
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1485

Abstract—Markov games are a generalization of Markov

decision process to a multi-agent setting. Two-player zero-sum
Markov game framework offers an effective platform for designing
robust controllers. This paper presents two novel controller design
algorithms that use ideas from game-theory literature to produce
reliable controllers that are able to maintain performance in presence
of noise and parameter variations. A more widely used approach for
controller design is the ∞H optimal control, which suffers from high
computational demand and at times, may be infeasible. Our approach
generates an optimal control policy for the agent (controller) via a
simple Linear Program enabling the controller to learn about the
unknown environment. The controller is facing an unknown
environment, and in our formulation this environment corresponds to
the behavior rules of the noise modeled as the opponent. Proposed
controller architectures attempt to improve controller reliability by a
gradual mixing of algorithmic approaches drawn from the game
theory literature and the Minimax-Q Markov game solution
approach, in a reinforcement-learning framework. We test the
proposed algorithms on a simulated Inverted Pendulum Swing-up
task and compare its performance against standard Q learning.

Keywords—Reinforcement learning, Markov Decision Process,

Matrix Games, Markov Games, Smooth Fictitious play, Controller,
Inverted Pendulum.

I. INTRODUCTION
N this paper we concentrate on the quality of the policy
learned by the controller in a Reinforcement Learning (RL)
[16] framework. In one such RL scenario, a single adaptive

agent (controller) strives to minimize the expected discounted
total cost. The agent learns optimal behavior through
experience or interactions with the environment in which it
operates. Matrix Games [13], on the other hand, describe a
setup suitable for multi-agent systems wherein, at a particular
state, each agent attempts to minimize its expected cost and
optimal behavior for each agent is characterized by the game
solution at the current state. Our enthusiasm for proposing
these new approaches is inspired by the Minimax-Q
algorithm’s [1] ability to produce a more risk averse behavior
[15] and its applications to problems with large state-spaces
via function approximation using state aggregation methods
[4]. In particular, the present work is motivated by the strength
of the minimax criterion, that it allows the agent to converge
to a strategy which is guaranteed to be ‘safe’ against the worst

 Manuscript received July 22, 2005.

R. Sharma is a research scholar with the Electrical Engineering
 Department, Indian Institute of Technology, Delhi and a faculty at
 NSIT, Delhi, India. (phone: (91) 011- 27943497; fax: (91) 011-
 25099022; e-mail: rajneesh496@rediffmail.com).
 M. Gopal, is a senior Professor with the Department of Electrical
 Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New
 Delhi, India. (e-mail: mgopal@ee.iitd.ernet.in).

opponent. In the context of controller design this implies that
the use of minimax criterion may lead to the design of a more
robust controller that is able to maintain its performance level
in presence of any noise/disturbance.

No controller operates in an environment devoid of
noise/disturbances. We investigate the problem of designing
an optimal controller in presence of random bounded
disturbances, unmodeled dynamics and/or noise signals by
casting the problem in a Markov game framework. We view
the problem as a situation of strategic interdependence,
wherein action of one agent may affect the cost incurred by
the other agent. In such a case, the optimal controller design is
conditioned on the expected behavior of other agent. Game
theory is a useful tool for problems of this kind, as it
prescribes strategy that a rational agent would choose. We
model the problem as a two-player zero-sum Markov game
between Controller acting as the minimiser and the
Disturbance and/or Noise acting as the maximiser.

Judicious use of experiential information is a crucial
factor in the successful design of any RL based controller.
Markov games (MG) [1] are a generalization of the Markov
Decision Process (MDP)[8] setup that allows us to visualize
the controller optimization as a game between the controller
and the disturber (disturbances). This paper considers
controller optimization problem in presence of additive
exogenous disturbances and parametric uncertainties of the
controlled system.

In our view, MG framework is more appropriate than the
MDP setup for designing controllers for nonlinear systems as
it allows an explicit representation of the noise. The controller
tries to optimize performance against all types of disturbances.
In H∞ theory-based formulation [2], controller design is
viewed as a differential game between the controller and the
disturbance. Optimal control law is obtained as a solution of
the Hamilton-Jacobi-Isaacs (HJI) equation, which is
computationally inefficient and may be infeasible as well [3].
Further for nonlinear problems, there exists no analytical
solution of the HJBI equation. Majority of the work so far that
has utilized the H∞ framework has not addressed the
theoretical framework properly. Theory of zero-sum stochastic
games has been used earlier in the context of worst-case
optimization of queuing networks by Altman and Hordijk [9].
They have used the framework of zero-sum games to
effectively address the controller-disturbance tussle for
queuing problems or the typical server-router problems. Other
attempts at using the game-theoretic framework have
attempted it on problems such as the football game [1] or the
backgammon. We attempt to apply the game-theoretic setting
to a general control problem, which is typically different from,
these settings.

