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Abstract—The minimal condition for symmetry breaking in 

morphogenesis of cellular population was investigated using cellular 
automata based on reaction-diffusion dynamics. In particular, the 
study looked for the possibility of the emergence of branching 
structures due to mechanical interactions. The model used two types 
of cells an external gradient. The results showed that the external 
gradient influenced movement of cell type-I, also revealed that 
clusters formed by cells type-II worked as barrier to movement of 
cells type-I. 
 

Keywords—Morphogenesis, branching structures, symmetry 
breaking. 

I. INTRODUCTION 
RANCHING structures appear both in the physical 
macroscopic world (e.g. in rivers and water streams), and 

in biological systems (e.g. branches in trees and other plants, 
lungs and blood vessels in animals, dendrit structures in 
neurons)[1] . Cellular automata are very common tools used to 
study complex systems where space distribution of the 
component parts is the main purpose of the study. This kind of 
modeling has been used to study morphogenesis and the self-
organization of form in biological systems. Additionally, 
reaction-diffusion dynamics has been very useful in modelling 
self-organization in cellular population with one, two, or more 
cellular types. Thus, it can be asked if a simple model with 
cellular automata and reaction-diffusion can be used to model 
and study the emergence of branching structures.  

Several computational experiments have been  made to 
investigate the minimal condition for symmetry breaking in 
morphogenesis of cellular population using cellular automata 
based on reaction-diffusion dynamics. In particular, the 
experiments were done to verify the possibility of the 
emergence of branching structures due to mechanical 
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interactions between cells of different types. A minimal 
system with only one type of cell was the starting point having 
no external gradient to produce circular symmetric structures. 
Then it was incrementally added more complexity to the 
model to see what were the minimal conditions for symmetry 
breaking to occur. In particular, the addition of an external 
gradient field gives preferred direction to cell movement, 
producing ablongated shapes. The artificial presence of a 
barrier is used to investigate the possibility of mechanical 
interaction influencing the movement of cells producing 
branching. A second type of cell is made to self-organize from 
initially uniform distribution to form a cluster pattern. 
Combining the two types of cells, the cluster formed by the 
second type of cells, will work as a barrier to the movement of 
the first type cell, changing the general pattern of the first cell 
population. The conclusion was that models with two types of 
cells influenced by an external gradient can provide a 
(primitive) solution for the emergence of branching structures 
due to mechanical interaction. The emergence of branching is 
the result of chemical gradients, however the combination of 
chemical and mechanical effects can not be excluded. 

The article is organized as follows: Section II describes the 
related work; section III describes the basic model of cellular 
automata with reaction-diffusion dynamics for two types of 
cells; section IV, presents the experimental results from 
primitive to more complex experiments; Section V concludes 
the paper. 

II. RELATED WORK 
Pattern formation in chemical reactors and its application to 

morphogenesis has been widely studied ever since Turing’s 
seminal paper [2]. Turing’s original contribution was to show 
that non-linear reaction-diffusion equations can produce 
waves in time and space of activator and inhibitor 
concentration reactants, whose diffusion relative speed 
influences the  distribution of the concentrations. Making cells 
grow to respond to reactants concentration can be used to 
make cell populations achieve patterns —such as spots, 
stripes, spirals [3]. Many other models of pattern formation 
have been  developed since Turing’s work , such has Gierer 
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and Meinhardt [4], Murray [5] ,Oster and Murray [6], Held 
[7],[8]. Forest [9] describes the reaction-diffusion and 
positional information theories, which provides the most 
common framework in morphogenesis modelling and 
proposes a general formalism, which is adapted to a large 
class of processes occurring in the morphogenesis tissue of 
living organisms. In the COMPUCELL framework, the 
authors used non-linear reaction-diffusion equation to study 
the emergence of limbs [10],[11]. An activor-inibitor field is 
used to determine places of high cell condensation. A model 
parameter is manually changed to modify the number of 
“bones” that is formed along the limb — from 1 to 2 to 3. The 
authors do not show how the model could be extended to 
make arbitrary complex branching structures. 

In [1] the author discusses and models the geometric 
properties of branching in animal lungs and other biological 
structures. However, this is not presented as a self-
organization model to study morphogenesis. Many of the 
simulation models, in morphogenesis, focus on the way 
chemical gradients produce pattern in cell formation. 
Mechanical interaction between cells of several types have 
also been exploited in many models to work out the patterns 
produced by a variety of cell population [12]. One research 
direction can be to see how the combination of chemical 
patterns and mechanical interaction between several cell types 
can be used to model and explain the emergence of complex 
branching structures. 

