
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

652

Abstract—Enterprise applications are complex systems that are

hard to develop and deploy in organizations. Although software
application development tools, frameworks, methodologies and
patterns are rapidly developing; many projects fail by causing big
costs. There are challenging issues that programmers and designers
face with while working on enterprise applications. In this paper, we
present the three of the significant issues: Architectural,
technological and performance. The important subjects in each issue
are pointed out and recommendations are given. In architectural
issues the lifecycle, meta-architecture, guidelines are pointed out.
.NET and Java EE platforms are presented in technological issues.
The importance of performance, measuring performance and
profilers are explained in performance issues.

Keywords—Enterprise Applications, Architecture, Technology,

Performance.

I. INTRODUCTION
NTERPRISE applications identify the main components of
organizations, information systems and how the

components including staff, technology, business and
resources work together to achieve business objectives [1].
Enterprise applications are very complex systems that are hard
to design and implement.

Software development and software architecture have
received much attention in the last decade even in highly
respected big companies and small software firms in all over
the world. The growing role of designing and organizing the
system before coding is definitely covered and the importance
of software architectures, design principles, design patterns
etc. is understood exactly.

Many design tools, frameworks, design patterns are being
developed for designing software systems but unfortunately
still lots of projects fail because of many causes. The Chaos
Report in 2004 [2] states that the project success rate is 34
percent of all projects. The project failure rate is 15 percent of
all projects. 51 percent of all projects are over time, over
budget or lacking critical features and requirements.

Manuscript received March 10, 2007.
Melek Oktay is with the Computer Engineering Department, Fatih

University, Istanbul, 34500 Turkey (corresponding author to provide phone:
+90-2128663300-5520; fax: +90-2128890906; e-mail: moktay@fatih.edu.tr).

Ayşe Betül Gülbağcı is with the Computer Technologies and Programming
Department, Vocational School, Fatih University, Istanbul, 34500 Turkey (e-
mail: betule_mail@yahoo.com).

Mustafa Sarıöz is with the Computer Engineering Department, Fatih
University, Istanbul, 34500, Turkey (e-mail: msarioz@fatih.edu.tr).

According to the success and failure percentages, it can be
indicated that it is very hard to achieve success in enterprise
applications.

A large number of people at different backgrounds are
involved in enterprise applications. There are complex
businesses, management and technical issues which are
difficult to control. Also it takes 6-7 years to complete an
enterprise application from early design to successful
company transformation [3]. Therefore, it is not unusual to
have so many problems like over-budgeting, over-time in
enterprise applications. There are many pitfalls, bottlenecks
and confusing works from beginning to end of an enterprise
application.

In this paper we propose to analyze the significant issues in
enterprise applications. In enterprise applications, naturally
there are lots of things to consider due to the complexity of the
system but it is impossible to cover all of the issues.
Therefore; we will present the architectural, technological and
performance issues in enterprise applications and give some
recommendations to overcome the common problems in
enterprise applications.

This paper is structured as follows: In Section 2, the
architectural issues in enterprise applications are presented. In
Section 3, the technological issues including Java EE and
.NET platforms are pointed out and the frameworks in Java
EE are mentioned. In Section 4, the performance issues are
presented.

II. ARCHITECTURAL ISSUES
Architectural issues are defined in the phases of software

lifecycles. The software lifecycle is an abstract representation
of software process that defines the software development
strategy, steps, methods, activities and product of a software
application.

Developing an enterprise application begins with analyzing
and organizing the elements according to the requirements and
sources. Then comes, designing the system, defining the true
architecture and implementing the architecture in high quality.
The traditional lifecycle phases of a software application are
shown in Fig. 1.

Architectural, Technological and Performance
Issues in Enterprise Applications

Melek Oktay, Ayşe Betül Gülbağcı, and Mustafa Sarıöz

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

653

Fig. 1 Software lifecycle

The first step of a good architecture is well done analysis.

In the beginning phases, organizational units and business
functions to be supported by the system are defined. Also the
technical environment and draft project plans are described.

In requirement analysis phase, lack of understanding and
communication with customer is an important pitfall that
affects the architecture of enterprise applications. It is
impossible to think through all the issues that users need
properly; but it is important to understand the requirements
correctly. The necessities of users change continuously and
this causes redesigning the architecture. Designing the system
according to the wrong/changing requirements causes
headaches [4] in most of the enterprise applications. If a
project deviates too far away from original specifications and
does not meet the user requirements, it fails because of being
late or over-budget. The solution is communicating the users
more often and to get requirements correctly.

