46) now becomes  
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which can be further simplified as   
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The generalized external force coefficient vector is   

 ,)(* trfT
ext

T
ext TfTf ==   (52) 

where )(tr is the external force input (impulse disturbance) to 
the beam.  

The generalized control force coefficient vector is   
   ,2to1,)()(* ==== itutVf ii

Ta
ii

T
ictrl

T
ictrl hThTTf   (53) 

where the voltages )(tV a
i are the input voltages to the 

actuators 1 and 2 from the controllers respectively, and are 
nothing but the control inputs  )(tui  to  the  actuators, ih  is  
a  constant  vector  which  depends  on  the  actuator  type,  its  
position  on the beam and  is  given  by   

 
[ ]

[ ]00........11

00........11 18311

−=

−= ×

c

p

a

zbdEh
 (54) 

for one piezoelectric actuator element (say, for the piezo patch 
placed at the finite element position numbering 2), where 

cp azbdE =31 being the actuator constant. So, using the 

Eqs.  (52) and (53) in Eq. (51), the state space equation for the 
smart beam is represented as 
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i.e.,  )()()( trtutx EBAX ++=& . (56) 
The sensor voltage is taken as the output and its equation is 

modeled as 

 ,2,1,)()( === itytV i
T

i
s

i qp &  ,   (57) 

where T
ip is a constant vector which depends on the 

piezoelectric sensor characteristics (i.e., the sensor constant  
cS ) and on the position of the sensor location on the beam. 

The constant vector for the sensor placed at finite element 
position numbering 4 is given by   

 [ ]
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where  cc SbzeG =31  is the sensor constant. 
Thus, the sensor output is given by   
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which  can  be  written  as 
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for a multivariable case with 2 inputs and 2 outputs. i.e., 
 .)()()( tutxty T DC +=  (61) 

The multivariable state space model (state equation and the 
output equation) of the smart structure developed for the 
system thus [20], [25], is given by                                                                   
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where )(and)(,,,,,),(),( tytxtutr EDCBA represents the 
external force input, the control input, system matrix, input 
matrix, output matrix, transmission matrix, external load 
matrix, state vector, system output (sensor output).   

By considering the thickness of the beam in the model 1 as 
0.5 mm, thickness of the beam in model 2 as 0.6 mm, 
thickness of the beam in model 3 as 0.7 mm, thickness of the 
beam in the model 4 as 0.8 mm and thickness of the beam in 
the model 5 as 1 mm, 5 multivariable state space models 
(multi-model) of the same smart structure plant are obtained 
as shown in Eq. (62).   

These 5 MIMO models give rise to a multimodel smart 
structure plant. Let  ( )iiiii EDCBA ,,,, ;  5,4,3,2,1=i  be 
the state space matrices of the 5 models of the beam.  State 
space model of the smart cantilever beam with sensor / 
actuator pair at element 2 and 4 for the model 1 for 6 modes is 
represented by Eq. (62) with 
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The state space models of the remaining 4 models are 
obtained similarly. The characteristics of the smart flexible 
cantilever beam of the model 1 are given in Table III. 

 
TABLE  III    

CHARACTERISTICS OF THE SMART FLEXIBLE BEAM FOR THE 
MULTIVARIABLE MODEL 1 

 

Models EIGEN VALUES Natural 
Frequency (Hz.) 

 −0.0071 j±  9.36 1.4892 

 −0.5975 j±  89.2 14.1995 

Model 1 −4.96 j±  257.1 40.9239 

 −21.3 j±  532.1 84.6910 

 −81.2 j±  1037.2 165.0721 

 −224.4 j±  1715.1 272.9711 

 
Similarly, the characteristics of the other 4 models are 

obtained.  

III. DESIGN OF POF CONTROLLER VIA THE REDUCED ORDER 
MODELING 

In the following section, we develop the control strategy for 
the multivariable cum multimodel representation of the 
developed smart structure model using the periodic output 
feedback control law [4]-[6], [15], [26], [27] with 1 actuator 
input u and 1 sensor output y for the 5 models of the smart 

structure plant as shown in Fig. 2. The problem of pole 
assignment by piecewise constant output feedback was 
studied by Chammas and Leondes [4]-[6] for LTI systems 
with infrequent observations.  They have shown that by the 
use of a periodically time-varying piecewise constant output 
feedback gain, the poles of the discrete time control system 
could be assigned arbitrarily (within the natural restriction that 
they should be located symmetrically with respect to the real 
axis) using the POF technique. Since the feedback gains are 
piecewise constants, their method could easily be 
implemented, guarantees the closed loop stability and 
indicated a new possibility. Such a control law can stabilize a 
much larger class of systems. 

