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Hopf Bifurcation for a New Chaotic System
Kejun Zhuang

Abstract—In this paper, a three dimensional autonomous chaotic
system is considered. The existence of Hopf bifurcation is investi-
gated by choosing the appropriate bifurcation parameter. Furthermore,
formulas for determining the direction of the Hopf bifurcation and
the stability of bifurcating periodic solutions are derived with the help
of normal form theory. Finally, a numerical example is given.
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I. INTRODUCTION

IN 1963, Lorenz found the first canonical chaotic system in
[1] as follows, ⎧⎨

⎩
ẋ = a(y − x),
ẏ = cx− xz − y,
ż = xy − bz.

(1)

The system has been extensively studied in the fields of
chaos theory, dynamical systems as well as chaos control and
synchronization. Later, an even simpler chaotic system was
constructed in [2]: ⎧⎨

⎩
ẋ = −(x+ y),
ẏ = x+ ay,
ż = zx− cz + b.

(2)

From then on, some other chaotic systems were established,
such as Chen system [3], Lü system [4], Liu system [5],
Qi system [6], T system [7] and so on. Basic dynamical
properties of these systems were studied by means of the-
oretical analysis, numerical simulation, Lyapunov exponent
spectrum, bifurcation diagrams and Poincaré section diagrams.
The chaotic systems have great potential applications in secure
communications.

In this paper, we mainly consider a three dimensional
autonomous chaotic system proposed by Wang et al. [8–9]
in the form ⎧⎨

⎩
ẋ = a(x− y),
ẏ = −cy + xz,
ż = −bz + dxy,

(3)

where (x, y, z) ∈ R3 and a, b, c, d ∈ R. It has a chaotic
attractor as shown in Fig.1 when a = 20, b = 2, c = 28 and
d = 1. For system (3), stability of equilibria and heteroclinic
orbit of Shil’nikov type have been investigated. However,
the relationship between the Hopf bifurcation and the system
parameters has not been clarified yet.

The aim of this paper is to study the Hopf bifurcation from
equilibrium by taking one coefficient as bifurcation parameter.
By applying normal from theory and center manifold theorem,
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the direction of Hopf bifurcation and the stability of bifur-
cating periodic solutions are presented. Finally, a numerical
example is given to support the analytic results.
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Fig. 1. Chaotic attractor of system (3) with a = 20, b = 2,
c = 28 and d = 1.

II. LOCAL STABILITY AND EXISTENCE OF HOPF
BIFURCATION

By simple analysis, it is easy to obtain that if bcd < 0, then
system (3) only has one equilibrium O(0, 0, 0); if bcd > 0,
then system (3) has three equilibria O(0, 0, 0), E1(x0, y0, z0)
and E2(−x0,−y0, z0), where x0 = y0 =

√
bcd/d, z0 = c.

Lemma 2.1. For system (3), we have the following results:
(i) if a > 0, b < 0 and c < 0, then O(0, 0, 0) is asymptotically
stable;
(ii) if a < 0 or b > 0 or c > 0, then O(0, 0, 0) is unstable;
(iii) if b + c − a > 0, abc > 0 and ab(a − b − 3c) > 0, then
E1 and E2 are asymptotically stable.
Proof. (i) and (ii) are obvious, we mainly consider the third
result. Let x1 = x − x0, y1 = y − y0, z1 = z − z0, we can
shift the equilibrium to the origin:⎧⎨

⎩
ẋ1 = a(x1 − y1),
ẏ1 = −cy1 + x0z1 + z0x1 + x1z1,
ż1 = −bz1 + dx0y1 + dy0x1 + dx1y1.

(4)

The characteristic equation of system (4) is

f(λ) = λ3 + (b+ c− a)λ− abλ+ 2abc = 0. (5)

Let A = b+c−a, B = −ab and C = 2abc. By Routh–Hurwitz
criteria, the roots of (5) have strictly negative real parts if and
only if A > 0, C > 0 and AB − C > 0. Then we have

b+ c− a > 0, abc > 0, ab(a− b− 3c) > 0.

This completes the proof.
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Assume a < 0 < b, condition (iii) in Lemma 2.1 can be
simplified as

a− b

3
< c < 0.

Hence, A > 0, B > 0, C > 0, and we have f(λ) > 0 for
any λ > 0. There is an instable equilibrium only if there are
a pair of complex conjugate roots for (5). Let these two roots
be λ1,2 = ±iω, then we have

λ1 + λ2 + λ3 = a− b− c.

Therefore, λ3 = a− b− c, which is on the margin of stability
for system (3). Then we have

f(λ3) = −ab(a− b− 3c),

and
c = c0 =

a− b

3
.