Making the right architectural decisions is very important.
Today’s software can be legacy system of tomorrow; therefore
good architectures are needed [5]. When beginning a project,
the decision of using an existing architecture/framework or
designing a new one must be made. Architectural decisions
are made according to the requirements at different levels.
Since architecture is the structural elements of the system
together with their externally visible properties and
relationships, high level and low level decisions must be
made.

High level decisions are related with the integrity and
structure of the system which is called “meta-architecture”.
Meta-architecture involves style, patterns of composition or
interaction, principles, and philosophy, rules certain structural
choices out, and guides selection decisions and trade-offs
among others [6]. As seen in Fig. 2, architecture is the middle
layer and by taking care of meta-architecture, architectural
diagrams and system priorities are formed. In low-level
architecture, architectural guidelines and policies are decided
by using design patterns, frameworks, infrastructure and
standards.

Fig. 2 Architecture

Software architecture should be designed well and it should
be supported with design patterns, reusable class libraries that
allow great flexibility for the project [28]. Especially design
patterns are elegant solutions for common problems and they
provide usability to architecture.

Before the enterprise software architecture is designed,
some of the existing architectural frameworks such as MVC
[13], PCMEF [11] and XWA [10] should be analyzed;
because the appropriate framework simplifies the architecture.

MVC is Model–View-Controller paradigm that separates
View from Model. Model is the non-visual object that consists
of application data. View is responsible from showing Model
data in a user interface. Taking input from user, managing the
model and updating View is a Controller’s responsibility [13].

PCMEF is layered paradigm that consists of presentation,
control, domain, domain and foundation layers [11]. The aim
of PCMEF is minimizing package coupling, decreasing
dependency and increasing stability with using downward
dependencies (higher layers depends on lower layers). When
upper layers are changed, lower layers are not affected; this
provides loose coupling and allows programmer to build
roundtrip architectural modeling [28, 11, 29, 30].

XWA (Extensible Web Architecture) is based on MVC and
PCMEF combines the advantages of these frameworks [31].

III. TECHNOLOGICAL ISSUES
Enterprise applications are developed with development

platforms. A development platform includes programming
language/s, run-time environment, and reusable class libraries.
Using the right application development platform is very
significant. If there exist troubles related to the development
platform, changing the development platform may be
expensive or impossible.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

654

It is a well known fact that most of the computing platforms
are Turing Complete, so software developed with one
platform can be developed with other platforms in theory.
Although the development platforms facilitate solutions of the
problems, accumulations of one platform may be more
improved than the others. Therefore, selecting the true
platform is considerable for the success of the project.

There are two leading technologies in enterprise-level
application development: .NET [16] and Java EE [17]. In
addition, there are alternative technologies like WebObjects
[18], Coldfusion [19], and PHP (Hypertext Preprocessor) [20].

.NET is a Microsoft product described as the software that
connects information, people, systems and devices. Java EE is
a set of specifications for developing enterprise-level
applications, created by the Java Community Process (JCP).

We will analyze .NET and Java EE platforms according to
dependency, vendor, usage of web services, cost and security.

.NET is a language independent platform that allows
programmers to use different properties of programming
languages such as C#, VB.NET J# (Java for .Net) etc.
Besides, .NET is tied closely to the Windows operating
system. It is possible to say that if Windows-only environment
is being used then Microsoft.Net provides good solutions for
enterprise applications (with limited choice and limited
influence on future directions but the benefits of one source
and a known supplier) [21].

Java EE is platform independent that runs on any operating
system. However, only java can be used as a programming
language. This property of Java EE provides an advantage in
heterogeneous environments that include different platforms
[21].

Also one of the main advantages of Microsoft.NET is its
integrated support for web services. Java Platform achieves
this with many components [22]. Since Java has the
disadvantage of being developed long before Web Service
Standards are set, there is not an integrated architecture for
web services in Java EE. However Sun has taken aggressive
steps to incorporate Web Services into the Java EE standard
[21].

Microsoft is a proprietary product based on unpublished
standards with valuable costs; but Java EE has an advantage
about multi-vendor support, which includes commercial and
noncommercial solutions.

Security is an important issue that every enterprise project
must satisfy. Security is a comprehensive phenomenon which
includes secure communication, access control, user
authentication, auditing and tracking etc... .Net and Java
platforms have strengths and weaknesses about security.