A. Review of  Periodic  output  feedback control technique 
Consider a LTI CT system [4] -[6], [27] given by 

 CxyBuAxx =+= ,& , (65) 
which is sampled with a sampling interval τ secs and given 
by the discrete linear time invariant system (called as the tau 
system) as 
 )()(,)()()1( kxCkykukxkx =Γ+Φ=+ ττ , (66) 

where pmn yux ℜ∈ℜ∈ℜ∈ ,, and τΦ , τΓ  and C are 
constant matrices of appropriate dimensions.  The following 
control law is applied to this system.  The output y  is 
measured at the time instant τkt = , .....,2,1,0=k  We 
consider constant hold function because they are more suitable 
for implementation.  An output-sampling interval is divided 
into N sub-intervals of length Nτ=∆  and the hold 
function is assumed to be constant on these sub-intervals as 
shown in the Fig. 3.  Thus, the control law becomes 
 )()( τkKtu yl= ,   

 ( ) ( ) lNl KKlklk =∆+≤≤∆+ +,1ττ  (67) 
for )1(.....,,2,1,0 −= Nl .  Note that a sequence of N gain 
matrices { }110 .....,,, −NKKK , when substituted in Eq. (67), 
generates a time-varying piecewise constant output feedback 
gain )(tK for τ≤≤ t0 .   

 
Fig. 3   Graphical illustration of the POF control law 
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Consider the following system, which is obtained by 
sampling the system in Eq. (65) at sampling interval of 

Nτ=∆ and denoted by ( )C,, ΓΦ  called as the delta 
system : 
 )()(,)()()1( kxCkykukxkx =Γ+Φ=+ , (68) 

A useful property of the control law in Eq. (67) is given by 
the following lemma  which states as “Given an observable 
pair ( ) )()(, mnnnBA ×× ℜ×ℜ∈  and mBrank =)( , the 
controllability index of the system w.r.t any particular column 
of ib  of B  is the minimum value of iν  such that the column 

BA iν  is dependent on the columns before it in the following 
series 

{ },..........,,,.....,,.....,,,,......,, 12121
1

imm bAbAAbAbAbbbb iυυ ,(69) 
the controllability index of the entire system being defined as 

)(max iνυ = ”.   
Assume ( )C,τΦ  is observable and ( )ΓΦ ,  is controllable 

with controllability index ν such that ν≥N , then it is 
possible to choose a gain sequence lK , such that the closed-
loop system, sampled over τ , takes the desired self-
conjugate set of eigen values  [4]-[6], [15], [27]. Define  
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then, a state space representation for the system sampled over 
τ is  

 )()(,)()( kxCkyukxkx N =+=+ ΓΦ τττ , (72) 

where  [ ]ΓΓΦ= − ,........,1NΓ . 

Applying POF in Eq. (67), i.e., )( τkyK is substituted for 
)( τku , the closed loop system becomes  

 ( ) ( ) )( τττ kxCkx N ΓK+Φ=+ . (73) 
The problem has now taken the form of static output 

feedback [23], [28].  Eq. (73) suggests that an output injection 
matrix G  be found such that  
 ( ) 1<+Φ GCNρ , (74) 
where )(ρ denotes the spectral radius  By observability, one 
can choose an output injection gain G  to achieve any desired 
self-conjugate set of eigen values for the closed-loop matrix 
( )GCN +Φ  and from ν≥N , it follows that one can find a 

POF gain which realizes the output injection gain G  by 

solving                                                                   
 G=KΓ  (75) 
for K .  The controller obtained from this equation will give 
the desired behaviour, but might require excessive control 
action.  To reduce this effect, we relax the condition that 
K exactly satisfy the linear equation and include a constraint 
on it.   Thus, we arrive at the following in the inequality 
equations :  
 21 , ρρ <−< GKΓK . (76) 

Using the schur complement, it is straight forward to bring 
these conditions in the form of linear matrix inequalities [11], 
[28] as 
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In this form, the LMI toolbox of MATLAB can be used for 
the synthesis of K . 

B. Multimodel Synthesis 
For the multimodel representation of a plant, it is necessary 

to design a controller that will robustly stabilize the 
multimodel system.  Multimodel representation of plants can 
arise in several ways.  When a non-linear system has to be 
stabilized at different operating points, linear models are 
sought to be obtained at those operating points.  Even for 
parametric uncertain linear systems, different linear models 
can be obtained for extreme points of the parameters.  These 
models are then used for the stabilization of the systems [4]-
[6].   

Consider a family of plants, { }iii CBAS ,,=  defined by  

  .,, ,....,2,1 MixCyuBxAx iii ==+=&  (78) 

By sampling the above system in (78) at the rate of ∆1 , 

we get a family of discrete systems { }iii CS ,, ΓΦ= .  

Assume  that  ( )i
N
i C,Φ  are observable.  Then, we can find 

the output injection gains iG  such that ( )ii
N
i CG+Φ  has the 

required set of poles.  Now, consider the augmented system 
defined as follows :  
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The linear equation 
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has a solution if ( )ΓΦ
~,~  is controllable with controllability 

index ν~  and ν~≥N .   This POF gain realizes the designed 
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iG  for all the plants of the family.  It has been shown in [27], 
that the controllability of the individual plant models 
generically implies the controllability of the augmented 
system.  The controller obtained from the above equation will 
produce the desired behaviour, but might require excessive 
control action.  To reduce this gain effect, we relax the 
condition that Eq. (80) has to be satisfied exactly and include 
a constraint on the gain.  Thus, we consider the following 
inequalities :  
  MiG iiii ....,,1,, 21 =<−< ρρ KΓK , (81) 

where 1ρ and 2ρ represent the upper bounds on the spectral 
norms of K and ( )G−KΓ  and M = 5 respectively.  
These 2 objectives have been expressed by the upper 

bounds on matrix norms and each should be as small as 
possible. 1ρ  small means low noise sensitivity and 2ρ small 
means that the POF controller with gain K is a good 
approximation of the original design. It should be noted here 
that closed loop stability requires 12 <ρ , i.e., the eigen 
values which determine the error dynamics must like within 
the unit disc.  This can be formulated in the framework of 
LMI as follows :  
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.(82) 