Thus, Hopf bifurcation may occur at E1 and E2. Next, we will
prove that the positive equilibrium E1 will lose its stability
when c = c0.
Theorem 2.2. Assume a < 0 < b and c < 0, d < 0,
when c passes through the critical value c0 = a−b

3 , system
(3) undergoes a Hopf bifurcation at the equilibrium E1.
Proof. If c = c0, then equation (5) is equivalent to

(λ2 − ab)(λ+
2(b− a)

3
) = 0.

Therefore, the characteristic equation has a pair of purely
imaginary roots λ1,2 = ±i

√−ab and a negative real root
λ3 = 2(a−b)

3 .
Differentiating both sides of equation (5) with respect to c,

we obtain
dλ
dc

= − λ2 + 2ab
3λ2 + 2λ(b+ c− a) − ab

,

and
dReλ

dc

∣∣∣∣
c=c0

= − 54a2b2

36a2b2 − 16ab(a− b)2
< 0,

dImλ
dc

∣∣∣∣
c=c0

=
36ab(b− a)

√−ab
36a2b2 − 16ab(a− b)2

< 0.

According to Hopf bifurcation theorem in [10], we can con-
clude that c0 is the critical value. The equilibrium E1 is stable
when c > c0 and there exist periodic solutions when c < c0.
The conclusions follows.

III. PROPERTIES OF HOPF BIFURCATION

In this section, we shall derive the explicit formulae de-
termining the direction, stability, and period of these periodic
solutions bifurcating from E1 at c0, by using techniques from
normal form theory and center manifold theorem [10].

Let the eigenvectors corresponding to the eigenvalues λ1 =
i
√−ab and λ3 = 2c0 be u1 + iu2 and u3. By direct

calculations, we get

u1 =

⎛
⎝ 1

1
0

⎞
⎠ , u2 =

⎛
⎜⎝

0
−ω

a
d
√−a(a−c)

a
√

cd

⎞
⎟⎠ , u3 =

⎛
⎝

1
a−2c

a
ad

2bc
√

bcd

⎞
⎠ .

Define

P = (u1,−u2, u3) =

⎛
⎝

1 0 1
1 ω

a
a−2c

a

0 − d(a−c)√−acd
ad

2bc
√

bcd

⎞
⎠

and ⎛
⎝ x1

y1
z1

⎞
⎠ = P

⎛
⎝ x2

y2
z2

⎞
⎠ .

Then ⎧⎨
⎩

ẋ2 = −√−aby2 + F1(x2, y2, z2),
ẏ2 =

√−abx2 + F2(x2, y2, z2),
ż2 = (a− b− c)z2 + F3(x2, y2, z2),

(6)

where

F1(x2, y2, z2) = −d(x2 + z2)
(
x2 +

√−ab
a

y2 +
a− 2c
a

z2

)
,

F2(x2, y2, z2) = d(x2 + z2)

[
−4bc2

√
bcd

a
√−ab x2 −

(
4bc2

√
bcd

a2

+
ad(a− c)√−acd

)
y2 +

(
a2d

2bc
√
bcd

−4bc2
√
bcd

a
√−ab

)
z2

]
,

F3(x2, y2, z2) = −F1(x2, y2, z2).
According to the procedures proposed by Hassard et al. [10],

we can get

g11 =
1
4

(
∂2F1

∂x2
2

+
∂2F1

∂y2
2

+ i
(
∂2F2

∂x2
2

+
∂2F2

∂y2
2

))

= −d
4

(
1 + i

4bc2
√
bcd

a
√−ab

)
,

g02 =
1
4

(
∂2F1

∂x2
2

− ∂2F1

∂y2
2

− 2
∂2F2

∂x2∂y2
+ i
(
∂2F2

∂x2
2

− ∂2F2

∂y2
2

+2
∂2F1

∂x2∂y2

))

= −d
4

(
1 − 2

(
4bc2

√
bcd

a2
+
ad(a− c)√−acd

))

−i
d

4

(
4bc2

√
bcd

a
√−ab + 2

√−ab
a

)
,

g20 =
1
4

(
∂2F1

∂x2
2

− ∂2F1

∂y2
2

+ 2
∂2F2

∂x2∂y2
+ i
(
∂2F2

∂x2
2

− ∂2F2

∂y2
2

−2
∂2F1

∂x2∂y2

))

= −d
4

(
1 + 2

(
4bc2

√
bcd

a2
− ad(a− c)√−acd

))

−i
d

4

(
4bc2

√
bcd

a
√−ab − 2

√−ab
a

)
,
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G21 =
1
8

(
∂3F1

∂x3
2

+
∂3F1

∂x2∂y2
2

+
∂3F2

∂x2
2∂y2

+
∂3F2

∂y3
2

+ i
(
∂3F2

∂x3
2

+
∂3F2

∂x2∂y2
2

− ∂3F1

∂x2
2∂y2

− ∂3F1

∂y3
2

))

= 0.