.NET utilized the past experience of Java EE, so while java
evolves its security capabilities gradually, .NET incorporated
more security capability into its original design. Because of
simpler and clearer design, .NET provides advantages in
security and scalability. Another important point is the
Internet Information Server (IIS) that is the web server of
.NET. It is one of the most attacked server software in the
world [23].

Table I summarizes the properties of .NET and Java EE
explained above.

TABLE I
JAVA EE AND .NET

 .NET Java EE

Dependency Platform dependent
Language independent

Platform independent
Language dependent

Vendor Microsoft 30+

Web
services

Integrated support for
web services

 Web services is retrofitted to
Java by APIs,

 Have wider choices

Cost A proprietary product
Has some valuable cost

Commercial and non-
commercial multi-vendor

support

Security

Simpler and clearer
security design

IIS is the most attacked
server

Complex security design

Java EE and .NET Enterprise applications are generally

considered as multi-tiered applications that consist of three
tiers: application (client) tier, middle tier and EIS (Enterprise
Information System) tier. The tiers in Java EE and .NET are
illustrated in Fig. 3.

Fig. 3 Java EE and .NET tiers

The application tier is the client side of application. In Java

EE, client tier includes java applets, web browsers and java
applications. In .NET, there are applications developed with
Windows forms and web browsers in client tier.

The second tier is the middle tier, which is divided into two
parts: web tier and business tier. In web tier, Java EE uses JSP
and Servlets, but .NET technology offers ASP.NET. Business
tier performs data logic and business processing which are the
core functionalities of an application. In Java EE, business

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

655

code is handled with Enterprise Java Beans (EJB). .Net offers
.NET Managed Components as a business tier component of
enterprise architecture.

The third layer is EIS tier, which consists of database
servers, enterprise resource planning systems, and other
legacy data sources, like mainframes. Most of the large
corporations have existing codes. Both of the technologies
offer solutions for legacy integration. .NET uses Host
Information Server to connect to legacy systems; but Java EE
offers Java EE Connector Architecture (JCA) for integration.
 An application development platform may have complex
technologies that are hard to use. For this reason, it is essential
to have different alternatives for the programmers In Java EE
many frameworks are developed in each tier to simplify the
complex processes and decrease the application development
period. In the subsection below the frameworks in Java EE are
briefly described.

A. Frameworks in Java EE
In Java EE there are many third-party products and open

source frameworks. In this section, we will briefly present the
third-party products and frameworks used with Java EE.
There are different technological choices in Java EE becoming
popular in recent years. The open source frameworks and
third party products in each tier are shown in Fig. 4.

Fig. 4 Java EE frameworks

In the last couple of years, many Web Application

Frameworks (WAFs) are developed with Java. WAF is a
reusable, skeletal, semi-complete modular platform that can be
specialized to produce custom web browsers via Http(s)
protocol [9]. WAF applies Model-View-Controller design
pattern to web applications and it is typically in the Model 2
architecture, so it can be separated from presentation tier with
application logic. It makes software development and team
organization simpler. Therefore, these frameworks facilitate
software development and reduce the amount of time and
effort significantly. JSF [32], Struts [33], Tapestry [34],
Webwork [35] and Spring MVC [36] are examples of WAF.
Taxonomies of these frameworks are described in [9]. These
kinds of Web Application Frameworks are fully developed in

Java. Briefly, these frameworks make Java Platform more
practical and applicable.

In the middle tier, Enterprise Java Beans (EJB) technology
is used. Although the EJB is good for transactional processing
[24], it is very complex [13, 15, 24]. The complexity of EJB
makes using it difficult for the reasons below [15]:

• It makes application harder to test.
• It makes harder to deploy application.
• EJB makes simple things harder.
• Reduced choice of application servers.

Programmers of Java EE platform can use Spring
Framework [25] which is a good alternative of EJB. Spring
Framework is not as complex as EJB because of its
lightweight container architecture. The lightweight container
architecture makes Spring run outside of EJB container, so
Spring can run on a simple Servlet Container such as Tomcat.
The Spring Framework makes application testing easy, and
also decreases the complexity of application server
administration and allows programmers greater portability
[26].

EIS tier includes Object Relational Mapping (ORM). ORM
is a programming technique that converts data to incompatible
type systems in databases and object-oriented programming
languages. Most of the enterprise projects use database and
the developed software run with the database. The software
developed always has to convert application data to database
entity and database entity to application data with converters.
For this reason, programmers should implement their
converters but this takes so much effort and time. The ORM
frameworks are developed to meet necessity of converters
such as Hibernate [37], iBatis [38], Cayenne [39], Spring
ORM [36] and Apache OJB [40].