A model that can be used effectively in the controller

 Markov Game Controller Design Algorithms
Rajneesh Sharma, and M. Gopal

I

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1486

design problem is the smooth fictitious play (FP) [6], wherein
the players do not try to influence the future play of their
opponent or the opponent has ‘naïve’ or ‘unsophisticated’
behavior. In [11], authors have proposed a simple
modification to the standard fictitious play approach to
generate a behavior that is both safe as well as reliable. They
have mathematically shown the utility of the cautious
fictitious play algorithm on typical game problems. In the
algorithms as proposed in this paper, the key idea underlying
the algorithms is that during the initial phase of the
reinforcement learning based controller design, control
strategy should be heavily weighted towards a ‘safe’ or the
minmax strategy and in later stages, when the experiential
information is good enough, the strategy should use a solution
element obtained either via the fictitious play as done in the
first proposed algorithm or the cautious fictitious play as in
the second proposed algorithm.

II. REINFORCEMENT LEARNING AND SOLUTION APPROACHES

A. Markov Decision Process (MDP) and Reinforcement
 Learning

There is a single adaptive agent interacting with the

environment. At each step, the agent senses the current state s,
chooses action a, receives reinforcement signal c from the
environment and moves to the next state s' , experience tuple
is < s, a, c, s' >. MDP consists of a tuple < Ω, A, C, T >
where Ω is the set of states, A is the action set for the agent, C
is the cost function for the agent C: A Ω × →ℜ , T is the state
transition function T: ()A PΩ Ω× → where P(Ω) is the set
of discrete probability distributions over the set Ω and T(s, a,
s') is the probability of transition from s to s' under action
a. The agent’s aim is to discover a policy π: π(s)→ a where
a∈A, so as to minimize expected sum of discounted cost,
i.e., { }0

k
t kk

E cα∞

+=∑ where t kc + is the cost incurred k steps

into future and α is the discount factor where 0 ≤ α < 1.]
In order to get to the solution for the optimal policy, the

agent has to learn to behave optimally by learning from
experience. Now, experiential learning can take place either
by supervised learning methods or non-supervised learning
methods. Supervised learning methods are based on learning
from examples, that is, the environment provides input/output
pairs, and the task is to learn a function that could have
generated these pairs. These methods are appropriate when a
teacher is providing correct values or when the function’s
output represents a prediction about the future that can be
checked by looking at the percepts in the next time step.

Reinforcement learning [[16] methods help learning in
much less generous environments, where it receives no
examples, and starts with no model of the environment and no
cost function. The agent (learning system) learns behavior
through trial-and-error interaction with an environment.
Dynamic programming [8] provides the learning system with
estimates of the costs of taking actions on the state of the

world. This, in fact, is the reinforcement signal. In this way,
reinforcement learning is the restatement of dynamic
programming. An agent is connected to its environment via
perception and action as depicted in Fig.1. On each step of
interaction, the agent receives as input, i, an indication of the
current state s of the environment; the agent then chooses an
action, a (output of the agent). The action changes the state of
the environment, and the value of this state transition is
communicated to the agent through a scalar reinforcement
signal, c. The figure includes the reinforcement function C,
which determines the reinforcement signal the agent, actually
receives.

Fig. 1 The standard reinforcement-learning model

 Reinforcement learning (RL) differs from supervised
learning: there is no presentation of input/output pairs;
instead, after choosing an action the agent is told the
instantaneous cost and the subsequent state, but is not told
which action would have been in its best long-term interests.
It is necessary for the agent to gather useful experience about
the possible system states, actions, transitions and costs
actively to act optimally.

MDP’s can be solved by either policy iteration or value
iteration [8]. We describe a value iteration based procedure
called Q learning [14] which directly updates the estimates of
Q values associated with an optimal policy. The value of a
state s , V(s) is the total expected discounted cost incurred by
an optimal policy starting from state s Ω∈ . Q value is
defined on a state-action pair and is the total expected
discounted cost incurred by a policy that takes action a A∈
from state s Ω∈ and follows the optimal policy thereafter.
The Q-value for the state-action pair (,)s a , (,)Q s a is defined
as:

'
(,) (,) (, , ') (') , (,)

s S
Q s a c s a T s a s V s s aα

∈

= + ∀∑ (1)

where (') min (',)

b A
V s Q s b

∈
=

(,)c s a = Immediate cost of taking action a at state s.
In words, the quality of a state-action pair is the

immediate cost plus the expected discounted value of
successor states weighted by their likelihood. The action that
minimizes (,)Q s a at each state s Ω∈ , describes the optimal

policy *π : i.e.,

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1487

*() arg min (,)
a A

s Q s aπ
∈

=

We can use equation (1) directly as an update equation for an
iteration process that calculates exact Q-values. This does,
however, require that a model be given (or is learned) because
the equation uses state transition function T: ()A PΩ Ω× → .

In standard value iteration procedure, we need to apply
the above equations to all states s Ω∈ . It is possible to have
(almost) the best of both worlds⎯that is, one can approximate
the constraint equation (1) without solving it for all possible
states. The key is to use the observed transitions to adjust the
Q-values of the observed states so that they agree with the
constraint equation.

