
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

92

The RK1GL2X3 method for initial value problems

in ordinary differential equations
J.S.C. Prentice

Abstract—The RK1GL2X3 method is a numerical method for
solving initial value problems in ordinary differential equations, and
is based on the RK1GL2 method which, in turn, is a particular
case of the general RKrGLm method. The RK1GL2X3 method is a
fourth-order method, even though its underlying Runge-Kutta method
RK1 is the first-order Euler method, and hence, RK1GL2X3 is
considerably more efficient than RK1. This enhancement is achieved
through an implementation involving triple-nested two-point Gauss-
Legendre quadrature.

Keywords—RK1GL2X3, RK1GL2, RKrGLm, Runge-Kutta,
Gauss-Legendre, initial value problem, local error, global error.

I. INTRODUCTION

In the simulation and modelling of physical systems it

is often necessary to solve initial value problems in or-

dinary or partial differential equations. Numerical methods

typically used for these problems are Runge-Kutta methods.

The RKrGLm method [1],[2] is a numerical method, based on

an Runge-Kutta method of order r (RKr) and m-point Gauss-

Legendre quadrature (GLm), that is of higher order (r+1) than

its underlying RK method, and requires less computational

effort. As such, it can be used to solve initial value problems

more efficiently than an ordinary RK method. In this paper

we consider using an RKGL method in place of the RKr
method in RKrGLm, as a means of enhancing the order of

the RKGL method itself. We use the simple first-order Euler

method (RK1) and 2-point GL quadrature, and obtain methods

of orders two, three and four via the RKGL mechanism. All

of these new methods are more efficient than the underlying

RK1 method.

II. TERMINOLOGY AND RELEVANT CONCEPTS

A. Euler’s method

Euler’s method for solving

y′ = f (x, y) y (x0) = y0 a � x � b (1)

is given by

wi+1 = wi + hif (xi, wi) (2)

where hi ≡ xi+1 − xi is a stepsize, and wi denotes the

numerical approximation to y (xi). We denote this method

RK1.

Justin Prentice is with the Department of Applied Mathematics, University
of Johannesburg, South Africa, email: jprentice@uj.ac.za

B. Two-point Gauss-Legendre quadrature

GL2 quadrature on [u, v] is [3]

v∫

u

f (x, y (x)) dx = h
2∑

i=1

Cif (xi, y (xi)) +O
(
h5
)

(3)

where the nodes xi are the roots of the 2nd degree Legendre

polynomial on [u, v]. Here, h is the average separation of the

nodes on [u, v], a notation we will adopt from now on, and

the Ci are appropriate weights. The roots of the 2nd degree

Legendre polynomial on [−1, 1] are

x̃1 = −0.5773502692
x̃2 = 0.5773502692

(4)

and are mapped to corresponding nodes xi on [u, v] via

xi =
1

2
[(v − u) x̃i + u+ v] . (5)

Also, the average node separation on [−1, 1] is 2/3, and so h
on [u, v] is given by

h =
2

3

(
v − u

2

)
, (6)

while the weights

C1 =
3

2
, C2 =

3

2
(7)

are constants on any interval of integration.

C. The RK1GL2 algorithm

We briefly describe the RK1GL2 algorithm on the interval

[a, b], with reference to Figure 1.

a = x0 x1 x
2

x
3

RK GL RK GL

x
4 x

6
x

5

H1 H2

b. . .

Fig. 1 RK1GL2 algorithm for the first two subintervals H1 and

H2 on [a, b].

Subdivide [a, b] into N subintervals Hj , where j =
1, 2, . . . , N . At the RK nodes we use RK1:

wi+1 = wi + hif (xi, wi) (8)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

93

where i = 3 (j − 1) , 3 (j − 1)+1. At the GL nodes we use

2-point GL quadrature:

w3j = w3(j−1) + h

3(j−1)+2∑

i=3(j−1)+1

Cif (xi, wi) (9)

The GL component is motivated by

x3j∫

x3(j−1)

f (x, y (x)) dx = y (x3j)− y
(
x3(j−1)

)

≈ h

3(j−1)+2∑

i=3(j−1)+1

Cif (xi, y (xi))

(10)

⇒ y (x3j) ≈ y
(
x3(j−1)

)
(11)

+h

3(j−1)+2∑

i=3(j−1)+1

Cif (xi, y (xi)) .

The global error in RK1GL2 at each node has the form

Ah2 +Bh4 = O
(
h2
)

(12)

where A and B are constants independent of h (but dependent

on x). The term Ah2 is due to the local RK error, and the term

Bh4 is due to the accumulation of the O
(
h5
)

approximation

error in GL2 quadrature (see (3)). The local error at each RK

node is also O
(
h2
)
, and the local error at each GL node

is O
(
h3
)

[1],[2]. The reason that the order of the local RK

error is preserved in the global error of RK1GL2 is due to the

multiplication by h in GL2, which effectively prevents the RK

error from accumulating. This “quenching” effect is discussed

in detail in [2].

