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Abstract—Markov games are a generalization of Markov 

decision process to a multi-agent setting. Two-player zero-sum 
Markov game framework offers an effective platform for designing 
robust controllers. This paper presents two novel controller design 
algorithms that use ideas from game-theory literature to produce 
reliable controllers that are able to maintain performance in presence 
of noise and parameter variations. A more widely used approach for 
controller design is the ∞H optimal control, which suffers from high 
computational demand and at times, may be infeasible. Our approach 
generates an optimal control policy for the agent (controller) via a 
simple Linear Program enabling the controller to learn about the 
unknown environment. The controller is facing an unknown 
environment, and in our formulation this environment corresponds to 
the behavior rules of the noise modeled as the opponent. Proposed 
controller architectures attempt to improve controller reliability by a 
gradual mixing of algorithmic approaches drawn from the game 
theory literature and the Minimax-Q Markov game solution 
approach, in a reinforcement-learning framework. We test the 
proposed algorithms on a simulated Inverted Pendulum Swing-up 
task and compare its performance against standard Q learning.   

   
Keywords—Reinforcement learning, Markov Decision Process, 

Matrix Games, Markov Games, Smooth Fictitious play, Controller, 
Inverted Pendulum. 

I. INTRODUCTION 
N this paper we concentrate on the quality of the policy 
learned by the controller in a Reinforcement Learning (RL) 
[16] framework. In one such RL scenario, a single adaptive 

agent (controller) strives to minimize the expected discounted 
total cost. The agent learns optimal behavior through 
experience or interactions with the environment in which it 
operates. Matrix Games [13], on the other hand, describe a 
setup suitable for multi-agent systems wherein, at a particular 
state, each agent attempts to minimize its expected cost and 
optimal behavior for each agent is characterized by the game 
solution at the current state. Our enthusiasm for proposing 
these new approaches is inspired by the Minimax-Q 
algorithm’s [1] ability to produce a more risk averse behavior 
[15] and its applications to problems with large state-spaces 
via function approximation using state aggregation methods 
[4]. In particular, the present work is motivated by the strength 
of the minimax criterion, that it allows the agent to converge 
to a strategy which is guaranteed to be ‘safe’ against the worst 
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opponent. In the context of controller design this implies that 
the use of minimax criterion may lead to the design of a more 
robust controller that is able to maintain its performance level 
in presence of any noise/disturbance. 

No controller operates in an environment devoid of 
noise/disturbances. We investigate the problem of designing 
an optimal controller in presence of random bounded 
disturbances, unmodeled dynamics and/or noise signals by 
casting the problem in a Markov game framework. We view 
the problem as a situation of strategic interdependence, 
wherein action of one agent may affect the cost incurred by 
the other agent. In such a case, the optimal controller design is 
conditioned on the expected behavior of other agent. Game 
theory is a useful tool for problems of this kind, as it 
prescribes strategy that a rational agent would choose. We 
model the problem as a two-player zero-sum Markov game 
between Controller acting as the minimiser and the 
Disturbance and/or Noise acting as the maximiser. 

Judicious use of experiential information is a crucial 
factor in the successful design of any RL based controller. 
Markov games (MG) [1] are a generalization of the Markov 
Decision Process (MDP)[8] setup that allows us to visualize 
the controller optimization as a game between the controller 
and the disturber (disturbances). This paper considers 
controller optimization problem in presence of additive 
exogenous disturbances and parametric uncertainties of the 
controlled system.  

In our view, MG framework is more appropriate than the 
MDP setup for designing controllers for nonlinear systems as 
it allows an explicit representation of the noise. The controller 
tries to optimize performance against all types of disturbances. 
In H∞ theory-based formulation [2], controller design is 
viewed as a differential game between the controller and the 
disturbance. Optimal control law is obtained as a solution of 
the Hamilton-Jacobi-Isaacs (HJI) equation, which is 
computationally inefficient and may be infeasible as well [3]. 
Further for nonlinear problems, there exists no analytical 
solution of the HJBI equation. Majority of the work so far that 
has utilized the H∞ framework has not addressed the 
theoretical framework properly. Theory of zero-sum stochastic 
games has been used earlier in the context of worst-case 
optimization of queuing networks by Altman and Hordijk [9]. 
They have used the framework of zero-sum games to 
effectively address the controller-disturbance tussle for 
queuing problems or the typical server-router problems. Other 
attempts at using the game-theoretic framework have 
attempted it on problems such as the football game [1] or the 
backgammon. We attempt to apply the game-theoretic setting 
to a general control problem, which is typically different from, 
these settings.  