Here, the LMI toolbox of MATLAB can be used for the 
design of K [11], [28].  The RDPOF controller obtained by 
this method requires only constant gains and is hence easier to 
implement.   

 

C. Robust Decentralized Periodic Output Feedback 
In POF, for multimodel synthesis, the gain matrix is 

generally full.  This results in the control input of each plant 
being a function of the output of all the plants.  Decentralized 
robust POF control can be achieved by making the off-
diagonal elements of { }1~10 ......,,, −NKKK  matrices zero.  

So, the structure of )1( ,.....,2,1,0 −= NiKi  matrix is 

assumed as 1....,,1,0;,....],,[ 332211 −== Ndiag ikkkK iiii . 
With this structure of iK , the problem can be formulated in 

the framework of LMI using Eqs. (81) and (82) and the 
desired matrices obtained.  Now, it is evident that the control 
input of each model of the plant is a function of the output of 
that plant only and this makes the smart structure controller 
design using POF a robust decentralized one.   

 

D. Model order reduction technique 
For many complex processes or when the modes of a 

dynamical system are very high, the order of the state matrix 
may be quite large.  It would be difficult to work with these 
large scale dynamical systems [21] in their original form.  In 
such cases, it is common to study the process by 
approximating it to a simpler model.  These mathematical 
models correspond to approximating a system by its dominant 

pole-zeros in the complex plane.  They generally require 
empirical determination of the system parameters.   

Many different methods have been developed to 
accomplish the purpose by estimating the ‘dominant’ part of 
the large system and finding a simpler (or reduced order) 
system representation that has its behaviour akin to the 
original system.   Here, we discuss the model order reduction 
technique based on the dominant modes retention.  It is 
usually possible to describe the dynamics of a physical 
dynamical system by a number of linear differential equations 
with constant coefficients as  
 CxyBuAxx =+= ,& , (83) 
where A  is a ( )nn×  matrix.  

The simulation and design of controllers become very 
cumbersome if the order of the system goes high.  One way to 
overcome this difficulty is to develop a reduced model of the 
higher order system.  One of the well-known techniques is 
based on dominant eigenvalue retention based on the Davison 
technique [9], [14].  By this method, a system of higher order 
can be numerically approximated to one of smaller order.  The 
method suggests that a large ( )nn×  system can be reduced to 
a simpler ( )rr ×  model ( )nr ≤  by considering the effects of 
the r  most dominant (dominant in the sense of being closest 
to the instability) eigenvalues alone.   

The principle of the method is to neglect the eigen values of 
the original system that are farthest from the origin and retain 
only the dominant eigenvalues and hence dominant time 
constants of the original system in the reduced order model.  
This implies that the overall behaviour of the approximate 
system will be very similar to that of the original system since 
the contribution of the unretained eigenvalues to the system 
response are important only at the beginning of the response, 
whereas the eigenvalues retained are important throughout the 
whole of the response.   For the system represented by the Eq. 
(83), consider the linear transformation, 
 zPx = , (84) 
which transforms the model Eq. (83) into the following form, 

 zCyuBzAz ˆ,ˆˆ =+=& , (85) 

where Â  is a ( )rr ×  matrix and 

 PAPA 1ˆ −= , BPB 1ˆ −=  and PCC =ˆ . (86) 

Here, Â  is in the diagonal form as  
 [ ]ndiagA λλλ ,.....,,ˆ

21=   (87) 
and                )(......)()( 21 nReReRe λλλ ≥≥≥ . (88) 

Further, assume that only r eigenvalues are dominant, i.e., 
the order of the reduced model is r  and partition the model in 
Eq. (85) as 

 uBzAz 1111
ˆˆ +=& , uBzAz 2222

ˆˆ +=& , 2211
ˆˆ zCzCy +=  (89) 

where         
[ ] [ ]

BrnBBrB

diagAdiagA nrrr

ˆ)(ˆ,ˆˆ
,,.....,,ˆ,,.....,,ˆ

ofrowsremainingofrowsfirst 21

212211

−==

== ++ λλλλλλ
 (90) 
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and are respectively ( )rr × , ( ) ( )rnrn −×− , ( )mr ×  and 

( ) mrn ×−  matrices obtained by portioning of  Â  and  B̂  

suitably.  In Eq. (89), the order of  1z  is r  and that of 2z  is 
( )rn − . Now, because the contribution of the modes 

represented by the eigenvalues nrr λλλ ,.....,, 21 ++  is not 

significant, it may be assumed that 02 =z , whereby we have 
from Eq. (84), 

 1
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⎡
, (91) 

where 11P  and  21P  are respectively, ( )rr ×  and ( ) rrn ×−  

submatrices obtained by portioning of  1P  and 1z , 2z  are 
respectively, r  and ( )rn −  dimensional state vectors 
corresponding to the original state variables.  It follows from 
Eq. (91) that  
 1