III. THE RK1GL2X3 METHOD

Here, we describe the construction of RK1GL2X3. All

discussions in this section refer to Figure 2. Note that the

interval [x0, x15] in this figure is consistent with the interval

H1 in Figure 1.

x0

x2x1

x3

x4 x5

x6

x7

x9x8

x13

x12x11

x10

x14

x15

Fig. 2 Nodes relevant to RK1GL2, RK1GL2X2 and RK1GL2X3.

A. RK1GL2

Consider the nodes {x0, x7, x14, x15} - ignore all the other

nodes for the purposes of the immediate discussion - and

assume that these nodes are spaced according to the scheme

appropriate for GL2 quadrature (the apparent equispacing

in the figure is not realistic). RK1GL2 is implemented on

[x0, x15] as follows: given the initial value at x0, RK1 is used

to find approximate solutions w7 and w14; these are then used

in GL2 to find w15. The global error at each of these nodes

is O
(
h2
)

and the local error at x15 is O
(
h3
)
, where h is the

average separation of {x0, x7, x14, x15} . Note that we need

three calls of the function f (x, y) to implement RK1GL2,

and since we obtained three solutions (w7, w14, w15) on the

interval, we have an average of one function call per solution.

B. RK1GL2X2

Now consider the nodes {x0, x3, x6, x7, x10, x13, x14, x15} .
We implement RK1GL2 at {x0, x3, x6, x7} and

{x7, x10, x13, x14} . This gives solutions at x7 and x14
that are globally O

(
h2
)

and locally O
(
h3
)
. We then

implement RK1GL2 on {x0, x7, x14, x15} which gives

solutions at {x7, x14, x15} that are globally O
(
h3
)

(recall

that RKGL preserves the local order in the global error).

Clearly, we have used RK1GL2, instead of RK1, to find

solutions at x7 and x14, and then we have used RK1GL2

again to find w15 - hence, the ‘X2’ notation because of the

nesting of GL2 on [x0, x7] and [x7, x14] within the GL2

applied on [x0, x15] (with this notation, RK1GL2 could have

been written as RK1GL2X1). The solution w15 thus obtained

is globally O
(
h3
)

and locally O
(
h4
)
, where h is the average

separation of {x0, x3, x6, x7, x10, x13, x14, x15} . Although

we have obtained solutions at seven nodes on the interval, it

is only the three third-order solutions w7, w14 and w15 that

interest us. We need seven calls of f (x, y) in this application,

giving an average of 7/3 function calls per solution on the

interval.

C. RK1GL2X3

Now consider all the nodes in the figure. We apply RK1GL2

on [x0, x3] and [x3, x5] to get solutions w3 and w5 that

have global order two and local order three. Then we apply

RK1GL2 at {x0, x3, x6, x7} to get w7 which has global order

three and local order four. A similar process on [x7, x14] yields

w14 which also has global order three and local order four.

Finally, we apply RK1GL2 at {x0, x7, x14, x15}; the solutions

of interest - w7, w14 and w15 - are globally O
(
h4
)
, where

h is the average separation of all the nodes in the figure. Of

course, the suffix ‘X3’ in the name of this method refers to the

“RK1GL2 within RK1GL2 within RK1GL2” nesting, which

we referred to as triple-nesting in the abstract. Also, we need

15 calls of f (x, y) in the application of RK1GL2X3, giving

an average of 5 function calls per solution on the interval.

D. Description in terms of one-step methods

An alternative description of RK1GL2X3 in terms of one-

step methods can be given. If we were to apply RK1GL2

on [x0, x15] , we would need to use RK1 to obtain w7 and

w14. Instead of doing this, we use RK1GL2 on [x0, x7] and

[x7, x14] to get w7 and w14. This, of course, requires the

introduction of the nodes x3, x6, x10 and x13. It is as if we treat

RK1GL2 as a one-step method (that replaces RK1), where

the step is [x0, x7] (and [x7, x14]). The same reasoning now

applies to the subintervals [x0, x3] , [x3, x6] , [x7, x10] and

[x10, x13] . On each of these we introduce appropriate nodes

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

94

and apply RK1GL2 to obtain w3, w6, w10 and w13, rather than

RK1. Once again, we are treating RK1GL2 as a one-step

method with step [x0, x3] etc. Of course, despite obtaining

solutions at 15 nodes on the interval, we only sample those at

{x7, x14, x15} , since they are the ones of highest order.

