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Abstract—High Strength Concrete (HSC) is defined as concrete 

that meets special combination of performance and uniformity 
requirements that cannot be achieved routinely using conventional 
constituents and normal mixing, placing, and curing procedures. It is 
a highly complex material, which makes modeling its behavior a very 
difficult task. This paper aimed to show possible applicability of 
Neural Networks (NN) to predict the slump in High Strength 
Concrete (HSC). Neural Network models is constructed, trained and 
tested using the available test data of 349 different concrete mix 
designs of High Strength Concrete (HSC) gathered from a particular 
Ready Mix Concrete (RMC) batching plant. The most versatile 
Neural Network model is selected to predict the slump in concrete. 
The data used in the Neural Network models are arranged in a format 
of eight input parameters that cover the Cement, Fly Ash, Sand, 
Coarse Aggregate (10 mm), Coarse Aggregate (20 mm), Water, 
Super-Plasticizer and Water/Binder ratio. Furthermore, to test the 
accuracy for predicting slump in concrete, the final selected model is 
further used to test the data of 40 different concrete mix designs of 
High Strength Concrete (HSC) taken from the other batching plant. 
The results are compared on the basis of error function (or 
performance function). 
 

Keywords—Artificial Neural Networks, Concrete, prediction of 
slump, slump in concrete  

I. INTRODUCTION 

ONCRETE is the major building material being used all 
over the world. It is known for its high compressive 

strength, durability, impermeability, fire resistance and 
abrasion resistance. For contributing to maximum strength of 
the structure, hundred percent compaction of concrete is 
necessary. The quality of concrete satisfying the above 
requirement is termed as Workability, (a parameter, a mix 
designer requires to specify in the mix design process) which 
is defined as the property of concrete determining the effort 
required for placing, compaction and finishing with minimum 
loss of homogeneity. The effort required to place a concrete 
mixture is determined largely by the overall work needed to 
initiate and maintain flow, which depends on the rheological 
property of the lubricant (the cement paste) and the internal 
friction between the aggregate particles on one hand, and the 
friction between concrete and the surface of the framework on 
the other [1].  
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The Workability of concrete is one of the functions of the 

relative magnitudes of various concrete mix constituents. 
SLUMP TEST is one of the tests which measure the 
parameters close to workability and provide useful 
information about it. It is the most commonly used method of 
measuring consistency of concrete which can be employed 
either in lab or at the site. From this test, slump is deduced by 
measuring the drop from the top of the slumped fresh 
concrete. Additional information on workability of concrete 
can be obtained by observing the shape of the slump in 
concrete [2]. 

Every type of construction requires testing of the concrete 
to determine the slump (of the fresh concrete) to ensure, 
whether the concrete is of desired workability and strength or 
not [3]. However, researchers have looked into the 
characteristic parameters that affect slump value of High 
Strength Concrete. It was understood that proportions of 
constituents in a concrete mix (i.e. Cement, Water content, 
Sand, Coarse aggregates, Fly Ash, and Super-Plasticizer) 
affects workability and are determined on the basis of required 
properties of concrete. Also, to obtain concrete of desired and 
suitable workability, technical personnel often tries several 
mix proportions, which is a time consuming process, resulting 
in wastage of material and cost of concrete production. Thus, 
for the sake of saving time and decreasing the design cost, 
help of Artificial Neural Networks (ANN) is taken to develop 
models, so that the knowledge extracted from these neural 
network models, can be utilized to predict slump in concrete. 

 The basic strategy for developing a neural network based 
model for predicting slump is to train a neural network on the 
results of a series of experiments (carried out to determine the 
slump in concrete), thus minimizing the absolute difference 
between the target (desired) outputs and the actual outputs, 
thereby resulting in approximate optimal solutions [4]. 

Artificial Neural Networks (ANN) have been used as an 
efficient tools for modeling and predicting complex and 
dynamic engineering systems such as structural analysis [5]; 
water demand forecast modeling [6]; prediction of 
compressive strength of concrete [3, 7, 8]; and shear design of 
reinforced concrete beams [9].However, the efforts in the area 
of modeling concrete slump using Artificial Neural Networks 
has been lacking, but still some researchers have made efforts 
in this area. Dias and Pooliyadda [10] used back propagation 
neural networks to predict slump of ready mixed concrete and 
high strength concrete, in which chemical admixtures and/or 
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mineral additives were used. Bai et al. [11] developed Neural 
Network models that provide effective predictive capability in 
respect of the workability of concrete incorporating 
metakaolin (MK) and fly ash (FA). Bhatti et al. [12] showed 
possible applicability of Artificial Neural Networks for 
predicting the slump of High Strength Concrete (HSC). Yeh 
[13] demonstrated the abilities of Artificial Neural Networks 
to represent the effects of each material component on 
concrete slump. 