III. MODEL DESIGN 
A model with two types of cells, whose concentration is 

represented by two fields ),( yxc and ),( yxs , is considered. 

That is, ),( yxc is the number of cells of type-I at site ),( yx , 

and ),( yxs is the number of cells of type-II at the same site. 
Both types of cells are subjected to a reaction-diffusion 
dynamics, with cell movements influenced by concentration 
gradients and external fields. 

To more easily model cell movement, each cell type and 
site is associated with a (potential) energy ),( yxe value. This 
energy value combines the different aspects that affect cell 
movement with each aspect that gave additive contribution. 
Cells move in the direction of the negative gradient of the 
energy. That is, from sites with higher energy to sites with 
lower energy. The aspects influencing cell movement and 
respective energy value are described below. 

Cell adhesion makes cells cling to other cells. Here, that 
cell adhesion is only significant between cells of the same 
type. The more cells in a site, the more the clinging effect. 
Thus, adhesion is defined emerging as 

),(),( yxnyxea −∝ , where ),( yxn is the number of cells 

at site ),( yx . Considering the two types of cells 

modeled: cec
a ∝ , and sec

a ∝ . 
Repulsive forces, that balance adhesion, were considered to 

model limitations on the number of cells present in a site. For 

this, a repulsion potential was established as 
},max{ θnscoer −+∝ , where θn is the minimal number 

of cells after which repulsion is significant. 
Diffusion effects are modeled by a diffusion energy as 

follows: sced +∝ . 
A static external field was created to change cells 

movement. This is described generically as an additional 
energy value: xe . 

Overall, the equation: 

xdra eeeee +++=  
Cell movement is modeled by having each site computing 

its own energy and the energy of its neighboring sites. In the 
pair where there is the maximum difference in energy occurs 
an exchange of cells. Formally, ),( yxek is the energy of k  

neighbor of site ),( yx then, the site 'k  is selected such as: 

{ }),(),(argmax' yxeyxek kk −= . (If more than one site 

has the same value for k0, than non-diagonal adjacent sites are 
selected). Cell movement/exchange is defined as: 

 

⎩
⎨
⎧

Δ−=Δ
−∝Δ

),(),´(
),(),(),( '

yxnyxn
yxeyxeyxn k  

),( yxnΔ and ),(' yxnΔ  stand for changes on number of 

cells in sites ),( yx and selected  neighbour 'k . The total 
number of cells is left unmodified by this operation, because 
changes in the selected neighbour are the reverse of the focal 
site ),( yx . 

It is also assumed that type-I cells undergo a growth 
process. Initially, a single cell of type-I is presented in space, 
at position ),( oo yx . Its growth rate depends on the number 
of cells of type-I already present at a site. This is modelled by 
specifying the probability that a single cell of type-I produces 
another cell at each instant, define as: 

c
pc

1
∝  

Through this probability the effect of competition/sharing 
of resources between cells are modeled. 

Cells of type-II are initially distributed all over the space, 
with concrete values taken from a normal distribution: 

),(~),( 2σμNyxs . 

IV. EXPERIMENTAL RESULTS 
First the model was tested considering each type of cell 

separately — first cell type-I, then cell type-II. Later 
experimental results were presented with the two types of cells 
interacting. The following parameters were used: 40=S , 

30=θn , 1.0−=cA  is the proportionality constant of 

adhesion, and 01.=cD  is the proportionality constant of 
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diffusion. 
 

A. Null-Hypothesis: Symmetric Shapes 
Fig. 1 shows the behaviour of a cell population type-I, 

when there is no external field and no interaction with cell 
type-II. The figure depicts the evolution of cell concentration 
in different instants in time. The results show that the cell 
population takes a circular (or spherical) symmetry, when 
there is no internal or external factor that gives preferences for 
movement in a particular direction. 