A model that can be used effectively in the controller 
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design problem is the smooth fictitious play (FP) [6], wherein 
the players do not try to influence the future play of their 
opponent or the opponent has ‘naïve’ or ‘unsophisticated’ 
behavior. In [11], authors have proposed a simple 
modification to the standard fictitious play approach to 
generate a behavior that is both safe as well as reliable. They 
have mathematically shown the utility of the cautious 
fictitious play algorithm on typical game problems. In the 
algorithms as proposed in this paper, the key idea underlying 
the algorithms is that during the initial phase of the 
reinforcement learning based controller design, control 
strategy should be heavily weighted towards a ‘safe’ or the 
minmax strategy and in later stages, when the experiential 
information is good enough, the strategy should use a solution 
element obtained either via the fictitious play as done in the 
first proposed algorithm or the cautious fictitious play as in 
the second proposed algorithm.  

II. REINFORCEMENT LEARNING AND SOLUTION APPROACHES 

A. Markov Decision Process (MDP) and Reinforcement  
          Learning 

 
There is a single adaptive agent interacting with the 

environment. At each step, the agent senses the current state s, 
chooses action a, receives reinforcement signal c from the 
environment and moves to the next state s' , experience tuple 
is < s, a, c, s' >. MDP consists of a tuple < Ω, A, C, T  > 
where Ω is the set of states, A is the action set for the agent, C 
is the cost function for the agent C: A  Ω × →ℜ , T is the state 
transition function T: ( )A PΩ Ω× →  where P(Ω) is the set 
of discrete probability distributions over the set Ω and T(s, a, 
s' ) is the probability of transition  from s to s'  under action 
a.  The agent’s aim is to discover a policy π: π(s)→ a where 
a∈A, so as to minimize expected sum of discounted cost, 
i.e., { }0

k
t kk

E cα∞

+=∑  where t kc +  is the cost incurred k steps 

into future and α is the discount factor where 0 ≤ α < 1. ] 
In order to get to the solution for the optimal policy, the 

agent has to learn to behave optimally by learning from 
experience. Now, experiential learning can take place either 
by supervised learning methods or non-supervised learning 
methods. Supervised learning methods are based on learning 
from examples, that is, the environment provides input/output 
pairs, and the task is to learn a function that could have 
generated these pairs.  These methods are appropriate when a 
teacher is providing correct values or when the function’s 
output represents a prediction about the future that can be 
checked by looking at the percepts in the next time step. 

Reinforcement learning [[16] methods help learning in 
much less generous environments, where it receives no 
examples, and starts with no model of the environment and no 
cost function.  The agent (learning system) learns behavior 
through trial-and-error interaction with an environment.  
Dynamic programming [8] provides the learning system with 
estimates of the costs of taking actions on the state of the 

world.  This, in fact, is the reinforcement signal. In this way, 
reinforcement learning is the restatement of dynamic 
programming.  An agent is connected to its environment via 
perception and action as depicted in Fig.1.  On each step of 
interaction, the agent receives as input, i, an indication of the 
current state s of the environment; the agent then chooses an 
action, a (output of the agent).  The action changes the state of 
the environment, and the value of this state transition is 
communicated to the agent through a scalar reinforcement 
signal, c.  The figure includes the reinforcement function C, 
which determines the reinforcement signal the agent, actually 
receives. 

 

 
 

Fig. 1 The standard reinforcement-learning model 
 

 Reinforcement learning (RL) differs from supervised 
learning: there is no presentation of input/output pairs; 
instead, after choosing an action the agent is told the 
instantaneous cost and the subsequent state, but is not told 
which action would have been in its best long-term interests.  
It is necessary for the agent to gather useful experience about 
the possible system states, actions, transitions and costs 
actively to act optimally. 

MDP’s can be solved by either policy iteration or value 
iteration [8]. We describe a value iteration based procedure 
called Q learning [14] which directly updates the estimates of 
Q values associated with an optimal policy. The value of a 
state s , V(s) is the total expected discounted cost incurred by 
an optimal policy starting from state s Ω∈ . Q value is 
defined on a state-action pair and is the total expected 
discounted cost incurred by a policy that takes action a A∈  
from state s Ω∈  and follows the optimal policy thereafter. 
The Q-value for the state-action pair ( , )s a , ( , )Q s a is defined 
as: 
   

'
( , ) ( , ) ( , , ') ( ') , ( , )

s S
Q s a c s a T s a s V s s aα

∈

= + ∀∑                 (1) 

 
where      ( ') min ( ', )

b A
V s Q s b

∈
=   

( , )c s a =  Immediate cost of taking action a at state s. 
In words, the quality of a state-action pair is the 

immediate cost plus the expected discounted value of 
successor states weighted by their likelihood. The action that 
minimizes ( , )Q s a at each state s Ω∈ , describes the optimal 

policy *π : i.e., 
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*( ) arg min ( , )
a A

s Q s aπ
∈

=  

We can use equation (1) directly as an update equation for an 
iteration process that calculates exact Q-values.  This does, 
however, require that a model be given (or is learned) because 
the equation uses state transition function T: ( )A PΩ Ω× → . 