From the dimension n = 3 > 2, we calculate the following,

h11 =
1
4

(
∂2F3

∂x2
2

+
∂2F3

∂y2
2

)
=
d

4
,

h20 =
1
4

(
∂2F3

∂x2
2

− ∂2F3

∂y2
2

− 2i
∂2F3

∂x2∂y2

)
=

1
4

(
d− 2i

d
√−ab
a

)
.

By solving the linear equations

λ3ω11 = −h11,

(λ3 − 2i
√−ab)ω20 = −h20,

we obtain
ω11 = − d

4(a− b− c)
,

ω20 = −
d(a− 5b− c) + i

[
2d

√−ab− 2(a− b− c)d
√−ab

a

]

4(a− b− c)2 − 16ab
.

Furthermore, we have

G110 =
1
2

(
∂2F1

∂x2∂z2
+

∂2F1

∂y2∂z2
+ i
(

∂2F2

∂x2∂z2
− ∂2F2

∂y2∂z2

))

= −d
2

(
2 − 2c

a
+

√−ab
a

)
+ i

d

2

(
a2d

2bc
√
bcd

−8bc2
√
bcd

a
√−ab +

4bc2
√
bcd

a2
+
ad(a− c)√−acd

)
,

G101 =
1
2

(
∂2F1

∂x2∂z2
− ∂2F1

∂y2∂z2
+ i
(

∂2F2

∂x2∂z2
+

∂2F2

∂y2∂z2

))

= −d
2

(
2 − 2c

a
−

√−ab
a

)
+ i

d

2

(
a2d

2bc
√
bcd

−8bc2
√
bcd

a
√−ab − 4bc2

√
bcd

a2
− ad(a− c)√−acd

)
.

So we can compute the following quantities:

g21 = G21 + (2G110ω11 +G101ω20),

c1(0) =
1
2ω

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+

1
2
g21,

μ2 = − Re(c1(0))
Re(λ′(c0))

,

β2 = 2Re(c1(0)),

τ2 = − Im(c1(0)) + μ2Im(λ′(c0))
ω

.

It is well known that μ2 determines the direction of the
Hopf bifurcation: if μ2 > 0(μ2 < 0), then the Hopf
bifurcation is subcritical (supercritical) and the bifurcating
periodic solutions exist for c > c0(c < c0); β2 determines
the stability of bifurcating periodic solutions: the bifurcating
periodic solutions on the center manifold are stable (unstable)

if β2 < 0(β2 > 0); and τ2 determines the periods of the
bifurcating periodic solutions: the periods increase (decreases)
if τ2 > 0(τ2 < 0).

From the proof of Theorem 2.2, we know that Re(λ′(c0)) <
0, therefore we have the following result.
Theorem 3.2. The direction of the Hopf bifurcation of
(3) at E1 is supercritical (subcritical) and the bifurcating
periodic solutions on the center manifold are stable (unstable)
if Re(c1(0)) < 0(Re(c1(0)) > 0).

IV. NUMERICAL EXAMPLE

Next, we shall give a numerical example of system (3). Let
a = −5, b = 5 and d = −3, we can compute the Hopf
bifurcation value c0 = − 10

3 . The equilibrium is stable when
c = −2 > c0 and unstable when c = −4 < c0, as shown
in Figs.2 and 3, respectively. From the formulas in previous
section, we have c1(0) = −553.81375 − 1060.87537i when
c = −4. Thus, the periodic solutions bifurcating from positive
equilibrium is supercritical and stable.
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Fig. 2. Phase diagram of system (3) with a = −5, b = 5,
c = −2 and d = −3.
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Fig. 3. Phase diagram of system (3) with a = −5, b = 5,
c = −4 and d = −3.

V. CONCLUSIONS

In this paper, a three dimensional autonomous chaotic
system has been studied. By choosing an appropriate bifur-
cation parameter, we prove that Hopf bifurcation occurs when
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the bifurcation parameter passes through the critical value.
The direction of the Hopf bifurcation and stability of the
bifurcating periodic solutions are analyzed in detail.

Apparently there are more interesting problems about this
chaotic system in terms of complexity, control and synchro-
nization, which deserve further investigation.
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