Watkins [14], proposed a procedure to iteratively update
Q values that does not require either the system transition
probabilities or the cost structure. The above iteration, i.e.,
equation (1), can be written in a more general form as:

'
(,) (1) (,) ((,) (, , ') ('))

s S
Q s a Q s a c s a T s a s V sη η α

∈

= − + + ∑ (2)

where η is a small learning-rate parameter with η ∈ (0,1] that
may change from one iteration to the next.

 Q learning is an approximate form of the above iteration
wherein the expectation with respect to successor state s' is
replaced by a single sample, i.e.,

 (,) (1) (,) ((,) min (',))

(,) ((,) min (',) (,))
b A

b A

Q s a Q s a c s a Q s b

Q s a c s a Q s b Q s a

η η α

η α
∈

∈

← − + +

← + + −
 (3)

where 's and (,)c s a are generated from pair (s,a) as per the
transition probability (, , ')T s a s . Because this update rule uses
the difference in Q-values of successive states, it is often
called the temporal difference or TD equation.

The basic idea of the temporal-difference method is to
define the conditions that hold locally when the Q-value
estimates are correct; and then to write an update equation that
moves the estimates toward the equilibrium equation.
Equation (2) does, in fact, cause the agent to reach the
equilibrium given by equation (1), but there is some subtlety
involved. First, notice that the update only involves the actual
successor, where the actual equilibrium conditions involve all
possible next states. One might think that this causes an
improperly large change in Q-value when a very rare
transition occurs; but in fact, because rare transitions occur
only rarely, the average Q-value will converge to the correct
value. Furthermore if we change η from a fixed parameter to
a function that decreases as the number of times a state has
been visited increases, then Q-value itself will converge to the
correct value.

The only requirement for using Q learning is that the state
of the environment should be fully observable. Q learning
converges to the optimal Q values as long as every state-
action pair is visited infinitely often and the learning-rate
parameter η is reduced to a small value at a suitable rate [14].

The Q-learning agent must follow the policy of
exploration and exploitation: exploration ensures that all
admissible state-decision pairs are visited enough to satisfy
the Q-learning convergence theorem [14], and exploitation

seeks to minimize the cost by following a greedy policy. An
agent therefore must make a trade off between its immediate
good and its long-term well being. The “wacky” approach
acts randomly, in the hope that it will eventually explore the
entire environment, and the ‘greedy’ approach acts to
minimize the cost using current estimates. We need an
approach somewhat between wackiness and greediness.

B. Matrix Games

A matrix game is a tuple < N, A1….N , C1…N > where N is
the number of players, Ai is the action set of the player i (A is
the joint action space, i.e., 1 2 NA A A× × ×) and Ci is the
player i’s cost function. In a two player zero- sum game, the
game is played between two players with diametrically
opposite goals, so that the cost to one player is the reward of
the other, i.e., if C1 and C2 are the cost functions for two
agents then 1 2C C= − . In this setting, we can use a single cost
function for representing the game. We take the first player’s
cost as c(s, a, o), when the first player or agent takes action
a A∈ and the second player or the opponent takes o O∈ at
state s.

Unlike MDP’s, an optimal policy has to be evaluated with
respect to the opponent’s policy. In other words, the agent’s
optimal policy is dependent on the opponent’s strategy or
there is no opponent independent optimal policy. Game theory
[13] offers a solution to this dilemma, by evaluating an agent’s
policy with respect to an opponent that makes it look worse.
Agent’s optimal policy is the one that minimizes cost
irrespective of the opponent’s policy, i.e., minimize cost in the
worst case.

This opponent dependence of the optimal policy in matrix
games, sometimes, gives rise to probabilistic optimal policies,
i.e., at a state s Ω∈ , the agent’s optimal policy specifies a
probability distribution over its action set, rather then a crisp
action or : ()P Aπ Ω → where P(A) is a probability
distribution over action set A. Such an optimal policy can be
found using Linear Programming technique [5].
 Linear Programming gives the value of the game at a state
s Ω∈ as:

 ,()
() min max ()o a aP A o O a A

V s C s
π

π
∈ ∈ ∈

= ∑ (4)

and the optimal policy
1 2

[.....]
va a a aπ π π π= is a

probability distribution over the agent’s action set

1 2(, ,.....,)vA a a a= where v A= , that minimizes V.
uaπ is the

probability of choosing action u by the agent and
, ()o aC s is the

cost incurred by the agent on taking action a when the
opponent takes action o at state s Ω∈ .

C. Markov Games

 A Markov Game is represented by the tuple
1...., , ,NN C T1.....ΝΩ,Α< > where Ω is the set of states, N is the

number of agents, A1…N is the collection of action sets for the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1488

agents 1…N, Ci is the cost function for the agent i, i.e.,
1 2:i NC A A AΩ × × × × → ℜ , T is the state transition

function, 1 2: ()NT A A A PΩ Ω× × × × → and

1 2(, , ,......., , ')NT s a a a s = probability of moving from state s
to s′ when each agent takes an action (i ia A∈) at the state s.