In standard value iteration procedure, we need to apply 
the above equations to all states s Ω∈ . It is possible to have 
(almost) the best of both worlds⎯that is, one can approximate 
the constraint equation (1) without solving it for all possible 
states.  The key is to use the observed transitions to adjust the 
Q-values of the observed states so that they agree with the 
constraint equation. 

Watkins [14], proposed a procedure to iteratively update 
Q values that does not require either the system transition 
probabilities or the cost structure. The above iteration, i.e., 
equation (1), can be written in a more general form as: 

'
( , ) (1 ) ( , ) ( ( , ) ( , , ') ( '))

s S
Q s a Q s a c s a T s a s V sη η α

∈

= − + + ∑         (2) 

where η is a small learning-rate parameter with η ∈ (0,1]  that 
may change from one iteration to the next. 

 Q learning is an approximate form of the above iteration 
wherein the expectation with respect to successor state s' is 
replaced by a single sample, i.e., 
 
   ( , ) (1 ) ( , ) ( ( , ) min ( ', ))

( , ) ( ( , ) min ( ', ) ( , ))
b A

b A

Q s a Q s a c s a Q s b

Q s a c s a Q s b Q s a

η η α

η α
∈

∈

← − + +

← + + −
               (3) 

where 's  and ( , )c s a  are generated from pair (s,a) as per the 
transition probability ( , , ')T s a s . Because this update rule uses 
the difference in Q-values of successive states, it is often 
called the temporal difference or TD equation. 

The basic idea of the temporal-difference method is to 
define the conditions that hold locally when the Q-value 
estimates are correct; and then to write an update equation that 
moves the estimates toward the equilibrium equation.  
Equation (2) does, in fact, cause the agent to reach the 
equilibrium given by equation (1), but there is some subtlety 
involved.  First, notice that the update only involves the actual 
successor, where the actual equilibrium conditions involve all 
possible next states.  One might think that this causes an 
improperly large change in Q-value when a very rare 
transition occurs; but in fact, because rare transitions occur 
only rarely, the average Q-value will converge to the correct 
value.  Furthermore if we change η from a fixed parameter to 
a function that decreases as the number of times a state has 
been visited increases, then Q-value itself will converge to the 
correct value. 

The only requirement for using Q learning is that the state 
of the environment should be fully observable. Q learning 
converges to the optimal Q values as long as every state-
action pair is visited infinitely often and the learning-rate 
parameter η is reduced to a small value at a suitable rate [14]. 

The Q-learning agent must follow the policy of 
exploration and exploitation:  exploration ensures that all 
admissible state-decision pairs are visited enough to satisfy 
the Q-learning convergence theorem [14], and exploitation 

seeks to minimize the cost by following a greedy policy.  An 
agent therefore must make a trade off between its immediate 
good and its long-term well being.  The “wacky” approach 
acts randomly, in the hope that it will eventually explore the 
entire environment, and the ‘greedy’ approach acts to 
minimize the cost using current estimates.  We need an 
approach somewhat between wackiness and greediness. 

 

B. Matrix Games 
 

A matrix game is a tuple < N, A1….N , C1…N  > where N is 
the number of players, Ai is the action set of the player i ( A is 
the joint action space, i.e., 1 2 .......... NA A A× × × ) and Ci is the 
player i’s cost function. In a two player zero- sum game, the 
game is played between two players with diametrically 
opposite goals, so that the cost to one player is the reward of 
the other, i.e., if C1 and C2 are the cost functions for two 
agents then 1 2C C= − . In this setting, we can use a single cost 
function for representing the game. We take the first player’s 
cost as c(s, a, o), when the first player or agent takes action 
a A∈  and the second player or the opponent takes o O∈  at 
state s. 

Unlike MDP’s, an optimal policy has to be evaluated with 
respect to the opponent’s policy. In other words, the agent’s 
optimal policy is dependent on the opponent’s strategy or 
there is no opponent independent optimal policy. Game theory 
[13] offers a solution to this dilemma, by evaluating an agent’s 
policy with respect to an opponent that makes it look worse. 
Agent’s optimal policy is the one that minimizes cost 
irrespective of the opponent’s policy, i.e., minimize cost in the 
worst case. 

