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Abstract—High Strength Concrete (HSC) is defined as concrete The Workability of concrete is one of the functiooisthe

that meets special combination of performance andoumity

requirements that cannot be achieved routinely gusionventional
constituents and normal mixing, placing, and cupngcedures. It is
a highly complex material, which makes modelingoghavior a very
difficult task. This paper aimed to show possibfpleacability of

Neural Networks (NN) to predict the slump in Highrehgth

Concrete (HSC). Neural Network models is constadicteained and
tested using the available test data of 349 diffel@ncrete mix
designs of High Strength Concrete (HSC) gatherenh fa particular
Ready Mix Concrete (RMC) batching plant. The mostsutile
Neural Network model is selected to predict thenglun concrete.
The data used in the Neural Network models arenge@in a format
of eight input parameters that cover the Cement, A8h, Sand,
Coarse Aggregate (10 mm), Coarse Aggregate (20 rivater,

Super-Plasticizer and Water/Binder ratio. Furtheendo test the
accuracy for predicting slump in concrete, thelfsglected model is
further used to test the data of 40 different ceteemix designs of
High Strength Concrete (HSC) taken from the othaching plant.
The results are compared on the basis of error titmc(or

performance function).

relative magnitudes of various concrete mix couostits.
SLUMP TEST is one of the tests which measure the
parameters close to workability and provide useful
information about it. It is the most commonly usadthod of
measuring consistency of concrete which can be @yepl
either in lab or at the site. From this test, slusmgeduced by
measuring the drop from the top of the slumped hfres
concrete. Additional information on workability @oncrete
can be obtained by observing the shape of the slump
concrete [2].

Every type of construction requires testing of tomcrete
to determine the slump (of the fresh concrete) msuee,
whether the concrete is of desired workability atréngth or
not [3]. However, researchers have looked into
characteristic parameters that affect slump val@ieHigh
Strength Concrete. It was understood that propustiof
constituents in a concrete mix (i.e. Cement, Watantent,
Sand, Coarse aggregates, Fly Ash, and Super-Rtas}ic

the

Keywords—Artificial Neural Networks, Concrete, prediction of affects workability and are determined on the basiequired

slump, slump in concrete

[. INTRODUCTION

properties of concrete. Also, to obtain concreteledired and
suitable workability, technical personnel oftenesriseveral
mix proportions, which is a time consuming processulting

ONCRETE is the major building material being uséd ain wastage of material and cost of concrete pradocfThus,
over the world. It is known for its high compressiv for the sake of saving time and decreasing thegdesost,

strength, durability, impermeability, fire resistan and
abrasion resistance. For contributing to maximuranggth of
the structure, hundred percent compaction of coeacis
necessary. The quality of concrete satisfying thmva
requirement is termed as Workability, (a paramesemix
designer requires to specify in the mix design essg which
is defined as the property of concrete determirnhmy effort
required for placing, compaction and finishing witiinimum
loss of homogeneity. The effort required to placeoacrete
mixture is determined largely by the overall workeded to
initiate and maintain flow, which depends on thealbgical
property of the lubricant (the cement paste) arelitfternal
friction between the aggregate particles on onelhand the
friction between concrete and the surface of taenéwork on
the other [1].
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help of Artificial Neural Networks (ANN) is takem tdevelop
models, so that the knowledge extracted from themeral
network models, can be utilized to predict slumpadncrete.
The basic strategy for developing a neural netwzaked
model for predicting slump is to train a neuralwatk on the
results of a series of experiments (carried ouwdi@rmine the
slump in concrete), thus minimizing the absolutéfedénce
between the target (desired) outputs and the actugluts,
thereby resulting in approximate optimal solutiffls
Artificial Neural Networks (ANN) have been used as
efficient tools for modeling and predicting compleand
dynamic engineering systems such as structuralysisd5];
water demand forecast modeling [6]; prediction
compressive strength of concrete [3, 7, 8]; anésHesign of
reinforced concrete beams [9].However, the effortthe area
of modeling concrete slump using Artificial Neufdétworks
has been lacking, but still some researchers hademfforts
in this area. Dias and Pooliyadda [10] used badpagation
neural networks to predict slump of ready mixedatete and
high strength concrete, in which chemical admixiuaed/or

of
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mineral additives were used. Bai et al. [11] depebb Neural
Network models that provide effective predictiveahility in
respect of the workability of concrete incorporgtin
metakaolin (MK) and fly ash (FA). Bhatti et al. [12howed
possible applicability of Artificial Neural Netwosk for
predicting the slump of High Strength Concrete (HiSCe=h
[13] demonstrated the abilities of Artificial Nelnfdetworks
to represent the effects of each material comporant
concrete slump.