1
111 xPz −= , (92) 

with which the model in Eq. (89) can be transformed to  

 
11

1
111

1111
1

111111

ˆ
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xCxPCy

uBxAuBPxPAPx

r

rx

==

+=+=
−

−&
 (93)  

Moreover, from Eqns. (91), and (92), we have 

 1
1

11212 xPPx −= . (94) 

Thus, the original thn order model represented by Eq. (83) 
is reduced to an thr order model given by Eq. (93).  The state 
variables of the approximate model are the same as the first 
r state variables of the original higher-order model.  The 
remaining state variables are given in terms of the first r state 
variables by Eq. (94). 

 

E. RDPOF Control Design via reduced order model for 
multimodel system 

Let us consider a family of plants { }iii CBAS ,,=  
defined by  
 .,, ,....,2,1 MixCyuBxAx iii ==+=&  (95) 

The discrete time invariant systems with sampling interval 
τ  seconds can be represented as  
 )()(,)()()1( kxCkykukxkx iii =Γ+Φ=+ ττ . (96) 

The adjoint or the dual for the above systems would be  
 ).()(ˆ,)(ˆ)()1(ˆ kxkykuCkxkx T

i
T
i

T
i ττ Γ=+Φ=+  (97) 

There exists a transformation iV , such that, 

 zVx i ˆˆ =  (98) 
transforms the above system in Eq. (97) into the following 
block diagonal modal form as 

 )(ˆˆ)(ˆ),(ˆˆ)(ˆˆ)1(ˆ kzkykuCkzkz iii Γ=+Φ=+ , (99) 
where    
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Φ
=Φ  (100) 

and the eigen values are arranged in the order of their 
dominance. We now extract an thr order model, retaining the 
r  dominant eigen values, by truncating the above systems.  
Using Eqns. (99) and (100), we get 
    )(ˆ)(ˆ),(ˆ)(ˆ)1(ˆ 111 kzkykuCkzkz riririr Γ=+Φ=+ . (101) 

Let rir zSku ˆ)(ˆ =  be a stabilizing control for the reduced 
order model in Eq. (101). Thus, the closed loop reduced 
model ( )irii SC11 +Φ  becomes stable.  Now,   

 [ ] [ ] xVIzIZ irnrrrnrrr ˆ0:ˆ0:ˆ 1
)(*)(*

−
−− == .  (102) 

∴, we get, 

 [ ] xSxVISku iirnrrir ˆˆ0:)( 1
)(* == −

−  (103) 

which makes the closed loop system ( )i
T
i

T SCi +Φτ  stable.  

But the eigen values of  ( )i
T
i

T SCi +Φτ  and ( ) T
i

T
i

T SCi +Φτ  

are the same.  So, ( )i
T
i

T CSi +Φτ  will also be stable.  Thus, 

i
T
i GS ≡  is the output injection gain for the system in Eq. 

(96).  Using these output injection gains iG , the following 
inequalities are solved.  
 MiG iiii ....,,1,, 21 =<−< ρρ KΓK . (104) 

The controller obtained from the above equation will give 
desired behaviour, but might require excessive control action.  
To reduce this effect, we relax the condition that K  exactly 
satisfy the above linear equation and include a constraint on 
the gain K .  Thus, this can be formulated in the framework of 
Linear Matrix Inequalities (LMI) as given in the following 
equation  
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. (105) 

Here, the LMI toolbox of MATLAB can be used for the 
design of K  [11], [28].  If the LMI constraints given in Eqns. 
(104) and (105) are solved using the above iG , the robust 
periodic output feedback gain matrix may become full.  This 
results in the control input of each model being a function of 
the outputs of all the models.  To obtain the RDPOF control, 
the off-diagonal elements of 110 ......,,, −NKKK matrices are 
made equal to zero as a result of which the control input to 
each actuator is a function of the output of that corresponding 
sensor only.  This makes the POF control technique a robust 
decentralized one and is more feasible.   

IV. CONTROL SIMULATIONS OF THE SMART BEAM 
The finite element and the state space model of the smart 

cantilever beam is developed in MATLAB using Euler-
Bernoulli beam theory. The flexible cantilever beam is divided 
into 4 finite elements and the sensor and actuator as collocated 
pairs at finite element positions 2 and 4 respectively, thus 
giving rise to a multivariable beam with 2 inputs and 2 
outputs.  By varying the thickness of the beam from 0.5, 0.6, 
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0.7, 0.8 and 1 mm, 5 multivariable models are obtained.  
These 5 MIMO models give rise to a multimodel smart 
structure plant.  A 12th order state space model of the system is 
obtained on retaining the first 6 modes of vibration of the 
system.  Simulations are carried out in MATLAB.   