 

   
 

Fig. 1 Growth and distribution of a cell population type-I. No 
external fields or resource constraints are considered. Results 

produces form with circular (spherical) symmetry 
 

B. Symmetric Breaking By External Fields 
When the cell population is emersed in an environment, a 

static field can be set up to influence the movement and shape 
of the cell population. First a static field pointing left-to right 
was experimented. This was done by defining the external 
field energy value as: xyxex −∝),( . Which  demonstrated 
that energy decays as cells move to the right. Fig. 2 shows the 
time evolution of cell concentration in the presence of this 
external field. From these results, it can be observed that the 
circular symmetry, produced by diffusion and adhesion 
dynamics, is completely modified. Cells keep moving right in 
the direction of the external field gradient, forcing the cell 
population to take a “tube” like shape. A widening of the tube 
is produced by diffusion dynamics and cell growth. This 
occurs because there is high cell density in the center of the 
axis. 
  In another experiment, an additional external field was used 
to model obstacle/barrier avoidance. Namely, a  static field 
was set so that a high energy value existed in   fixed locations 
and decayed rapidly according to a normal curve: 

*
2 pp
x ee −−

∝ , where *p was the selected obstacle location, 

and ),( yxp ≡ was some other location. Three barriers 

located at: ( ) ( ) ( )εεεε −+++ 222222 ,,,,, SSSSSS  were used. 
 

   
 

Fig. 2 Growth and distribution of a cell population type-I, with a 
external field that makes cells move left-to-right 

 

   
 

Fig. 3 Growth and distribution of a cell population type-I, with too 
external fields. Second external field produces barrier to movement 

 
Fig. 3 shows the evolution of a cell population dynamics 

and its different shapes. The results show that the second 
external field changed the movement and the different shapes 
of the cell population. Cells are forced to desviate course and 
move around barriers. This experiment was done to exemplify 
that, in many cases, the movement of biological cells in the   
macroscopic world can be compared to movement of other 
substances . Most notably, water flowing in rivers and around 
rocks and debris. In spite of this similarity, the second external 
field is highly artificial and is not intrinsic to cell dynamics. 

C. Cluster Formation 
The cluster formation in the second type of cell was 

modeled to see how the movement of cell type-I could be 
influenced by other factors intrinsic to cell dynamics. Fig. 4 
shows the evolution of concentration of cells type-II. The  
results showed that the initial homogeneous distribution 
changed to sites of high concentration due to adhesion. This 
formed clusters through all cell distribution. 

 

    
 

Fig. 4 Distribution of a cell population type-II 

D. Emergence of Branching Structures 
Combining the two cell types, plus an external field moving 

left-to-right, the dynamics and shape of cell type-I population 
suffered changes. Fig. 5 shows the evolution of cell type-I 
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population. The results showed a pattern comparable to fig. 2. 
However, the widening of cell shape was higher and many 
sites along the cell population were emptied of cells of type-I. 
This was caused by a deviation from high concentration of 
cells type-II. This presents a primitive form of self-organized 
branching structure, as occurs in many biological systems, 
such as: tree roots and tree branches, algee, neuron dendrites, 
and vascular and circulatory system in animals. 

V. DISCUSSION AND CONCLUSION 
In this article, a model with two cell types for the 

morphogenesis of primitive branching structures was 
presented, based mostly on mechanical interactions between 
the two cell types. An external gradient was used to break the 
symmetry of the pattern of cell type-I. Clusters formed by cell 
type-II worked as barriers to movement and growth of the 
population of cell type-I. The results of the pattern for cell 
type-I showed a primitive form of branching structure where 
the region occupied by high concentration of cells of type-II is 
not occupied by cells of type-I. On the other hand, the  
branching patterns that the model is able to produce are not as 
clear as those found in many biological structures, since 
branches are not perfect tubes. Moreover, branching does not 
follow any fixed branching factor. The general cell’s behavior  
resembles more the way water flows and deviates from 
macroscopic obstacles. As biological cell populations can 
grow in environments where there are already clusters made 
by other cells and other barriers, all of them can not be 
excluded as contributing factors for the formation of 
branching structures. Future work will be developed in order 
to see how complex chemical gradients can be modeled by 
nonlinear reaction-diffusion, and if they can work together 
with mechanical factors producing clearer branching pattern 
similar to natural biological structures. A possible line of 
research is to study how chemical gradients may interfere with 
the number of branches reveshowing a fractal distribution can 
be modeled, with the number of branches revealed in a fractal 
distribution of cells varying according to some parameter. 
Mechanical obstacles may be used to help the system to break 
its symmetries, promoting the creation of branches and adding 
heterogeneity to the chemical field [13]. 
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