new information [15]. As mentioned earlier, NeuRatworks
learn by examples. They can therefore be trained kviown
examples of a problem to ‘acquire’ knowledge alibubnce
appropriately trained, the network can be put feative use
in solving ‘unknown’ or ‘untrained’ instances oftiproblem.

lll. DATA SETS

The slump test results for the Ready Mixed Concrete
(RMC) are collected from the two Ready Mix Concrete

The aim of this paper is to present a methodology fbatching plants. The data collected from the flvatching

predicting slump in High Strength Concrete (HSQ)r Ehis,

the slump test data for the Ready Mixed Concretd@Ris

collected from two batching plants. These slumpstegere
performed for various grades of concrete (i.e. MML5,

M20, M25, M30 and M35). The data contained a tofa349

slump tests results, which is used to build théfiaral Neural

Network models. Using the data (taken from the faatching
plant), Neural Network models are trained for thouit

(Cement, Fly Ash, Sand, Coarse Aggregate, WatepeiSu
Plasticizer and Water/Binder ratio) and output (§tuin

concrete) parameters. Eight different Neural Nekwmiodels
are created and validation of each network is dorgheck its
effectiveness and flexibility for the unseen inpariables.
The most versatile Neural Network model is selected
predict the slump in concrete. To test the accuraty
predicting slump in concrete, the final selecteddelois

further used to test the data taken from otherhadgcplant.

The results are compared on the basis of errortiimaor

performance function (i.e. Mean Square Error andd&lation

Coefficient).

Il. ARTIFICIAL NEURAL NETWORK (ANN)

Artificial Neural Networks (ANN) are computational
systems whose architecture and operation are etgiom
our knowledge about biological neural cells (nesjoim the
brain. These are not simulations of real neuronhésense
that they do not model the biology, chemistry, bygcs of a
real neuron. They do however, model several aspetts
information like combining and pattern recognitibehavior
of real neurons in a simple, but still in a meafihgvay.
Artificial Neural Networks can be used to learn asdroduce
rules or operations from the given examples; tdyaeaand
generalize from sample facts and make predictimms these;
to memorize characteristics and features of givatia;dand to
match or make associations from new data to old data
variety of powerful ways [4].

Very important feature of these networks is thelagtive
nature, where ‘learning by example’ replaces ‘paogming’
in solving problems. As long as enough data islabbg, a
neural network will extract any regularity fromahd form a
solution. Another key feature of ANN is its essahparallel
architecture that allows for fast computation diuton when
these networks are implemented in customized haed{g4].

Compared to conventional digital computing teche&u
Neural Networks are advantageous because of tpeiciad
features such as the massively parallel processisgjbuted
storing of information, low sensitivity to errorhdir very
robust operation after training, generalization padhility to

plant contained total of 349 slump tests resulticlvare used
to build the Neural Network models. The type of @etnused
by the Batching plant (for carrying out the Slunests) was
Ordinary Portland Cement (OPC) of 53 Grade. Thests tare
performed for various grades of concrete (i.e. MIIL5,
M20, M25, M30 and M35). Also, the Super-Plasticiaeed is
ShaliPlast SP-431. Specific weights and range obtitnents
of concrete of data sets (as collected from thst faatching
plant) are tabulated in TABLEAndTABLE Il respectively.
Similarly, the data collected from the second biaigtplant
contained a total of 40 slump tests results whighused for
testing the accuracy of the best Neural Network ehod
developed (using data obtained from the first batgiplant).
The type of cement used by the second batchingt fffan
conducting slump tests) is ordinary Portland Cen(&fC) of
43 Grade. These tests are also performed for \@rgiix
design proportions. The Super-Plasticizer thaakem into use
is Don-R3. Specific weights and range of constitsieaf
concrete of data sets (as collected from the sebaching
plant) are tabulated in TABLEAndTABLE Il respectively.