Minimax-Q

 We can define Q(s, a, o) value for tuple , ,s a o< > as
the expected cost for taking action a when the opponent takes
action o at state s and continuing optimally thereafter: i.e.,
)'()',,,(),,(),,(

'
sVsoasToascoasQ

s
∑+= α (5)

where (, , , ')T s a o s = Probability of transition from state s to
's and (, ,)c s a o = one step cost incurred by the agent, when

the first player or the agent takes action a A∈ and the second
player or the opponent takes o O∈ at state s.

 Minimax-Q algorithm [1] is similar to Q learning, except
that the term min (',)

b A
Q s b

∈
is replaced by the value of the game

played between the two players at state 's , i.e.,

()

(') min max (', ,)
a

aP A o O a A

V s Q s a o
π

π
∈ ∈

∈

= ∑ , aπ = Probability

distribution over agent’s action set.

Q values are updated as:
 (, ,) (, ,) [(, ,) (') (, ,)]Q s a o Q s a o c s a o V s Q s a oη α← + + − (6)
where η = learning-rate parameter and (')V s = Value of the
game played between the agent and the opponent at state 's .A
completely specified version of minimax-Q can be found in
[1]. Minimax control strategy is safe; unfortunately minimax
play does not have the minimal learning property of
‘consistency’ [11].

D. Fictitious Play (FP)

Fictitious play [6] is a technique with roots in the game
theory literature and suggests that the players choose their
actions in each period to maximize that period’s expected
payoff given their prediction or assessment of the distribution
of the opponent’s strategy in that period. In a zero-sum setting
the empirical distribution generated by fictitious play must
converge to the Nash equilibrium [10]. In stochastic FP, the
solution is in the form of a mixed policy, i.e., a probability
distribution over crisp action set and has the advantage that
small changes in the experiential data does not lead to abrupt
changes in the agent’s policy and such a procedure is
‘consistent’. Suppose at time t the state is s and the opponent
takes action o O∈ . Let (,)k s o be the times tuple ,s o< > has
been visited, then update (,)k s o with:

 1
1 if

(,) (,)
0 if

t
t t

t

o o
k s o k s o

o o+
=⎧

← + ⎨ ≠⎩
 (7)

Probability over opponent’s action set:

 1
1

1
'

(,)(,)
(, ')

t
t

t
o O

k s op s o
k s o
+

+
+

∈

=
∑

 (8)

Optimal policy of agent:
*

() '
arg min (, , ') (, ')a t t a

P Aa o O
U s a o p s o

π
π π

∈ ∈
= ∑ where (, ,)tU s a o is

the reward or utility accrued to the agent on taking a A∈
when opponent takes o O∈ at time t. Fictitious play is well
known not to be safe [11].

E. Cautious Fictitious Play (CFP)

In fictitious play agents assume that their opponent’s are
playing a fixed strategy. For each iteration, the agent chooses
the action, which is the best response to its belief of the
opponent’s action. Cautious fictitious play [11] is a variation
of fictitious play in which the probability of each action of the
agent is an exponential function of that action’s utility against
the historical frequency of the opponent’s play. Regardless of
the opponent’s strategy the utility received by an agent using
this rule is nearly the best that could be achieved against the
historical frequency of opponent’s play.

In cautious fictitious play we do not model the internal
thought process of the agents but instead base our results and
assumptions in terms of, solely the agent’s behavior. How
well a particular policy performs depends on the environment
it is in or in other words a policy that performs excellently in
one environment may fair worse if the environment changes.
So the agent must, in the long run, attempt to learn the
environment in which they operate so as to perform well in all
the environments. However there can be no such universal
rule that enables optimality against all environments.

The cautious fictitious play algorithm therefore attempts
to find behavior rules that have sensible properties in all the
environments. This motivates the desiderata that the behavior
rule be universally consistent, in the sense that the rule should
(asymptotically) ensure that the agent’s realized average
payoff is not much less than the payoff from playing the best
response to the empirical distribution, uniformly over all
possible environments. If agents know they are boundedly
rational, they may also wish to allow for the possibility that
they are playing against opponents who are cleverer than they
are. One way that agents might do this is to only use behavior
rules that guarantee that their realized payoff is not much
lower than their minimax payoff.

In cautious fictitious play, the agent chooses a stationary
rule : () ()a a s P Aπ π → and observes the outcome. Utility

()aU h is given by

 exp(())()[]
exp(())

a
a

a b
b

b

w kU hh a
w kU h

π ≡
∑

 (9)

and the utility is updated as

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1489

 (1)
() 1 1 1(,) () (1)

(1)[] (1)[]

a
Ta

Ta
T

a a

U h a a
U h a a

u a y T U h
T h a h aπ π

⎧ − ≠⎪⎪= =⎨ ⎡ ⎤
+ − −⎪ ⎢ ⎥− −⎪ ⎣ ⎦⎩

 (10)
where h= history of the action-outcome sequence ,i.e.,

1 1 2 2(, , , ,........., ,)t ta y a y a y , ,a bw w = fixed weights and k is a

constant , 1k > . In [11] authors have given a rigorous
treatment of the CFP algorithm and the necessary theoretical
framework has been explained in detail.