This opponent dependence of the optimal policy in matrix 
games, sometimes, gives rise to probabilistic optimal policies, 
i.e., at a state s Ω∈ , the agent’s optimal policy specifies a 
probability distribution over its action set, rather then a crisp 
action or : ( )P Aπ Ω →  where P(A) is a probability 
distribution over action set A. Such an optimal policy can be 
found using Linear Programming technique [5].  
 Linear Programming gives the value of the game at a state 
s Ω∈  as: 

         ,( )
( ) min max ( )o a aP A o O a A

V s C s
π

π
∈ ∈ ∈

= ∑                              (4) 

and the optimal policy 
1 2

[ ..... ]
va a a aπ π π π=  is a 

probability distribution over the agent’s action set 

1 2( , ,....., )vA a a a=  where v A= , that minimizes V. 
uaπ  is the 

probability of choosing action u by the agent and 
, ( )o aC s  is the 

cost incurred by the agent on taking action a when the 
opponent takes action o at state s Ω∈ . 

C. Markov Games 
 

 A Markov Game is represented by the tuple 
1...., , ,NN C T1.....ΝΩ,Α< >  where Ω is the set of states, N is the 

number of agents, A1…N   is the collection of action sets for the 
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agents 1…N, Ci is the cost function for the agent i, i.e., 
1 2: ........i NC A A AΩ × × × × → ℜ , T is the state transition 

function, 1 2: ........ ( )NT A A A PΩ Ω× × × × →  and 

1 2( , , ,......., , ')NT s a a a s  = probability of moving from state s 
to s′ when each agent takes an action ( i ia A∈ ) at the state s. 

Minimax-Q 
 

 We can define Q(s, a, o) value for tuple , ,s a o< >  as 
the expected cost for taking action a when the opponent takes 
action o at state s and continuing optimally thereafter: i.e., 
    )'()',,,(),,(),,(

'
sVsoasToascoasQ

s
∑+= α                        (5) 

where ( , , , ')T s a o s = Probability of transition from state s to 
's and ( , , )c s a o = one step cost incurred by the agent, when 

the first player or the agent takes action a A∈  and the second 
player or the opponent takes o O∈  at state s. 

 Minimax-Q algorithm [1] is similar to Q learning, except 
that the term min ( ', )

b A
Q s b

∈
is replaced by the value of the game 

played between the two players at state 's , i.e., 

 
( )

( ') min max ( ', , )
a

aP A o O a A

V s Q s a o
π

π
∈ ∈

∈

= ∑ , aπ = Probability 

distribution over agent’s action set. 
 
Q values are updated as: 
  ( , , ) ( , , ) [ ( , , ) ( ') ( , , )]Q s a o Q s a o c s a o V s Q s a oη α← + + −     (6) 
where η = learning-rate parameter and ( ')V s = Value of the 
game played between the agent and the opponent at state 's .A 
completely specified version of minimax-Q can be found in 
[1]. Minimax control strategy is safe; unfortunately minimax 
play does not have the minimal learning property of 
‘consistency’ [11]. 
 

D.  Fictitious Play (FP) 
 

Fictitious play [6] is a technique with roots in the game 
theory literature and suggests that the players choose their 
actions in each period to maximize that period’s expected 
payoff given their prediction or assessment of the distribution 
of the opponent’s strategy in that period. In a zero-sum setting 
the empirical distribution generated by fictitious play must 
converge to the Nash equilibrium [10]. In stochastic FP, the 
solution is in the form of a mixed policy, i.e., a probability 
distribution over crisp action set and has the advantage that 
small changes in the experiential data does not lead to abrupt 
changes in the agent’s policy and such a procedure is 
‘consistent’. Suppose at time t the state is s and the opponent 
takes action o O∈ . Let ( , )k s o  be the times tuple ,s o< > has 
been visited, then update ( , )k s o with: 

             1
1 if

( , ) ( , )
0 if

t
t t

t

o o
k s o k s o

o o+
=⎧

← + ⎨ ≠⎩
                          (7) 

Probability over opponent’s action set:  

            1
1

1
'

( , )( , )
( , ')

t
t

t
o O

k s op s o
k s o
+

+
+

∈

=
∑

                                     (8) 

Optimal policy of agent: 
*

( ) '
arg min ( , , ') ( , ')a t t a

P Aa o O
U s a o p s o

π
π π

∈ ∈
= ∑  where ( , , )tU s a o  is 

the reward or utility accrued to the agent on taking a A∈  
when opponent takes o O∈  at time t. Fictitious play is well 
known not to be safe [11]. 

 

E. Cautious Fictitious Play (CFP) 
 

In fictitious play agents assume that their opponent’s are 
playing a fixed strategy. For each iteration, the agent chooses 
the action, which is the best response to its belief of the 
opponent’s action. Cautious fictitious play [11] is a variation 
of fictitious play in which the probability of each action of the 
agent is an exponential function of that action’s utility against 
the historical frequency of the opponent’s play. Regardless of 
the opponent’s strategy the utility received by an agent using 
this rule is nearly the best that could be achieved against the 
historical frequency of opponent’s play.  