IV. ARCHITECTURE OF NEURAL NETWORK MODELS

In order to develop a system to predict the slump i
concrete, the Neural Network is trained with anuinpata
pattern. In this study, the input data pattern esponds to
following eight parameters: Cement (kgjmFly Ash (kg/nf),
Sand (kg/m), Coarse Aggregate (10 mm) (kg)m Coarse
Aggregate (20 mm) (kg/ih Water Content (kg/f),
Water/Binder ratio and Super-Plasticizer (ki}mwhich are
taken as input variables (i.e. neurons in the inpwer). The
output layer consists of only one neuron, i.e. Slum
concrete (in cm).

Amongst various architectures and paradigms, thedfe
Forward Back-Propagation is one of the simplest arobt
applicable network being used in performing highevel
human task such as classification, decision-makargl
prediction. It is one of the most popular, effeetand easy to
learn learning algorithms for complex and multi desd
networks. Thus, a multilayered Feed-Forward Back-
Propagation Neural Network (created by generalizthg
Levenberg-Marquardt’'s learning rule to multiple day
networks and non-linear differential transfer fuos) is used
for predicting slump in concrete.
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TABLE |
SPECIFICWEIGHTS OFCONSTITUENTS OFCONCRETE IN
DATA SETS
(as collected from both the batching plants)

TABLE Il
RANGE OF CONSTITUENTS OFCONCRETE IN
DATA SETS
(as collected from the first batching plant)

Concrete Constituents Specific Weights
Cement 3.15
Fly Ash 2.22
Water 1.00
Super-Plasticizer 1.20
Coarse Aggregate 2.65
Fine Aggregate 2.66
TABLE Il
RANGE OFCONSTITUENTS OFCONCRETE IN
DATA SETS

(as collected from the first batching plant)

Concrete Constituents Iv(lg;:#;] M&;m%m
Cement 100 450
Fly Ash 0 200
Sand 550 860
Coarse Aggregate (10mm) 350 1114
Coarse Aggregate (20mm) 0 764
Water Content 136 186
Super-Plasticizer 1.00 5.80
Water/Binder ratio 0.37 0.78

A typical Back-Propagation network has an inpuielayn
output layer, and at least one hidden layer. Thisreno
theoretical limit on the number of hidden layers barmally
there is just one or two. The input layer is coneédo the
hidden layer and the hidden layer is connectedutput layer
by interconnection weights, as shown in Fig. 1.

The complex part of this learning mechanism is toe
system, to determine that, which input contributtegl most to
an incorrect output and how does that element lggbged to
correct the error. To solve this problem, traininguts are
provided to the input layer of the network, andissoutputs
are compared at the output layer. The differendevden the
output of the final layer and the desired outputbisck-
propagated to the previous layer (or layers), Uguabdified
by the derivative of the transfer function, and tumnection
weights are normally adjusted using the Gradiergdeet rule

Concrete Constituents NE:(Z'Z#;” Nzig'/nr:%m
Cement 120 400

Fly Ash 0 180
Sand 662 815
8%%?% Aggregate 365 1067
(Cz%er\;srf) Aggregate 0 740
Water Content 105 190
Super-Plasticizer 0.00 45
Water/Binder ratio 0.32 0.70

Input Layer Hidden Layer  Output Layer

Fig. 1 Typical Feed-Forward Back-Propagation Neural Nekwor

or its variant. This process proceeds for the mevilayer,
until the input layer is reached [16]. During thaiting of the
network, the same set of data is processed mainyesa s the
weights are refined on a regular basis. The seguaric
learning of Neural Networks is shown in Fig. 2.

Target

Neural Network
including
Connections
(called weights)
between Neurol

Adjust\
weights

Fig. 2 Sequence of learning of an Atrtificial NeuRastwork

Inputs Outpu

——»
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To train a network and measure how well it perfqrians
error function (or performance function) must bdirkd to

provide an unambiguous numerical rating of the esyst

performance. Selection of an error function is vesgential

for representing the design goals and deciding hvhic

algorithms can be chosen. The typical error fumstiqor

parameters that are used to evaluate the perfoesant

neural network models developed) those are commosdy

for training Feed-Forward Neural Network and emphbyin

the study are:

1. The Mean Square Error (MSE) of the network errbes ts
shown in equation:

MSE = %i(tl -a ) ()
Input Laye
o —

2. Correlation Coefficient (B, which is shown in the equation

below:
(3t a))

St -tfxla-af

Where, N is the number of observations, i, j indgxthe
output and the average output nodegs;at are the target
(desired) and actual network output, respectivahd {, g are
the average target (desired) and average actuabriebutput,
respectively.