The POF control techniques discussed in the previous 
sections is used to design a controller to suppress the 1st 6 
vibration modes of a cantilever beam through the smart 
structure concept for the various multivariable models of the 
smart beam.  RDPOF feedback based reduced model order 
controller is designed for multimodel smart structure system 
using the developed multivariable state space model and its 
performance is evaluated for the Active Vibration Control.  

The first task in designing the POF controller is the 
selection of the sampling interval τ . The maximum 
bandwidth for all the sensor / actuator locations on the beam 
are calculated (here, the 6th vibratory mode of the plant) and 
then by using existing empirical rules for selecting the 
sampling interval based on bandwidth, approximately 10 
times of the maximum 6th vibration mode frequency of the 
system has been selected. The sampling interval used is 

004.0=τ  seconds. The number of sub-intervals N is chosen 
to be 10.   

An external force extf of 1 Newton is applied for duration 
of 50 ms at the free end of the beam for all the 5 models of the 
Fig. 2.  RDPOF Controllers via the reduced order modeling 
has been designed to control the first 6 modes of vibration of 
the smart cantilever beam for the 5 models of the smart 
structure.    A large 12th order system of )1212( × is reduced 
to a simpler 6th order model of )66( × , by considering the 
effects of the 6 most dominant (dominant in the sense of being 
closed to instability) eigen values.  The eigen values of the 
original system that are farthest from the origin are neglected 
and only dominant eigen values of the original system in the 
reduced order model is retained.  The open loop and closed 
loop responses of the system are observed. 

The periodic output feedback gain matrix K for the system 
given is obtained by solving G=KΓ using the LMI 
optimization method [11], [28] which reduces the amplitude 
of the control signal u .  For convenience, only the closed 
loop impulse responses (sensor outputs 1y and 2y ) with 
RDPOF feedback gain K of the system and the variation of 
the control signal 1u and 2u with time for the multivariable-
multimodel system are shown in Figs. 4 - 13 respectively.  

The 5 multivariable models of the smart structure system 
are considered for designing the RDPOF feedback controller 
via the reduced order model using the LMI technique 
approach of MATLAB.  The discrete models are obtained for 
sampling time of 004.0=τ seconds.  The reduced order 
models are computed from the adjoint discrete models 
discussed in the previous sections. Using the method 
discussed in the previous sections, stabilizing gain matrices 

irS  is obtained for the reduced order model using the DLQR 

theory.  
Using aggregation techniques [1], the output injection gain 
iG  can be calculated for the higher order (actual) models.  

This POF gain can be obtained which approximately realizes 
the designed iG  for all the models of the family.  Here, as we 
are dealing with robust stabilization, we have to find a K  
which will satisfy ii G=KΓ , ( )5to1=i  all these equations 
using the LMI approach. The gain sequences of K  are chosen 
10 ( )1021 .....,,, KKK .In our problem considered 

10=N had given good results. Using the output injection 
gains iG , LMI constraints given in Eqns. (104) and (105) are 

solved for different values of 1ρ  and 2ρ to find the robust 
decentralized gain matrix K  for the actual models via the 
reduced order model. 

The closed loop responses with this RDPOF feedback gain 
K via the reduced order model for all the models are 
satisfactory and are able to stabilize the outputs.  The eigen 
values of ( )CGN +Φ  are found to be within the unit circle.  
It is found that the designed robust decentralized FOS 
feedback controllers via the reduced order model provided 
good damping enhancement for the various multivariable 
models of the smart structure plant.   

The proposed robust decentralized control for the 
multimodel smart structure system can be applied 
simultaneously to all the models and results in satisfactory 
response behaviour to damp out the vibrations, which can be 
seen form the simulation results in section 5.  The input 
applied to each actuator of the model is a function of the 
output of that respective sensor only, which makes the control 
technique a robust, decentralized one.  The RDPOF gain is  
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V. SIMULATION  RESULTS 
 

 
 

Fig. 4   CL response and control input (sensor / actuator placed at FE 
2) : Model 1 

 

 
 

Fig. 5   CL response and control input (sensor / actuator placed at FE 
4) : Model 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 6   CL response and control input (sensor / actuator placed at FE 
2) : Model 2 

 

 
 

 

Fig. 7   CL response and control input (sensor / actuator placed at FE 
4) : Model 2 
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Fig. 8   CL response and control input (sensor / actuator placed at FE 
2) : Model 3 

 

 
 

Fig. 9   CL response and control input (sensor / actuator placed at FE 
4) : Model 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 10   CL response and control input (sensor / actuator placed at 
FE 2) : Model 4 

 

 
 

Fig. 11   CL response and control input (sensor / actuator placed at 
FE 4) : Model 4 
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Fig. 12   CL response and control input (sensor / actuator placed at 
FE 2) : Model 5 

 

 
 

Fig. 13   CL response and control input (sensor / actuator placed at 
FE 4) : Model 5 

VI. CONCLUSIONS 
Robust Decentralized Periodic Output Feedback Controller 

is designed and proposed for the multivariable smart structure 
using the various models of the single plant via the reduced 
order modeling. Simulations are done in Matlab and the 
various responses are obtained for the designed state space 
based FE model of the smart flexible cantilever beam. 
Through the simulation results, it is shown that when the plant 
is placed with the designed robust decentralized POF 
controller, the s models performs well and the stability is 
guaranteed.   