In cautious fictitious play we do not model the internal 
thought process of the agents but instead base our results and 
assumptions in terms of, solely the agent’s behavior. How 
well a particular policy performs depends on the environment 
it is in or in other words a policy that performs excellently in 
one environment may fair worse if the environment changes. 
So the agent must, in the long run, attempt to learn the 
environment in which they operate so as to perform well in all 
the environments. However there can be no such universal 
rule that enables optimality against all environments. 

The cautious fictitious play algorithm therefore attempts 
to find behavior rules that have sensible properties in all the 
environments. This motivates the desiderata that the behavior 
rule be universally consistent, in the sense that the rule should 
(asymptotically) ensure that the agent’s realized average 
payoff is not much less than the payoff from playing the best 
response to the empirical distribution, uniformly over all 
possible environments. If agents know they are boundedly 
rational, they may also wish to allow for the possibility that 
they are playing against opponents who are cleverer than they 
are. One way that agents might do this is to only use behavior 
rules that guarantee that their realized payoff is not much 
lower than their minimax payoff. 

In cautious fictitious play, the agent chooses a stationary 
rule : ( ) ( )a a s P Aπ π → and observes the outcome. Utility 

( )aU h is given by   

               exp( ( ))( )[ ]
exp( ( ))

a
a

a b
b

b

w kU hh a
w kU h

π ≡
∑

                         (9)           

and the utility is updated as  
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     ( 1)
( ) 1 1 1( , ) ( ) ( 1)

( 1)[ ] ( 1)[ ]

a
Ta

Ta
T

a a

U h a a
U h a a

u a y T U h
T h a h aπ π

⎧ − ≠⎪⎪= =⎨ ⎡ ⎤
+ − −⎪ ⎢ ⎥− −⎪ ⎣ ⎦⎩

  

                                                                                             (10) 
where h= history of the action-outcome sequence ,i.e., 

1 1 2 2( , , , ,........., , )t ta y a y a y , ,a bw w = fixed weights and k is a 

constant , 1k > . In [11] authors have given a rigorous 
treatment of the CFP algorithm and the necessary theoretical 
framework has been explained in detail. 
 

III. PROPOSED MARKOV GAME ALGORITHMS 
 

A. Controller Design Using Markov Games 
 

 Several successful attempts have been made to design 
optimal controllers for physical systems, e.g., Pole Balancing 
problem [4][7], using RL concepts. In all these approaches, 
the agent (controller) learns to behave optimally by repeated 
interactions with a stationary environment or the MDP setting.  
But in practical situations, there exist disturbance and noise 
signals that manifest themselves as random phenomenon and 
may make a well-designed controller behave poorly. In this 
paper, we view the problem of designing an optimal controller 
as a two player-zero sum game, the two players being the 
controller acting as the agent and noise and/or disturbance 
signal playing the role of the opponent. 

 It is the special structure of the zero-sum Markov games, 
that makes a Q learning agent following a GLIE (greedy in the 
limit with infinite exploration) policy, converge to a policy 
that always achieves its least optimal value irrespective of the 
opponent. Further, the policy learned by an agent employing 
minimax-Q is safe as it can be executed in total ignorance of 
the opponent. In the context of controller design, this means 
that employing minimax-Q can help design a controller that 
would be able to maintain its performance in presence of 
varying noise and disturbance signals. In other words, the 
optimal policy learned by the controller can be implemented 
safely, as it can give a guaranteed level of performance 
irrespective of the noise and disturbance signal’s nature and 
severity. 

We look at controller design as a cost minimization task 
and assume non-negative one step cost of transition. A matrix 
game is defined at a current state s  by the game matrix 

, ( )a oC s consisting of ( , , )tQ s a o values, e.g., for 3, 3A O= = , 
the resulting game matrix 

, ( )a oC s at state s is:  

 
π  

1o  2o  3o  

1aπ  1a  Q 1 1 Q 1 2 Q 1 3 

2aπ  2a  Q 2 1 Q 2 2 Q 2 3 

3aπ  3a  Q 3 1 Q 3 2 Q 3 3 

  

where ( , , )i j t i jQ Q s a o=  and ,A O  stand for cardinality of 
sets A and O respectively. 

 Agent’s policy π is a probability distribution over its 
action set at the current state. The optimal controller’s 
maximum expected cost should be as small as possible. For 
finding the optimal policyπ, we must identify the smallest V 
for which the following constraints are satisfied: 

 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

11 21 31

12 22 32

13 23 33

1

, , 0

a a a

a a a

a a a

a a a

a a a

Q Q Q V

Q Q Q V

Q Q Q V

π π π

π π π

π π π

π π π

π π π

+ + ≤

+ + ≤

+ + ≤

+ + =

≥

                   (11) 

 
Linear programming may be used to find V and π such that V 
is minimized, for any action chosen by the opponent. We 
emphasize that we have chosen a very simple game model so 
as to reduce the computational requirement for updating the 

( , , )Q s a o  value at each step of the learning algorithm. 
 