Fig. 3 shows the example of proposed neural network
model for the study while TABLE IV shows the areuture
of the neural network models developed in the stidying
‘One hidden layer’ and ‘Two hidden layers’.

)

Hidden Layer Output Laye
r )%

Cemep ‘
Fly Ash
N

N7 |
RGPS\

(10mm)

//
NN XS — ‘
N7 N="0
Coarse Aggregal/” N\ NSXQELEA N
XSOROE ‘ 2
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P
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Fig. 3 Proposed Neural Network model
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TABLE IV
ARCHITECTURE OF THENEURAL NETWORK MODELS DEVELOPED HAVING ONE AND TWO HIDDEN AYERS
MODELS Model 1 Model 2 Model 3 Model 4 Model 5 Mdde Model 7 Model 8
Input Layer 8 8 8 8 8 8 8 8
" .
o 2 | Hidden 11 12 13 14 6 6 7 6
RTRS) Layer 1
¥ S0%
 ST@| Hidden ] ] 5 6 6 .
5 z z Layer 2
E Output
E utpu
5 Layer 1 1 1 1 1 1 1 1
©
< Hidden . . . . . , ) _
z Log-sig Log-sig Log-sig Log-sig Log-sig Log-sig Lsig Log-sig
zZ x = Layer 1
< wo
[l Hidden . . ) )
<z( % Layer 2 - - - Tan-sig Tan-sig Tan-sig Tan-sig
z2
Output Purelin Purelin Purelin Purelin Purelin Purelin Elir Purelin
Layer
V. SAMPLING OF THE DATA VI. NEURAL NETWORKMODEL SELECTION AND PERFORMANCE
For creating the Neural Network model (yieldingioytl EVALUATION
performance) and to minimize the true error betwaetnal Following steps are followed for selecting the NetiMetwork

and desired output, the data is randomly divided three model (yielding the optimal performance):

disjoint sets namely. Training set, Validation sanhd 1)Randomly dividing the available data sets (3499 itmaining
Testing set. Training set is used to train the petvand to (190), validation (89), and testing set (70).

fit the parameters of the classifier. In multi laye 2)Selecting the neural network architecture (FeedvBcl Back-
perceptron, this data set is used to find the rogti Propagation with Levenberg — Marquardt trainingoaitpm),
weights with the Back-Propagation algorithm. The number of hidden layers and hidden layer neuramahsfer
Validation set is used to fine tune the parametdrsa functions (Log-sigmoid and Purelin), training pasters
classifier. This proved to be helpful in decidinget (Learning rate, learning cycles) and training fiomct
‘optimal’ number of hidden units or for determinimagstop (TRAINLM) to be employed for modeling slump in coate.
point for the back-propagation algorithm. The Tegtset is  3)Training the model using the Training Set onlyl, situration

used to test the performance of a fully trainedssiféer. limit is reached or the error function (Mean Squner) does
'I_'hls is usually employed to determine the erroe i@t the not show any appreciable reduction in its value.
final chosen model. 4) Evaluating the model using the validation set.

Out of the 349 slump tests results or data sets (B§Repeating the steps 2 to 4 using different netvemckitecture
obtained from the first batching plant), 190 datts <55 %) and training parameters to build different models.
are used for training, 89 data sets (25 %) are Used 6)Selecting the best model amongst all (i.e. onergaeptimal
validation and remaining 70 data sets (20 %) aesl der performance), on the basis of its error (or perfmoe)
testing the Neural Network. The easy way of représg function (i.e. Mean Square Error).

the sampling of data is shown in Fig. 4. 7)Assessing the performance of the final model udiiregtesting
set.

The results are tabulated in TABLE V.