In the control law, the control input to each actuator of the 
multivariable plant’s multimodel is a function of the output of 
that corresponding sensor only and the gain matrix has got all 
off-diagonal elements zero. This makes the POF control 
technique a robust decentralized one. This would render better 
control and is more feasible.  The robust decentralized POF 

controller designed by the above method requires only 
constant gains and hence is easier to implement.   Closed loop 
responses are simulated for the various multivariable models 
of the smart structure plant.   

A new algorithm is proposed for the design of robust 
decentralized controllers for a multivariable system using POF 
feedback technique via the reduced order model.  The 
computation of the output injection gain, which is needed to 
obtain the decentralized POF feedback based smart structure 
system, becomes very tedious when a number of modes, 
especially greater than 5 are considered.  Here, a output 
injection gain is computed from the reduced order model of 
the smart system and using the aggregation techniques, a 
output injection gain can be obtained for the higher order 
(actual model).  The simulation results shows the effectiveness 
of the proposed method.  

The RDPOF feedback gain which realizes this output 
injection gain, can be obtained for the actual model. It is 
found that the designed and proposed robust controller via the 
reduced order model provides good damping enhancement for 
the models of the smart structure system.  Thus, an integrated 
finite element model to analyze the vibration suppression 
capability of a smart cantilever beams with surface mounted 
piezoelectric devices based on Euler-Bernoulli beam theory 
and reduced order modeling is proposed in this paper.   

ACRONYMS / ABBREVIATIONS 
SISO Single Input Single Output   
FEM Finite Element Method  
FE Finite Element  
LMI Linear Matrix Inequalities 
MR Magneto Rheological  
ER Electro Rheological   
PVDF Poly Vinylidene Fluoride  
SMA Shape Memory Alloys 
CF Clamped Free   
CC Clamped-Clamped  
CT Continuous Time 
DT Discrete Time  
OL Open Loop   
CL Closed Loop 
HOBT Higher Order Beam Theory  
LTI Linear Time Invariant  
FOS Fast Output Sampling 
AVC Active Vibration Control 
EB Euler-Bernoulli  
PZT Lead Zirconate Titanate 
DOF Degree Of Freedom 
IEEE Institute of Electrical & Electronics Engineers 

NOMENCLATURE (LIST OF SYMBOLS) 

extf  External force input  

bl  Length of the beam 

b  Width of the beam  
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bE  Young’s modulus of beam 

bρρ ,  Mass density of beam  

βα ,  Structural constants 

bt  Thickness of beam  

at  Thickness of actuator  

st  Thickness of sensor  

pρ  Mass density of piezoelectric 

θ ZYX and,  The 3 axis of 3D space  

w&  Linear velocity   
W  External work done  
t   Time in secs 

31d  Piezoelectric strain constant  

31g  Piezoelectric stress constant 

θ  Bending angle (rotation about Y axis)  

pE  Young’s modulus of piezoelectric  

w  Time dependent transverse displacement of Z axis  

pl  Length of the piezoelectric patch 

I   Mass moment of inertia of the beam element 
A  Area of cross section of beam element  

UT ,  Kinetic energy and strain energy 

ia  )( 4,3,2,1=i  Unknown coefficients 

jb  )( 3,2,1=j   Unknown coefficients  

q  Vector of displacements and slopes 

q&  Strain rate  
bK  Stiffness matrix of regular beam element (local stiffness 

matrix) 
bM  Mass matrix of the regular beam element (local mass 

matrix)  
pK  Stiffness matrix (local) of piezoelectric beam element  
pM  Mass matrix (local) of piezoelectric element  

pA  Area of the piezoelectric patch  

fE   Electric field 

KM ,  Mass & stiffness of regular beam element, assembled 
matrices (global) 

D   Dielectric displacement 
e   Permittivity of the medium 

Es  Compliance of the medium 
d   Piezoelectric constant  

)(tQ  Charge developed on the sensor surface  

)(ti  Current generated by the sensor surface (due to the strain) 

31e  Piezoelectric stress / charge constant  
sV  Sensor voltage sV  

cG  Signal-conditioning device with gain   

cK  Controller gain cK  
Tp  Constant vector, which depends   
Th  Constant vector, depends on sensor / actuator 

characteristics  

)(tV a  Actuator voltage  

)(tV s  Sensor voltage 

AM   Resultant moment acting on the beam   

ctrlf   Control force applied by the actuator because of electric 
field  

tf  Total force coefficient vector 
T  Modal matrix containing eigenvectors representing the 1st 6 

modes 
*M  Generalized mass matrix 
*K  Generalized stiffness matrix 

** ff ctrlext and  Generalized external force vector and generalized 
control force vector  

*C   Generalized damping matrix 
g   Principal coordinates 

)(tu   Control input    

)(tr   External input to the system 

)(ty  Output of the system, i.e., sensor output  

)(tx  State vector 
DCBA ,,,  State space matrices (CT) : System, input, output, 
transmission matrix  