B. First Markov Game Algorithm (MG-1) 
 

 We use the same opponent modeling approach as in 
fictitious play but best response strategy is calculated based on 
Q value and not on reward as done in standard FP, i.e., agent’s 
optimal policy is calculated as: 

*
( ) '

arg min ( , , ') ( , ')a a t t a
P Aa o O

k Q s a o p s o
π

π π
∈ ∈

= ∑ . 1ak∀ >  

 The agent’s optimal policy : ( ) ( )a a s P Aπ π → is found as 
a combination of the solutions of the matrix game defined by 

, ( )a oC s , obtained using FP and minimax-Q. The algorithm, in 

the initial control phase, uses a minimax policy and as the 
controller-environment interaction sequence lengthens, it uses 
a policy heavily weighted towards the fictitious play policy. 
The algorithm uses a state-action pair visits dependent 
parameter (0,1]β ∈  that controls the amount of mixing of the 
minmax-Q and FP solutions. Initially β is high for all un-
visited state-action pairs which makes the policy ‘safe’ and in 
later stages with more visits at a particular state-action pair a 
high β value achieves a ‘safe’ and ‘consistent’ policy, 
i.e., 1 00 1

( , )( , ) ,( , )
t

t
k s os o nn k s oβ +

+
= =+

a fixed number   

                                                                                             (12)          
eff min max FP* (1 )*a a aπ β π β π−← + − and

min max FP* (1 )*effQ Q Qβ β−← + −                                  (13) 
 
We generate action 'a A∈  at the next state 's  according to a ε-
soft policy corresponding to eff

aπ  and update Q value using 
the standard Q-learning [14] update: 
 1( , , ) ( , , ) [ ( , , ) ( , , )]eff

t t tQ s a o Q s a o c s a o Q Q s a oη α+ ← + + −    (14) 
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where η is the learning rate parameter, α is the discount factor 
and ( , , )c s a o  is the cost of transition on taking action a at s.  

 At first we initialize the Q values and all other 
parameters, e.g., the discount factor, the learning rate 
parameter and the exploration factor , ,explorα η respectively.  
At the start of each trial the agent and opponent each choose 
an action. The agent takes action as per the current mixed 
policy. The environment responds by moving to the next state 
and the agent receives a corresponding cost. Then the agent 
updates its belief of the opponent’s action probability estimate 
as per the frequency of transition. Then the agent-opponent 
game at the next state is solved to get the target value for the 
current state. This target value and the associated cost are used 
to form the target Q value required for the Q value update. 
Agent-opponent game solution also provides the new mixed 
policy solution. At the end of iteration, we combine the 
estimates of the Q values and the mixed policy solution 
obtained via the FP and the minmax solution approaches. This 
procedure is repeated till either a failure is reached or till we 
reach a trial termination condition. 
 

  C.   Second Markov Game Algorithm (MG-2) 

     The CFP approach as given in [11] visualizes a multiplayer 
setting and adaptive agents with competing goals. We cannot 
apply the CFP algorithm for optimizing controller in a two-
player zero-sum game setting, as the utility ( )aU h does not 
explicitly contain opponent’s action. In order to employ CFP 
for solving Markov games, we introduce modifications in the 
CFP approach, which are motivated by ideas from the 
standard fictitious play approach [6]. We use an opponent 
modeling approach based on standard simultaneous move FP, 
i.e., use the marginal frequency distribution data of 
opponent’s moves derived from experiential information and 
instead of using the utility update of equation (6), we use the 
RL based Q- learning update.  
     We calculate probability over opponent’s action set, 

1( , )tp s o+  using equation (8). Let 1 2[ , ,...., ]nA a a a= be the 
action set for the agent or the first player. At any time t we 
calculate 

'
( ) ( , , ') ( , ') for 1,..., ; 1mix i i t i t i

o O
V a k Q s a o p s o i n k

∈
= = ∀ >∑  and 

find the agent’s policy corresponding to CFP as 
exp( ( ))

( ) 0
exp( ( ))

a mix iCFP i
a i ai

a mix ii
a Ai

w V a
a w

w V a
π

∈

← ∀ >
∑

            (15) 

Then we use probability distribution specified by CFP
aπ to get 

CFPa . 
Target Q value is found as  

'
( , , ') ( , ')CFP CFP

t t
o O

Q Q s a o p s o
∈

← ∑                                   (16) 

 

    The game specified by the matrix , ( )a oC s is solved using 
the standard Linear Programming technique [5] to generate 

min max min max,a Qπ − −  as  
   min max

( ) ' '
min max ( , ', ') ( ')t a

P A o Oa a A
Q Q s a o a

π
π−

∈ ∈ ∈
= ∑              (17)   

   min max
( ) ' '

arg min max ( , ', ') ( ')a t a
P A o Oa a A

Q s a o a
π

π π−

∈ ∈ ∈
= ∑           (18) 