Available Data Set

(349) VII. TESTING THESELECTEDNEURAL NETWORK MODEL WITH
UNSEENDATA

From the results obtained by training the Neurabtwdek
(TABLE V), it is evident that Neural Network mod&lis giving

A

- — - least Mean Square Error (MSE) and the maximum Cuioa
Training Validation Testing Coefficient (R) with the target outputs. Thus, Model 8 is
Data Set Data Set Data Set selected as the final Model whose parameters actitecture

(190) (89) (70) will be employed to assess the performance ofaking set.
Model 8 had Neural Network architecture of two léddayers
Fig. 4 Sampling of the Data with 6 neurons in first layer and 7 in the secaaygkl. The model

(earlier trained with training and validation datets), is tested
with the testing data set so as to compute thd &nar in the
optimized model.
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The training parameters included ‘Log-sigmoid’ &g t Correlation Coefficient (B 0.99848 and the error (MSE)
transfer function in each layer and TRAINLM as theé).00124 indicates, that the selected Neural Netwoodel has
training function. The results obtained are shown ibeen fully trained to recognize any pattern witthie available
TABLE VI (Also refer Fig. 5 and Fig. 6).The valud o dataset.

TABLE V
TRAINING AND VALIDATION RESULTS OF ALL NEURAL NETWORK MODELS DEVELOPED
Training Set Validation Set
Model M S E C lation Coefficient M S E
ean Square Error orrelation Coefficien ean Square Error
No. of Data (MSE) No. of data (RZ) (MSE)
Model 1 190 0.000720 89 0.98760 0.08861
Model 2 190 0.000403 89 0.99309 0.00494
Model 3 190 0.000186 89 0.99626 0.00274
Model 4 190 0.000110 89 0.99846 0.00146
Model 5 190 0.000277 89 0.99523 0.00339
Model 6 190 0.000249 89 0.99570 0.00306
Model 7 190 0.000100 89 0.99828 0.00124
Model 8 190 0.000100 89 0.99828 0.00122
TABLE VI -
Training of Selected Neural Network Model
TRAINING AND TESTING OF SELECTEDINEURAL NETWORK MODEL
000807
Training of Neural Network Testing of Neural Netwaér 0.00724 \
. 0.0064
2 0.0056- \
Correlation ¢ 0.0048+
Mean Square Error e Mean Square g 0.0040-
Epochs (MSE) Coefficient Error (MSE) 2 0.0032
(R € 0.0024+
0.0016-
50 0.007649 0.85237 0.10732 g-gggg’ \0 ——
0 100 200 300 400 500 600 700 800 900 10pO
100 0.006272 0.92233 0.05645 No. of Epochs
Fig. 5 Training of selected Neural Network Model
200 0.004412 0.96887 0.04272
300 0.001477 0.98383 0.02674 Testing of Selected Neural Network Model
400 0.000459 0.99297 0.00886
500 0.000413 0.99792 0.00148 g
s
600 0.000353 0.99810 0.00135 $
800 0.000346 0.99848 0.00124 0 100 200 300 400 500 600 700 800 900 1000
No. of Epochs

Fig. 6 Testing of selected Neural Network Model
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VIIl. TESTING THE SELECTELNEURAL NETWORK MODEL Trairing of Selected Newal Network Model
WITH THE DATA OBTAINED FROM THE SECOND READY MIX
CONCRETE(RMC) BATCHING PLANT on2)
Since Neural Network model 8 is found out to be mos | 5 321 "
optimal amongst all the models, therefore, it stad with e 0007 \.‘
the data set which is obtained from second batchlagt. g ool o, —,
This testing is done so as to compute the errorcantpare £ 0004
its performance with the model (that is earlietadswith ooz
the testing data set using data obtained from trst f 0.000 ; ; ; ; ‘
batching plant. (Refer TABLE VI). The training paraters 0 200 400 600 800 100
includes ‘Log-sigmoid’ as the transfer function @ach No. of Epochs
layer and TRAINLM as t_h_e training function. In TABL Fig. 7 Training of selected Neural Network Modetiwthe Data
VII, the Correlation Coefficient @0.91845 and the Mean obtained from the second batching plant

Square Error (MSE) 0.05795 (Refer Fig. 7 and Fip. 8
indicates, that the chosen Neural Network model been
fully trained to recognized any pattern within tieailable
dataset obtained from the first batching plant,fhail to do 0.1400-
so for the dataset which is obtained from the sécon 0.12601