IV. PERFORMANCE ISSUES
Performance has an important role especially in real world

enterprise applications and it often determines the success or
failure of enterprise applications [6].

However it is difficult to make decisions about performance
from just looking at the design. Rather, people have to
actually run the code and measure performance [7]. If
programmers have not been satisfied about performance and
want to optimize code for improving performance, they must
have real evidence about it. It is important to make the
performance tuning in early cycles of the project. If there are
architectural mistakes or dangerous bottlenecks, it is
beneficial to catch them in early cycles of the project and
redesign the architecture.

For getting real evidence and ensure level of performance,
programmers should use some benchmarks such as web-load
testing tools (Microsoft Web Application Stress Tool (WAS),
Apache JMeter, etc...). These tools create multiple
connections to the web application like real applications in
production. Purpose of this test is to measure or observe
behaviors of a web application when it is in production, and
also find any bottlenecks if there are. For this reason, the
application should run on production hardware or the closest
available hardware to production hardware [8]. In addition to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

656

this, configuration of application should be the same as
production level such as logging level, framework
configuration, VM configuration, etc.

If any bottleneck is found in the application, a profiler
could help to determine which method or methods are the
reasons. Then, the method is found and optimized. If an
application meets performance and throughput requirements,
people should not spend much time with profiling or
optimizing.

Profiling can indicate which pieces of slow code matter. A
profiler can help programmers to find the slow methods even
in thousands of codes so programmers do not need to worry
about and also computers are much better at that kind of task
than humans [6]. In addition to find slow codes in application,
profiling can be helpful for understanding dynamic behaviors
of code for example, unnecessary call method or accidentally
calling method twice. A good profiler can show number of
objects of each class being created.

V. CONCLUSION AND FUTURE WORK
Enterprise architectures are very complex information

systems which involves many people from different
backgrounds and different business, management and
information processes. From the first phase to last phase of
software development, there are many important points which
should be concerned. In this paper, we focused on
architectural, technological and performance subjects which
are essential to develop supportable and extensible enterprise
applications.

The important factors in the problem analysis, requirement
analysis and design phases that affect the software architecture
are summarized. The significance of architectural decisions is
also mentioned. The meta-architecture concept involves high
level decisions such as structural decisions, principles, and
philosophy of software. Some architectural frameworks such
as MVC, PCMEF and XWA should be used.

In technology issues, we have considered available
platforms for enterprise applications. Solution domain is
directly related to the platform used. If environment is
heterogeneous (such as Windows, Linux and Mac OS X), it is
appropriate to use Java EE platform. And also multi-vendor
support, third-party product and open source projects increase
productivity and efficiency of Java EE. However, if the
solution domain platform is windows-only, .NET is a feasible
platform. The architecture of enterprise applications is divided
into three tiers which are application (client) tier, middle tier
and EIS (Enterprise Information System) tier. In Java EE,
there are many third-party products and open source
frameworks for each tier. This provides alternatives to
programmers while implementing an application.

Performance determines the success or failure of a project.
First, efficient and suitable software architecture should be
chosen. If architecture is designed well and it is supported
with design patterns, reusable class libraries allow great
flexibility for the project. If a project does not meet
performance requirements, the whole project goes for nothing
and it fails. Determining the performance is not feasible by
just looking at the code; to have real evidence about

performance the code should be run to get the right
performance.

As future work, we will implement an enterprise web
application by following the architectural, technological and
performance issues presented in this paper. We propose to use
open source third party Java EE frameworks (Spring, JSF and
Hibernate) and implement a enterprise application to be used
in municipalities.

REFERENCES

[1] S.H. Kaisler, F. Armour, M. Valivullah, “Enterprise Architecting:

Critical Problems”, IEEE Proceedings of the 38th Hawaii International
Conference on Systems Sciences, 2005, pp. 224b.

[2] The Standish Group. Available: http://www.standishgroup.com
[3] P. Booth, Z. Matolcsy, B. Wieder, ERP Systems Survey Benchmark

Report, 1999. Enterprise Resource Systems Project, University of
Technology, Sydney.

[4] M. Fowler., "Is Design Dead?”, Software Development Magazine, Nr. 4,
Apr. 2001.

[5] S. Tilley, “Five Year of Web Site Evolution”, 5th IEEE International
Workshop on Web Site Evolution, pp. 103- 107, 2003.