IV. NUMERICAL EXAMPLE

As an example, we solve the test problem

y′ =
y

4

(
1−

y

20

)
(13)

on [0, 5] with y (0) = 1, using RK1, RK1GL2, RK1GL2X2

and RK1GL2X3. This equation has solution

y (x) =
20

1 + 19e−x/4
(14)

and is one of the test problems used by Hull et al [4].

From our previous discussion, we know that the number of

function calls per solution increases in going from RK1GL2

to RK1GL2X3. However, the enhancement in the order of the

methods is expected to offset the increase in function calls, so

that we would expect the methods to become more efficient,

particularly for small h (which corresponds to a large number

of function calls). In Figure 3 we show efficiency curves for

the methods applied to the test problem, where the expected

behaviour is obvious. Clearly, RK1GL2X3 is more efficient

than the others, due to its higher order. The slopes of the

curves correspond to the orders of the methods, and we have

confirmed that RK1GL2, RK1GL2X2 and RK1GL2X3 are of

global order two, three and four, respectively.

F unction calls

10 1 10 2 10 3 10 4

G
lo

b
al

 e
rr

o
r

10 -1

10 -5

10 -10

10 -15

R K 1

R K 1G L2

R K 1G L2X 2

R K 1G L2X 3

Fig. 3 Efficiciency curves for the indicated methods applied to

the test problem.

V. GENERALIZATION

In the general case RKrGLm has global error

Ahr+1 +Bh2m = O
(
hmin{r+1,2m}

)
. (15)

If r < 2m then the general method RKrGLmXn has

1 � n � 2m− r. (16)

The upper limit on n is due to the term Bh2m in (15), which

arises from the approximation error in GLm quadrature. The

lower limit on n gives RKrGLmX1, which is the default

method RKrGLm (in fact, a completely unified notation is

possible if we define RKr ≡ RKrGLmX0, which allows us

to include n = 0 in the above range). In this paper, we have

used r = 1,m = 2 and so n � 3. We can conceive of

other possibilities as well; for example, RK4GL3X2 which

has global order six. Indeed, the global error for RKrGLmXn
is O

(
hmin{r+n,2m}

)
.

VI. APPLICATIONS

The most obvious application of RKrGLmXn, and

RK1GL2X3 in particular, is the reduction in computational

effort when solving initial value problems. This is particularly

attractive when solving a large system of ordinary differential

equations, such as arises when a parabolic partial differen-

tial equation is suitably discretized. We stress the particular

usefulness of RK1GL2X3 because it constitutes an enhance-

ment of the simplest of the Runge-Kutta methods, the Euler

method. The first order character of Euler’s method makes

it unattractive as a solution algorithm, despite its simplicity;

the RK1GL2X3 method effectively transforms it into a fourth

order method, which is far more appealing.

Improvements in efficiency notwithstanding, there is an-

other useful application of RKrGLmXn. Consider RK1GL2

and RK1GL2X2 at {x0, x7, x14, x15}. Since RK1GL2X2 has

higher order than RK1GL2, we can use RK1GL2X3 as an

error estimator for the solutions obtained with RK1GL2, in a

local extrapolation sense. In other words, this nested imple-

mentation allows RK1GL2 to generate its own error estimator,

without the need to use an RKGL method based on some other

RK method. Of course, this idea can be generalized, with

RKrGLmXn2 serving as error estimator for RKrGLmXn1,
provided that n1 < n2.

VII. CONCLUSION

We have described the RK1GL2X3 method for initial value

problems. This method is based on Euler’s method and a

nested implementation of two-point Gauss-Legendre quadra-

ture, following the character of the RK1GL2 method. The

method has global order four. We have offered a generalization

of the method - RKrGLmXn - noting that the quadrature

nesting n is limited above by the values of r and m. Appli-

cation of the method to a test problem has demonstrated the

superior efficiency of RK1GL2X3 relative to RK1, RK1GL2

and RK1GL2X2.

REFERENCES

[1] J.S.C. Prentice, “The RKGL method for the numerical solution of initial-
value problems”, Journal of Computational and Applied Mathematics,
213, 2 (2008) 477− 487

[2] J.S.C. Prentice, “General error propagation in the RKrGLm method”,
Journal of Computational and Applied Mathematics, 228, (2009) 344−
354.

[3] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific

Computing, 3rd ed., Pacific Grove: Brooks/Cole, 2002, pp492− 498.
[4] T.E. Hull, W.H. Enright, B.M Fellen, and A.E. Sedgwick, “Comparing

numerical methods for ordinary differential equations”, SIAM Journal of

Numerical Analysis, 9, 4 (1972) 603− 637.