0.11204
batching plant. The reason for this is the use itirnt
0.07004
of constituents of concrete by both the batchirand also 002801
TABLE VII 0 260 4‘00 éOO gOO iOO

0.0980-
types of Cement and Super-Plasticizers by bothRitady 0.08401
Mix Concrete batching plants. Adoption of differeahges 0.0560-
0.0420
affects the results. 0.01401
0.0000
TRAINING AND TESTING OF SELECTEOINEURAL NETWORK MODEL WITH No. of Epochs
THE DATA OBTAINED FROM THE SECOND BATCHING PLANT

Testing of Selected Neural Network Model

Mean Square Error

Fig. 8 Testing of selected Neural Network Modelhittie Data obtained

Training of Neural Network Testing of Neural Netwér from the second batching plant
] IX. CONCLUSION
Mean Square Corre'la.non Mean Square S
Epochs Error (MSE) Coefficient Error (MSE) The findings of the study presented here are basedhe
(R) evaluations of the Neural Network models develomed a
limited data set. The conclusions made out of th€ysare as
50 0.010134 0.82532 0.12414 follows:
1)As the final selected and tuned Artificial Neuraktiork
100 0.009485 0.83651 0.11619 model is tested with the unseen data obtained fiwafirst
batching plant, the Mean Square Error (MSE) and the
200 0.006645 0.88546 0.08140 Correlation Coefficient (B is found out to be 0.00124 and
0.99848, respectively. This proves clearly that dNeural
300 0.006286 0.89165 0.07700 Network models developed are reliable and usefolis t
proving that splitting the data into three set®.(itraining
400 0.005684 0.90202 0.06963 datasgt, validation d.ataset and tegting dgtaset)quy;e
effective for developing and selecting optimal Actal
500 0.005503 0.90514 0.06742 Neural Neywork model and its final error estimation
2)When the final selected and fine tuned Neural Nétwoodel
is tested with the data obtained from the secondhibay
600 0.005369 0-90745 0.06577 plant, the Mean Square Error (MSE) and the Coimeat
Coefficient () comes out to be 0.05795 and 0.91845,
800 0.004730 0.91845 0.05795

respectively, indicates clearly that the appligabibf the
selected and fine tuned model for predicting slump
concrete is limited. The model can give optimaf@enance
or can predict any mix proportions (giving suitabledesired
slump) as long as their type of Cement, Admixtu(es
particular, Super-Plasticizer) and Range of Comstits of
Concrete is same.

3) Artificial Neural Networks can be used by enginedcs
estimate the slump in concrete whose constituerdaslyn
includes cement, fly ash, sand, coarse aggregatdsy and
super-plasticizer. It becomes convenient and easgé¢ these
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models to predict any mix proportions (giving shiea

or desired slump). [14] G. Bandyopadhyay, and S. Chattopadhyay, “SingleléfidLayer Artificial

Neural Network Models Versus Multiple Linear Regiea Model in
forecasting the Time Series of Total Ozoref! J. Environ. Sci. Techvol.
X. FURTHER SCOPE OFSTUDY 4,no. 1, pp. 141-149, 2007.
. 15] R. J. Schalkoff, “Artificial Neural Networks,” Mc @w Hill, Singapore,
The present study has been done to predict slump g 1995, gap

concrete (of various mix design proportions) coesity [16] S. N. Sivanandam, S. Sumathi, and S. N. Deepa,.Sintbduction to
Cement, Fly Ash, Water, Sand, Coarse Aggregates and Neural Networks using MATLAB 6.0,” Tata McGraw-HilNew Delhi,
Super-Plasticizer as the constituents of concrétether 2006.
research in predicting workability or slump in ccete

using Artificial Neural Networks may be:

1)Predicting Slump in concrete using Neural Networks
considering many more constituents of Concretee (lik
Silica, Blast Furnace slag, etc.).

2)Comparing the results or effectiveness of usingfigiel
Neural Networks for modeling slump in concrete with
the linear and non-linear regression models (d@ezlo
using the same data), for concluding which onehés t
best.

3) Performance sensitivity analysis (in addition todeling
of Slump in Concrete using Artificial Neural Netvwgr
so as to evaluate the impact of various concrete mi
constituents on the concrete slump, based on tee be
Neural Network model developed. In other words, the
Neural Networks can be used to explore the caude an
affect relationship between networks’ input andpoitit
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