E  External load matrix, which couples the disturbance to the 
system 

)(tx&  Derivative of the state vector  
nℜ  n dimension space 

τ  Sampling interval in seconds  

00 , DC  Lifted system matrices  

ττ ΓΦ ,  System matrix, input matrix discretized at sampling 
interval of τ  secs 

ΓΦ ,  System matrix, input matrix discretized at sampling 

interval of ∆  secs 
G  Output injection  gain  
υ   Controllability index of the system 

kk yu ,  Input and output at the thk instant 

K  POF gain matrix   
21 , ρρ  Spectral norms 

I  Identity matrix  

REFERENCES 
 

 

[1] M. Aoki, “Control of large scale dynamic systems by aggregation,”  
IEEE Trans. Auto. Contr., vol. AC-13, pp. 246 - 253, 1968. 

[2] T. Baily, and J. E. Hubbard Jr., “Distributed piezoelectric polymer active 
vibration control of a cantilever beam”, J. of Guidance, Control and 
Dynamics, vol. 8, pp, 605 -  611, 1985. 

[3] E. F. Crawley, and J. De Luis, “Use of piezoelectric actuators as 
elements of intelligent structures,” AIAA J, vol. 25, pp. 1373 - 1385, 
1987. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:6, 2007

309

 

 

[4] A. B. Chammas, and C. T. Leondes, “Pole placement by piecewise 
constant output feedback,”  Int.  J.  Contr., vol. 29, pp.  31 - 38, 1979. 

[5] A. B. Chammas, and C. T. Leondes, “On the design of LTI systems by 
periodic output feedback, Part-I, Discrete Time pole assignment,” Int. J. 
Ctrl., vol. 27, pp. 885 - 894, 1978. 

[6] A. B. Chammas, and C. T. Leondes, “On the design of  LTI  systems by 
periodic output feedback, Part-II, Output feedback controllability,” Int. 
J. Ctrl., vol. 27, pp. 895 - 903, 1978. 

[7] B. Culshaw, “Smart Structures : A concept or a reality,” J. of Systems 
and Control Engg., vol. 26, no. 206,  pp. 1 - 8, 1992. 

[8] S. B. Choi, C. Cheong, and S. Kini, “Control of flexible structures by 
distributed piezo-film actuators and sensors,” J. of Intelligent Materials 
and Structures, vol. 16, pp. 430 - 435, 1995. 

[9] E. J. Davison, “A method for simplifying linear dynamical systems,”  
IEEE Trans. Auto. Contr., vol. AC-11, pp.  93 - 101, 1966. 

[10] J. L. Fanson, and T. K. Caughey, “Positive position feedback control for 
structures,” AIAA J.,  vol. 18, no. 4, pp. 717 - 723, 1990. 

[11] P. Gahnet, A. Nemirovski, A. J. Laub, and M. Chilali, “LMI Tool box 
for Matlab”, The Math works Inc., Natick MA, 1995. 

[12] W. Hwang, and H. C. Park, “Finite element modeling of piezoelectric 
sensors and actuators”, AIAA J., vol. 31, no. 5, pp. 930 - 937, 1993. 

[13] S. Hanagud, M. W. Obal, and A. J. Callise, “Optimal vibration control 
by the use of piezoceramic sensors and actuators,” J. of Guidance, 
Control and Dyn., vol. 15, no. 5, pp. 1199 - 1206, 1992. 

[14] S. S. Lamba, and S. Vittal Rao, “On the suboptimal control via the 
simplified model of Davison,” IEEE Trans. Auto. Contr., vol. AC-19, 
pp.  448 - 450, 1974. 

[15] W. S. Levine, and M. Athans, “On the determination of the optimal 
constant output feedback gains for linear multivariable systems,” IEEE  
Trans. Auto. Contr., vol. AC-15, pp.  44 - 48, 1970. 

[16] J. Mark Balas, “Feedback control of flexible structures,”  IEEE Trans. 
Automat. Contr., vol. AC-23, pp. 673 - 679, 1978. 

[17] T. C. Manjunath, and B. Bandyopadhyay, “Vibration control of a smart 
flexible cantilever beam using periodic output feedback control 
technique,” Proc. Fourth Asian Control Conference ASCC-2002, paper 
no. 1679, pp. 1302 - 1307, Sept. 25-27, 2002. 

[18] T. C. Manjunath, and B. Bandyopadhyay, “Vibration control of a smart 
flexible cantilever beam using periodic output feedback,” Asian Journal 
of Control, vol. 6, no. 1, pp. 74 - 87, Mar. 2004. 

[19] T. C. Manjunath, and B. Bandyopadhyay, “Fault tolerant control of 
flexible smart structures using robust decentralized periodic output 
sampling feedback technique,” International Journal of Smart Mater. 
and Struct., vol. 14, no. 4, pp. 624 - 636, Aug. 2005.  

[20] T. C. Manjunath, and B. Bandyopadhyay, R. Gupta, and M. Umapathy,    
“Multivariable control of a smart structure using periodic output 
feedback control technique,” Proc. of the Seventh International 
Conference   on Control, Automation, Robotics and Computer Vision, 
ICARCV 2002, Singapore, Paper No.  2002P1283, pp. 1481-1486, Dec. 
2-5, 2002. 