[6] R. Malan and D. Bredemeyer,(2002). “Software Architecture: Central
Concerns,Key Decisions”. Available:
http://www.bredemeyer.com/pdf_files/ArchitectureDefinition.PDF

[7] IEEE Standard 1061-1992, Standard for Software Quality Metrics
Methodology, New York: Institute of Electrical and Electronics
Engineers, 1992.

[8] IISO/IEC 9126-1, Software Engineering - Product Quality - Part 1:
Quality Model, 2001.

[9] T. C. Shan, W. W. Hua, “Taxonomy of Java Web Application
Frameworks,” in Conf. Rec. 1995 IEEE Int. Conf. on e-Business
Engineering, pp. 378–385.

[10] L. Madeyski and M. Stochmial/ek, "Architectural Design of Modern
Web Applications," Foundations of Computing and Decision Sciences,
vol. 30, no. 1, pp. 49--60, 2005. [Online]. Available: http://madeyski. e-
informatyka.pl/download/23.pdf

[11] L. A. Maciaszek, B. L. Liong, Practical Software Engineering, Addison
Wesley, 2004.

[12] R. Johnson, Expert one-on-one J2EE Development without EJB, Wrox,
2004.

[13] M. Fowler, Patterns of Enterprise Application Architecture, Addison-
Wesley, 2003.

[14] R. Johnson, Expert one-on-one J2EE Design and Development, Wrox,
October 2002.

[15] Microsoft .NET platform http://www.microsoft.com/net/default.mspx
[16] Java Platform, Enterprise Edition, http://java.sun.com/javaee/index.jsp
[17] Apple WebObjects , http://www.apple.com/webobjects/
[18] Adobe ColdFusion, http://www.adobe.com/products/coldfusion/
[19] PHP, http://www.php.net/
[20] A. Aitken, “An Overview and Comparison of Three Major Enterprise

Application Development Platforms”, in Conf. Rec. 2005 IEEE Int.
Conf. Industrial Informatics, pp. 268-274, 2005.

[21] S. Kachru, E. F. Gehringer, “A Comparison of J2EE and .NET as
Platforms for Teaching Web Services,” 34th ASEE/IEEE Frontiers in
Education Conference, October 2004.

[22] G. Kunene:, “Software Engineers Put .Net and Enterprise Java Security
to the Test”, http://www.devx.com/enterprise/Article/16823/

[23] T. Neward, Effective Enterprise Java, Addison-Wesley, 2004.
[24] R. Johnson, J. Hoeller, A. Arendsen, T. Risberg , C. Sampaleanu,

“Professional Java Development with the Spring Framework ”, Wrox,
2005.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

657

[25] J. Arthur, S. Azadegan, “Spring Framework for rapid open source J2EE
Web Application Development: A case study”, IEEE 1st AGIS
Conference, 2005.

[26] R. Johnson, “J2EE Development Frameworks”, IEEE Computer,
Vol.38, 2005.

[27] E. Gamma, R. Helm., R. Johnson, J. Vlissides, Design Patterns,
Elements of Reusable Software, Addison Wesley, 1995.

[28] L. A. Maciaszek, Roundtrip Architectural Modeling, Conf. in Research
and Practice in Information Technology Series, Vol. 107, 2005.

[29] L. A. Maciaszek, Developing Supportable Enterprise Information
Systems – Architectural, Managerial and Engineering Imperatives, Int.
Conf. on Software Maintenance, pp. 721-722, 2005

[30] L. A. Maciaszek, “Developing Supportable Enterprise Information
Systems – Architectural, Managerial and Engineering Imperatives,”
Proceedings of the 21st IEEE Int. Conf. on Software Maintenance,
pp.721-722, 2005.

[31] L. Madeyski and M. Stochmialek, "Architectural Design of Modern Web
Applications," Foundations of Computing and Decision Sciences, vol.
30, no. 1, pp. 49--60, 2005.

[32] Java Server Faces, http://java.sun.com/javaee/javaserverfaces/
[33] Apache Struts, http://struts.apache.org/
[34] Apache Tapestry, http://tapestry.apache.org/
[35] Webwork ,http://www.opensymphony.com/webwork/
[36] Spring Framework , http://www.springframework.org/
[37] Hibernate, http://www.hibernate.org/
[38] Apache iBatis, http://ibatis.apache.org/
[39] Apache Cayenne, http://cayenne.apache.org/
[40] Apache OJB, http://db.apache.org/ojb/