III. PROPOSED MARKOV GAME ALGORITHMS

A. Controller Design Using Markov Games

 Several successful attempts have been made to design
optimal controllers for physical systems, e.g., Pole Balancing
problem [4][7], using RL concepts. In all these approaches,
the agent (controller) learns to behave optimally by repeated
interactions with a stationary environment or the MDP setting.
But in practical situations, there exist disturbance and noise
signals that manifest themselves as random phenomenon and
may make a well-designed controller behave poorly. In this
paper, we view the problem of designing an optimal controller
as a two player-zero sum game, the two players being the
controller acting as the agent and noise and/or disturbance
signal playing the role of the opponent.

 It is the special structure of the zero-sum Markov games,
that makes a Q learning agent following a GLIE (greedy in the
limit with infinite exploration) policy, converge to a policy
that always achieves its least optimal value irrespective of the
opponent. Further, the policy learned by an agent employing
minimax-Q is safe as it can be executed in total ignorance of
the opponent. In the context of controller design, this means
that employing minimax-Q can help design a controller that
would be able to maintain its performance in presence of
varying noise and disturbance signals. In other words, the
optimal policy learned by the controller can be implemented
safely, as it can give a guaranteed level of performance
irrespective of the noise and disturbance signal’s nature and
severity.

We look at controller design as a cost minimization task
and assume non-negative one step cost of transition. A matrix
game is defined at a current state s by the game matrix

, ()a oC s consisting of (, ,)tQ s a o values, e.g., for 3, 3A O= = ,
the resulting game matrix

, ()a oC s at state s is:

π

1o 2o 3o

1aπ 1a Q 1 1 Q 1 2 Q 1 3

2aπ 2a Q 2 1 Q 2 2 Q 2 3

3aπ 3a Q 3 1 Q 3 2 Q 3 3

where (, ,)i j t i jQ Q s a o= and ,A O stand for cardinality of
sets A and O respectively.

 Agent’s policy π is a probability distribution over its
action set at the current state. The optimal controller’s
maximum expected cost should be as small as possible. For
finding the optimal policyπ, we must identify the smallest V
for which the following constraints are satisfied:

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

11 21 31

12 22 32

13 23 33

1

, , 0

a a a

a a a

a a a

a a a

a a a

Q Q Q V

Q Q Q V

Q Q Q V

π π π

π π π

π π π

π π π

π π π

+ + ≤

+ + ≤

+ + ≤

+ + =

≥

 (11)

Linear programming may be used to find V and π such that V
is minimized, for any action chosen by the opponent. We
emphasize that we have chosen a very simple game model so
as to reduce the computational requirement for updating the

(, ,)Q s a o value at each step of the learning algorithm.

B. First Markov Game Algorithm (MG-1)

 We use the same opponent modeling approach as in
fictitious play but best response strategy is calculated based on
Q value and not on reward as done in standard FP, i.e., agent’s
optimal policy is calculated as:

*
() '

arg min (, , ') (, ')a a t t a
P Aa o O

k Q s a o p s o
π

π π
∈ ∈

= ∑ . 1ak∀ >

 The agent’s optimal policy : () ()a a s P Aπ π → is found as
a combination of the solutions of the matrix game defined by

, ()a oC s , obtained using FP and minimax-Q. The algorithm, in

the initial control phase, uses a minimax policy and as the
controller-environment interaction sequence lengthens, it uses
a policy heavily weighted towards the fictitious play policy.
The algorithm uses a state-action pair visits dependent
parameter (0,1]β ∈ that controls the amount of mixing of the
minmax-Q and FP solutions. Initially β is high for all un-
visited state-action pairs which makes the policy ‘safe’ and in
later stages with more visits at a particular state-action pair a
high β value achieves a ‘safe’ and ‘consistent’ policy,
i.e., 1 00 1

(,)(,) ,(,)
t

t
k s os o nn k s oβ +

+
= =+

a fixed number

 (12)
eff min max FP* (1)*a a aπ β π β π−← + − and

min max FP* (1)*effQ Q Qβ β−← + − (13)

We generate action 'a A∈ at the next state 's according to a ε-
soft policy corresponding to eff

aπ and update Q value using
the standard Q-learning [14] update:
 1(, ,) (, ,) [(, ,) (, ,)]eff

t t tQ s a o Q s a o c s a o Q Q s a oη α+ ← + + − (14)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1490

where η is the learning rate parameter, α is the discount factor
and (, ,)c s a o is the cost of transition on taking action a at s.