     The agent’s optimal policy : ( ) ( )eff eff
a a s P Aπ π → is found as a 

combination of the solutions obtained using CFP and 
minimax-Q. This algorithm also incorporates a state-action 
pair visits dependent parameter (0,1]β ∈  that controls the 
amount of hybridization of the minimax-Q and CFP solutions.  
 
    eff min max CFP* (1 )*a a aπ β π β π−← + −                                (19) 

    min max CFP* (1 )*effQ Q Qβ β−← + −                                 (20) 

We generate action 1ta A+ ∈  at the next state according to a ε-

soft policy corresponding to eff
aπ  and update Q value using 

the standard Q-learning [14] update of equation (13).  
 The second Markov game algorithm operates as follows: 
at first we initialize the Q values and all other parameters, e.g., 
the discount factor, the learning rate parameter and the 
exploration factor , ,explorα η respectively.  At the start of 
each trial the agent and opponent each choose an action. The 
agent takes action as per the current mixed policy. The 
environment responds by moving to the next state and the 
agent receives a corresponding cost. Then the agent updates 
its belief of the opponent’s action probability estimate as per 
the frequency of transition. Then the agent-opponent game at 
the next state (both CFP and minmax) is solved to get the 
target value for the current state. This target value and the 
associated cost are used to form the target Q value required 
for the Q value update. Agent-opponent game solution also 
provides the new mixed policy solution. At the end of 
iteration, we combine the estimates of the Q values and the 
mixed policy solution obtained via the CFP and the minmax 
solution approaches. This procedure is repeated till either a 
failure is reached or till we reach a trial termination condition. 

IV. APPLICATION 

Inverted Pendulum Swing-up 
 
        The details of the simulation model used for pendulum 
swing-up task [7] can be found in the Appendix. We adopt a 
lookup table (LUT) approach by dividing state-space into 
discrete non-overlapping regions, as in the scheme of BOXES 
by Michie and Chambers [4]. Each trial is started from a 
position close to the origin of the system. During the trial 
plant parameters, i.e., mass and length of the pendulum were 
varied by [-20 20] % from nominal values while additive 
exogenous disturbances in [-10 10] Newton or 20% of the 
force magnitude continued to affect the controlled system. The 
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performance of the controller in handling both these 
simultaneous disturbances was evaluated and compared 
against standard Q learning. Results are averaged over 100 
experiments.  

We take one step costs as: 
04 if 12

1 cos( ) otherwise
c

θ
θ

⎧ >⎪= ⎨
−⎪⎩

 

Each experiment consists of a series of trials until either a trial 
resulting in pendulum remaining balanced for about 42,000 
simulated steps corresponding to 14 minutes of real time or a 
maximum of 180 trials. Results are averaged over 100 
experiments. 
 
Controller Comparison: Performance 
 
Table 1 summarizes trials needed to balance the pendulum for 
42,000 simulated steps: 
 

TABLE I 
CONTROLLER COMPARISON: CONSISTENCY OF PERFORMANCE 

 
Controller Average 

 
Maximum Minimum Standard 

Deviation 
MG-1 51.04 114 32 21.21 
MG-2 77.23 180 35 34.27 

Q 138.24 180 38 54.71 
 

As can be seen from Table1, the average, maximum and 
minimum number of trials required to balance the pendulum is 
lower in case of both Markov Game-1 and Markov Game-2 
controllers than the corresponding Q controller.  Out of all the 
controllers MG-1’s performance is the best.  Fig. 2 displays a 
typical trajectory of the pole angle from a successful MG-1 
trial, for the first 300 balancing steps. It is to be noted that the 
pole angle’s maximum deviation from the vertical is less than 
0.09 radians or 05θ =  even though the failure condition is 

012θ > . 
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Fig. 2 Pole angle trajectory 

 
      Controller Comparison: Consistency 
 
         Fig. 3 shows a comparative evaluation of the MG-1 
controller against Q controller, in terms of number of trials 
needed to balance the pendulum in each experiment, for 25 
experiments.  For Q controller, a number of experiments had 
to be stopped at 180 trials (without balance), clearly indicating 
the inability of the Q controller in handling the noise and 

parameter variations while none of the experiment in MG-1 
exceeded 114 trials. From Fig. 3 and a comparison of standard 
deviation values from table 1 we see that the MG-1 controller 
is far more consistent in performance than the Q controller. 
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Fig. 3 Consistency comparisons of MG-1 and Q Controller 
 