[21] M. S. Mahmoud, and G. M. Singh, “Large scale systems modeling,” 
Pergamon Press, Oxford, 1981.  

[22] S. Rao, and M. Sunar, “Piezoelectricity and its uses in disturbance 
sensing and control of flexible structures : A survey,” Applied 
Mechanics Rev.,  vol. 47, no. 2, pp. 113 - 119, 1994. 

[23] V. L. Syrmos, P. Abdallah, P. Dorato, and K. Grigoriadis, “Static output 
feedback : A survey,” Automatica,  vol. 33, no. 2, pp. 125 - 137, 1997. 

[24] P. Seshu, “Textbook of Finite Element Analysis,” 1st Ed.  Prentice Hall 
of India, New Delhi, 2004. 

[25] M. Umapathy, and B. Bandyopadhyay, “Control of flexible beam 
through smart structure concept using periodic output feedback,” System 
Science Journal, vol. 26, no. 1, pp. 23 - 46, 2000.  

[26] H. Werner, and K. Furuta, “Simultaneous stabilization based on output 
measurements,” Kybernetika, vol. 31, no. 4, pp. 395 - 411, 1995. 

[27] H. Werner, “Robust multivariable control of a turbo-generator by 
periodic output feedback,” vol. 31, no. 4, pp. 395 - 411, 1997. 

[28] Y. C. Yan, J. Lam, and Y. X. Sun, “Static output feedback stabilization: 
An LMI approach,” Automatica, vol. 34, no. 12, pp. 1641 - 1645, 1998.  

 
 
 
 
 
 

 
 
T. C. Manjunath, born in Bangalore, Karnataka, 
India on Feb. 6, 1967 received the B.E. Degree in 
Electrical Engineering from the University of 
Bangalore in 1989 in First Class and M.E. in 
Electrical Engineering with specialization in 
Automation, Control and Robotics from the 
University of Gujarat in 1995 in First Class with 
Distinction, respectively. He has got a teaching 
experience of 17 long years in various engineering 

colleges all over the country and is currently working as a Research Engineer 
in the department of systems and control engineering, Indian Institute of 
Technology Bombay, India and simultaneously doing his Ph.D. in the 
Interdisciplinary Programme in Systems and Control Engineering, Indian 
Institute of Technology Bombay, Powai, Mumbai-400076, India, in the field 
of modeling, simulation, control and implementation of smart flexible 
structures using DSpace and its applications. He has published 67 papers in 
the various national, international journals and conferences and published two 
textbooks on Robotics, one of which has gone upto the third edition and the 
other, which has gone upto the fourth edition along with the CD which 
contains 200 C / C++ programs for simulations on robotics.  He is a student 
member of IEEE since 2002, SPIE student member and IOP student member 
since 2004, life member of ISSS, life member of Systems Society of India and 
a life member of the ISTE, India. His biography was published in 23rd edition 
of Marquis’ Who’s Who in the World in 2006 issue. He has also guided more 
than 2 dozen robotic projects. His current research interests are in the area of 
Robotics, Smart Structures, Control systems, Network theory, Mechatronics, 
Process Control and Instrumentation, CT and DT signals and systems, Signal 
processing, Periodic output feedback control, Fast output feedback control, 
Sliding mode control of SISO and multivariable systems and its applications. 
 

B. Bandyopadhyay, born in Birbhum village, 
West Bengal, India, on 23rd August 1956 received 
his Bachelor's degree in Electronics and 
Communication Engineering from the University 
of Calcutta, Calcutta, India, and Ph.D. in Electrical 
Engineering from the Indian Institute of 
Technology, Delhi, India in 1978 and 1986, 
respectively. In 1987, he joined the 
Interdisciplinary Programme in Systems and 
Control Engineering, Indian Institute of 

Technology Bombay, India, as a faculty member, where he is currently a 
Professor. He visited the Center for System Engineering and Applied 
Mechanics, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, in 
1993. In 1996, he was with the Lehrstuhl fur Elecktrische Steuerung und 
Regelung, Ruhr Universitat Bochum, Bochum, Germany, as an Alexander von 
Humboldt Fellow. He revisited the Control Engineering Laboratory of  Ruhr 
University of Bochum during May-July 2000.  He has authored and 
coauthored 7 books and book chapters, 56 national and international journal 
papers and 123 conference papers, totaling to 186 publications. His research 
interests include the areas of large-scale systems, model reduction, nuclear 
reactor control, smart structure control, periodic output feedback control, fast 
output feedback control and sliding mode control. Prof. Bandyopadhyay 
served as Co-Chairman of the International Organization Committee and as 
Chairman of the Local Arrangements Committee for the IEEE International 
Conference in Industrial Technology, held in Goa, India, in Jan. 2000. His 
biography was published in Marquis’ Who’s Who in the World in 1997. Prof. 
B. Bandyopadhyay has been nominated as one of the General Chairmen of 
IEEE ICIT conference to be held in Mumbai, India in December 2006 and 
sponsored by the IEEE Industrial Electronics Society. 
 

 