 At first we initialize the Q values and all other
parameters, e.g., the discount factor, the learning rate
parameter and the exploration factor , ,explorα η respectively.
At the start of each trial the agent and opponent each choose
an action. The agent takes action as per the current mixed
policy. The environment responds by moving to the next state
and the agent receives a corresponding cost. Then the agent
updates its belief of the opponent’s action probability estimate
as per the frequency of transition. Then the agent-opponent
game at the next state is solved to get the target value for the
current state. This target value and the associated cost are used
to form the target Q value required for the Q value update.
Agent-opponent game solution also provides the new mixed
policy solution. At the end of iteration, we combine the
estimates of the Q values and the mixed policy solution
obtained via the FP and the minmax solution approaches. This
procedure is repeated till either a failure is reached or till we
reach a trial termination condition.

 C. Second Markov Game Algorithm (MG-2)

 The CFP approach as given in [11] visualizes a multiplayer
setting and adaptive agents with competing goals. We cannot
apply the CFP algorithm for optimizing controller in a two-
player zero-sum game setting, as the utility ()aU h does not
explicitly contain opponent’s action. In order to employ CFP
for solving Markov games, we introduce modifications in the
CFP approach, which are motivated by ideas from the
standard fictitious play approach [6]. We use an opponent
modeling approach based on standard simultaneous move FP,
i.e., use the marginal frequency distribution data of
opponent’s moves derived from experiential information and
instead of using the utility update of equation (6), we use the
RL based Q- learning update.
 We calculate probability over opponent’s action set,

1(,)tp s o+ using equation (8). Let 1 2[, ,....,]nA a a a= be the
action set for the agent or the first player. At any time t we
calculate

'
() (, , ') (, ') for 1,..., ; 1mix i i t i t i

o O
V a k Q s a o p s o i n k

∈
= = ∀ >∑ and

find the agent’s policy corresponding to CFP as
exp(())

() 0
exp(())

a mix iCFP i
a i ai

a mix ii
a Ai

w V a
a w

w V a
π

∈

← ∀ >
∑

 (15)

Then we use probability distribution specified by CFP
aπ to get

CFPa .
Target Q value is found as

'
(, , ') (, ')CFP CFP

t t
o O

Q Q s a o p s o
∈

← ∑ (16)

 The game specified by the matrix , ()a oC s is solved using
the standard Linear Programming technique [5] to generate

min max min max,a Qπ − − as
 min max

() ' '
min max (, ', ') (')t a

P A o Oa a A
Q Q s a o a

π
π−

∈ ∈ ∈
= ∑ (17)

 min max
() ' '

arg min max (, ', ') (')a t a
P A o Oa a A

Q s a o a
π

π π−

∈ ∈ ∈
= ∑ (18)

 The agent’s optimal policy : () ()eff eff
a a s P Aπ π → is found as a

combination of the solutions obtained using CFP and
minimax-Q. This algorithm also incorporates a state-action
pair visits dependent parameter (0,1]β ∈ that controls the
amount of hybridization of the minimax-Q and CFP solutions.

 eff min max CFP* (1)*a a aπ β π β π−← + − (19)

 min max CFP* (1)*effQ Q Qβ β−← + − (20)

We generate action 1ta A+ ∈ at the next state according to a ε-

soft policy corresponding to eff
aπ and update Q value using

the standard Q-learning [14] update of equation (13).
 The second Markov game algorithm operates as follows:
at first we initialize the Q values and all other parameters, e.g.,
the discount factor, the learning rate parameter and the
exploration factor , ,explorα η respectively. At the start of
each trial the agent and opponent each choose an action. The
agent takes action as per the current mixed policy. The
environment responds by moving to the next state and the
agent receives a corresponding cost. Then the agent updates
its belief of the opponent’s action probability estimate as per
the frequency of transition. Then the agent-opponent game at
the next state (both CFP and minmax) is solved to get the
target value for the current state. This target value and the
associated cost are used to form the target Q value required
for the Q value update. Agent-opponent game solution also
provides the new mixed policy solution. At the end of
iteration, we combine the estimates of the Q values and the
mixed policy solution obtained via the CFP and the minmax
solution approaches. This procedure is repeated till either a
failure is reached or till we reach a trial termination condition.

IV. APPLICATION

Inverted Pendulum Swing-up

 The details of the simulation model used for pendulum
swing-up task [7] can be found in the Appendix. We adopt a
lookup table (LUT) approach by dividing state-space into
discrete non-overlapping regions, as in the scheme of BOXES
by Michie and Chambers [4]. Each trial is started from a
position close to the origin of the system. During the trial
plant parameters, i.e., mass and length of the pendulum were
varied by [-20 20] % from nominal values while additive
exogenous disturbances in [-10 10] Newton or 20% of the
force magnitude continued to affect the controlled system. The

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1491

performance of the controller in handling both these
simultaneous disturbances was evaluated and compared
against standard Q learning. Results are averaged over 100
experiments.

We take one step costs as:
04 if 12

1 cos() otherwise
c

θ
θ

⎧ >⎪= ⎨
−⎪⎩

Each experiment consists of a series of trials until either a trial
resulting in pendulum remaining balanced for about 42,000
simulated steps corresponding to 14 minutes of real time or a
maximum of 180 trials. Results are averaged over 100
experiments.