Further, as can be seen from fig. 4 and a comparison of 
standard deviation values from table 1, MG-2 controller 
achieved a significantly better consistency than the Q 
controller. Here again MG-1 controller outperformed the MG-
2 controller. The inferior performance of the MG-2 controller 
is probably due to the fact that MG-2 has been designed 
explicitly to optimize in non-stationary environments or for 
situations wherein we have an adaptive opponent. In presence 
of time-varying noise or with adaptive opponent, we expect 
MG-2 to outperform the MG-1 algorithm. 
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Fig. 4 Consistency comparisons of MG-2 and Q Controller 
 

In terms of computational demand Q controller has the 
least computation per iteration while in MG-1 we need to 
solve two linear programs per iteration and one for MG-2. The 
higher computational effort required for MG-1 and MG-2 in 
comparison to Q controller is a very small price to pay when 
we consider the significant increase in the performance and 
consistency of the designed controllers. Further, the 
computational effort requirement in MG-1 and MG-2 can be 
reduced by approximations to the solution of the Linear 
Programs or iterative methods as suggested in [1]. 
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V. CONCLUSIONS AND FUTURE WORK 
 

The paper presents two novel Markov game-theoretic 
algorithms for optimizing controllers that to produce safe and 
reliable controller designs. The algorithms advocates safe play 
when the environment or opponent is relatively unknown and 
a mixed strategy incorporating elements from the fictitious 
play or cautious fictitious play, when the transition 
information leads to a fair idea of opponent’s strategy. It 
exploits the capability of the fictitious play and cautious 
fictitious play to produce a payoff higher than the min-max 
and a more reliable behavior. Simulation results of applying 
the approach on a simulated inverted pendulum swing-up task 
and its comparison to Q learning shows that the approaches 
could be utilized for effective noise/disturbance cancellation 
in the controller design. The results show that a Markov game 
formulation of the control problem gives better results than 
the Q learning solution. Further, Markov game setup allows us 
to use efficient approaches like FP and CFP, from the game 
theory literature, for controller optimization. An important 
area for future research could be a hybrid game theoretic 
formulation for the control problem with a time varying model 
for the disturbances. We hope that such a formulation would 
address the problem to the fullest extent and may give better 
results as it fits the game-theoretic framework to a greater 
extent. These algorithms can be extended to optimize the 
behavior of an agent in multiplayer environments where 
several adaptive agents compete against each other.  

 
APPENDIX 

 
We test the proposed approach on a simulated inverted 

pendulum control task as in [7]. The inverted pendulum 
problem requires balancing a pendulum of unknown mass and 
length, in an upright position by applying forces of fixed 
magnitude, to the cart it is attached to as shown in fig. 5. 
 

 
 

Fig. 5 Inverted pendulum problem 
 

Three actions are allowed: left force LF ( 50−  Newton), right 
force RF (+50 Newton) and no force NF (0 Newton). The 
state-space of the problem is continuous and consists of 

vertical angle of the pole and its angular velocity
.

( , )θ θ . The 
transitions are governed by the nonlinear dynamics of the 

system [7] and depend on current state 
.

( , )θ θ  and the current 
control F: 

1 1

1

. 2.. sin( ) ( ) sin(2 ) 2 cos( )
2(4 / 3) cos ( )

g ml F

l ml

θ α θ θ α θ
θ

α θ

− −
=

−
             (21) 

where g is the gravity constant 2( 9.8 / )g m s=  , m is the 
mass of the pendulum (m=2.0 kg), M is the mass of the cart(M 
= 8.0 kg), l is the length of the pendulum(l = 0.5m)and 

1 1 ( )M mα = + . The system is simulated by numerically 
approximating the equation of motion using Euler’s method, 
with a time step of T= 0.1 sec, as suggested in [12] and 

discrete-time state equations of the form 
.

1 T tttθ θ θ= ++ . 

Pendulum Initialization and Trajectory Generation 
 

Each simulated trial is started from position (β1, β2), where 
each βi (1 ≤ i ≤ 2) is a random number between 0 and 0.01. 
Starting from state (β1, β2), the controller applies force 
actions, as per the current ε-soft policy (exploration-
exploitation depends on parameter ε) [16], i.e., with 
probability ε it takes uniformly random action and with 
probability (1- ε) it takes action as per the current greedy 
policy, thus generating a trajectory through the state-space. 
The only information regarding the goal is provided by a 
delayed failure signal, which is to be minimized over time. No 
analytic objective function is available and learning is based 
on occurrence of the failure signal. The task is a difficult 
assignment-of-credit problem as failure may occur only after a 
very long sequence of actions 

Noise and disturbance act as the second player or the 
maximiser. We added two types of noise to the controller’s 
output, i.e., (i) a uniform noise in [-10 10] Newton or 20% of 
the force magnitude with a probability of (2/3) (ii) 
deterministic noise of 10±  Newton with a probability of 
(1/3). This noisy control is applied to the plant giving next 
state s(t+1).We conducted trials until a trial that successfully 
balanced the pole for some defined simulated steps as in [12]. 
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