Controller Comparison: Performance

Table 1 summarizes trials needed to balance the pendulum for
42,000 simulated steps:

TABLE I
CONTROLLER COMPARISON: CONSISTENCY OF PERFORMANCE

Controller Average

Maximum Minimum Standard

Deviation
MG-1 51.04 114 32 21.21
MG-2 77.23 180 35 34.27

Q 138.24 180 38 54.71

As can be seen from Table1, the average, maximum and
minimum number of trials required to balance the pendulum is
lower in case of both Markov Game-1 and Markov Game-2
controllers than the corresponding Q controller. Out of all the
controllers MG-1’s performance is the best. Fig. 2 displays a
typical trajectory of the pole angle from a successful MG-1
trial, for the first 300 balancing steps. It is to be noted that the
pole angle’s maximum deviation from the vertical is less than
0.09 radians or 05θ = even though the failure condition is

012θ > .

0 25 50 75 100 125 150 175 200 225 250 275 300
-6

-5

-4

-3

-2

-1

0

1

2

3

4

Time Steps

P
ol

e
A

ng
le

 (D
eg

re
es

)

Fig. 2 Pole angle trajectory

 Controller Comparison: Consistency

 Fig. 3 shows a comparative evaluation of the MG-1
controller against Q controller, in terms of number of trials
needed to balance the pendulum in each experiment, for 25
experiments. For Q controller, a number of experiments had
to be stopped at 180 trials (without balance), clearly indicating
the inability of the Q controller in handling the noise and

parameter variations while none of the experiment in MG-1
exceeded 114 trials. From Fig. 3 and a comparison of standard
deviation values from table 1 we see that the MG-1 controller
is far more consistent in performance than the Q controller.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

10
20
30
40
50
60
70

80
90

100
110
120
130
140
150
160
170
180
190

200

Number of Experiments

N
um

be
r o

f T
ria

ls
 (E

xp
er

im
en

t)

Q
MG-1

Consistency of Controllers : Q v s. MG-1

Fig. 3 Consistency comparisons of MG-1 and Q Controller

Further, as can be seen from fig. 4 and a comparison of
standard deviation values from table 1, MG-2 controller
achieved a significantly better consistency than the Q
controller. Here again MG-1 controller outperformed the MG-
2 controller. The inferior performance of the MG-2 controller
is probably due to the fact that MG-2 has been designed
explicitly to optimize in non-stationary environments or for
situations wherein we have an adaptive opponent. In presence
of time-varying noise or with adaptive opponent, we expect
MG-2 to outperform the MG-1 algorithm.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

Number of Experiments

N
um

be
r o

f T
ria

ls
 (E

xp
er

im
en

t)

Q
MG-2 Consistency of Controllers : Q v s. MG-2

Fig. 4 Consistency comparisons of MG-2 and Q Controller

In terms of computational demand Q controller has the
least computation per iteration while in MG-1 we need to
solve two linear programs per iteration and one for MG-2. The
higher computational effort required for MG-1 and MG-2 in
comparison to Q controller is a very small price to pay when
we consider the significant increase in the performance and
consistency of the designed controllers. Further, the
computational effort requirement in MG-1 and MG-2 can be
reduced by approximations to the solution of the Linear
Programs or iterative methods as suggested in [1].

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1492

V. CONCLUSIONS AND FUTURE WORK

The paper presents two novel Markov game-theoretic
algorithms for optimizing controllers that to produce safe and
reliable controller designs. The algorithms advocates safe play
when the environment or opponent is relatively unknown and
a mixed strategy incorporating elements from the fictitious
play or cautious fictitious play, when the transition
information leads to a fair idea of opponent’s strategy. It
exploits the capability of the fictitious play and cautious
fictitious play to produce a payoff higher than the min-max
and a more reliable behavior. Simulation results of applying
the approach on a simulated inverted pendulum swing-up task
and its comparison to Q learning shows that the approaches
could be utilized for effective noise/disturbance cancellation
in the controller design. The results show that a Markov game
formulation of the control problem gives better results than
the Q learning solution. Further, Markov game setup allows us
to use efficient approaches like FP and CFP, from the game
theory literature, for controller optimization. An important
area for future research could be a hybrid game theoretic
formulation for the control problem with a time varying model
for the disturbances. We hope that such a formulation would
address the problem to the fullest extent and may give better
results as it fits the game-theoretic framework to a greater
extent. These algorithms can be extended to optimize the
behavior of an agent in multiplayer environments where
several adaptive agents compete against each other.

APPENDIX

We test the proposed approach on a simulated inverted

pendulum control task as in [7]. The inverted pendulum
problem requires balancing a pendulum of unknown mass and
length, in an upright position by applying forces of fixed
magnitude, to the cart it is attached to as shown in fig. 5.

Fig. 5 Inverted pendulum problem

Three actions are allowed: left force LF (50− Newton), right
force RF (+50 Newton) and no force NF (0 Newton). The
state-space of the problem is continuous and consists of

vertical angle of the pole and its angular velocity
.

(,)θ θ . The
transitions are governed by the nonlinear dynamics of the

system [7] and depend on current state
.

(,)θ θ and the current
control F:

1 1

1

. 2.. sin() () sin(2) 2 cos()
2(4 / 3) cos ()

g ml F

l ml

θ α θ θ α θ
θ

α θ

− −
=

−
 (21)

where g is the gravity constant 2(9.8 /)g m s= , m is the
mass of the pendulum (m=2.0 kg), M is the mass of the cart(M
= 8.0 kg), l is the length of the pendulum(l = 0.5m)and

1 1 ()M mα = + . The system is simulated by numerically
approximating the equation of motion using Euler’s method,
with a time step of T= 0.1 sec, as suggested in [12] and

discrete-time state equations of the form
.

1 T tttθ θ θ= ++ .

Pendulum Initialization and Trajectory Generation

Each simulated trial is started from position (β1, β2), where
each βi (1 ≤ i ≤ 2) is a random number between 0 and 0.01.
Starting from state (β1, β2), the controller applies force
actions, as per the current ε-soft policy (exploration-
exploitation depends on parameter ε) [16], i.e., with
probability ε it takes uniformly random action and with
probability (1- ε) it takes action as per the current greedy
policy, thus generating a trajectory through the state-space.
The only information regarding the goal is provided by a
delayed failure signal, which is to be minimized over time. No
analytic objective function is available and learning is based
on occurrence of the failure signal. The task is a difficult
assignment-of-credit problem as failure may occur only after a
very long sequence of actions

Noise and disturbance act as the second player or the
maximiser. We added two types of noise to the controller’s
output, i.e., (i) a uniform noise in [-10 10] Newton or 20% of
the force magnitude with a probability of (2/3) (ii)
deterministic noise of 10± Newton with a probability of
(1/3). This noisy control is applied to the plant giving next
state s(t+1).We conducted trials until a trial that successfully
balanced the pole for some defined simulated steps as in [12].

REFERENCES
[1] M.L.Littman, “Markov Games as a framework for Multi-agent

Reinforcement Learning”, Proc. of Eleventh International Conference
on Machine Learning, Morgan Kaufman, pp. 157-163, 1994.

[2] K. Zhou, J.C. Doyle and K. Glower, Robust and Optimal Control,
Prentice Hall, New Jersey, 1996.

[3] M. D. S. Aliyu, “Adaptive Solution of Hamilton-Jacobi-Isaac Equation
and H∞ Stabilization of non- linear systems”, Proceedings of the 2000

IEEE International Conference on Control Applications, Anchorage,
Alaska, USA, September 25-27, pp. 343-348, 2000.

[4] D. Michie and R.A. Chambers, “BOXES: An Experiment Adaptive
Control”, Machine Intelligence 2, Edinburgh, Oliver and Byod, pp. 137-
152, 1968.

[5] G. Strang, Linear Algebra and its applications, Second Edition,
Academic Press, Orlando, Florida, 1980.

[6] D. Fudenberg and K. Levine, The Theory of Learning in Games, MIT
Press, 1998.

[7] L.C. Baird and H. Klopf, “Reinforcement Learning with High-
Dimensional Continuous Actions”, Tech. Rep. WL-TR-93-1147, Wright
Laboratory, Wright-Patterson Air Force Base, OH 45433-7301.

[8] D.P. Bertsekas and J.N. Tsitsiklis, Neurodynamic-Programming, Athena
Scientific, Belmont MA, 1996.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1493

[9] E. Altman and A. Hordijk , “ Zero-sum Markov games and worst- case
optimal control of queueing systems”, Invited paper, QUESTA , Vol. 21,
Special issue on optimization of queueing systems, pp. 415-447, 1995.

[10] K. Miyasawa, “On the convergence of learning process in 2x2 non zero
person game”, Research memo 33, Princeton University, 1961.

[11] D. Fudenberg and K.D. Levine, “ Consistency and Cautious Fictitious
Play”, Journal of Economic Dynamics and Control, Elsevier Science,
Volume 19, Issue 5-7, pp. 1065-1090, 1995.

[12] D. Liu, X. Xiong, and Y. Zhang, “Action-Dependent Adaptive Critic
Designs”, Proc. of Int. Joint Conf. on NN, Volume: 2, 15-19, July 2001,
pp. 990 – 995.

[13] G. Owen, Game Theory, 2nd Ed., Academic Press, Orlando, Florida,
1982.

[14] C. J. C. H. Watkins, “ Learning with Delayed rewards”, Ph. D.
Dissertation, Cambridge University, 1989.

[15] Matthias Heger, “ Consideration of risk in reinforcement learning”,
Proc. of 11th Int. Conf. on Machine Learning, Morgan Kaufmann
Publishers, San Francisco, CA, 1994, pp. 105-111.

[16] R. S. Sutton, A. G. Barto, and R.J. Williams, “Reinforcement learning is
direct adaptive optimal control”, IEEE Control Systems Magazine,
Volume 12(2), pp. 19-22, 1992.