The aim of this paper is to present a methodology for 
predicting slump in High Strength Concrete (HSC). For this, 
the slump test data for the Ready Mixed Concrete (RMC) is 
collected from two batching plants. These slump tests were 
performed for various grades of concrete (i.e. M10, M15, 
M20, M25, M30 and M35). The data contained a total of 349 
slump tests results, which is used to build the Artificial Neural 
Network models. Using the data (taken from the first batching 
plant), Neural Network models are trained for the input 
(Cement, Fly Ash, Sand, Coarse Aggregate, Water, Super-
Plasticizer and Water/Binder ratio) and output (Slump in 
concrete) parameters. Eight different Neural Network models 
are created and validation of each network is done to check its 
effectiveness and flexibility for the unseen input variables. 
The most versatile Neural Network model is selected to 
predict the slump in concrete. To test the accuracy in 
predicting slump in concrete, the final selected model is 
further used to test the data taken from other batching plant. 
The results are compared on the basis of error function or 
performance function (i.e. Mean Square Error and Correlation 
Coefficient). 

II.   ARTIFICIAL NEURAL NETWORK (ANN) 

Artificial Neural Networks (ANN) are computational 
systems whose architecture and operation are inspired from 
our knowledge about biological neural cells (neurons) in the 
brain. These are not simulations of real neurons in the sense 
that they do not model the biology, chemistry, or physics of a 
real neuron. They do however, model several aspects of 
information like combining and pattern recognition behavior 
of real neurons in a simple, but still in a meaningful way. 
Artificial Neural Networks can be used to learn and reproduce 
rules or operations from the given examples; to analyze and 
generalize from sample facts and make predictions from these; 
to memorize characteristics and features of given data; and to 
match or make associations from new data to old data in a 
variety of powerful ways [4]. 

Very important feature of these networks is their adaptive 
nature, where ‘learning by example’ replaces ‘programming’ 
in solving problems. As long as enough data is available, a 
neural network will extract any regularity from it and form a 
solution. Another key feature of ANN is its essential parallel 
architecture that allows for fast computation of solution when 
these networks are implemented in customized hardware [14]. 

Compared to conventional digital computing techniques, 
Neural Networks are advantageous because of their special 
features such as the massively parallel processing, distributed 
storing of information, low sensitivity to error, their very 
robust operation after training, generalization adaptability to 

new information [15]. As mentioned earlier, Neural Networks 
learn by examples. They can therefore be trained with known 
examples of a problem to ‘acquire’ knowledge about it. Once 
appropriately trained, the network can be put to effective use 
in solving ‘unknown’ or ‘untrained’ instances of the problem. 

III.  DATA SETS 

The slump test results for the Ready Mixed Concrete 
(RMC) are collected from the two Ready Mix Concrete 
batching plants. The data collected from the first batching 
plant contained total of 349 slump tests results, which are used 
to build the Neural Network models. The type of Cement used 
by the Batching plant (for carrying out the Slump tests) was 
Ordinary Portland Cement (OPC) of 53 Grade. These tests are 
performed for various grades of concrete (i.e. M10, M15, 
M20, M25, M30 and M35). Also, the Super-Plasticizer used is 
ShaliPlast SP-431. Specific weights and range of constituents 
of concrete of data sets (as collected from the first batching 
plant) are tabulated in TABLE I and TABLE II respectively. 

Similarly, the data collected from the second batching plant 
contained a total of 40 slump tests results which are used for 
testing the accuracy of the best Neural Network model 
developed (using data obtained from the first batching plant). 
The type of cement used by the second batching plant (for 
conducting slump tests) is ordinary Portland Cement (OPC) of 
43 Grade. These tests are also performed for varying mix 
design proportions. The Super-Plasticizer that is taken into use 
is Don-R3. Specific weights and range of constituents of 
concrete of data sets (as collected from the second batching 
plant) are tabulated in TABLE I and TABLE III respectively. 

IV. ARCHITECTURE OF NEURAL NETWORK MODELS 

In order to develop a system to predict the slump in 
concrete, the Neural Network is trained with an input data 
pattern. In this study, the input data pattern corresponds to 
following eight parameters: Cement (kg/m3), Fly Ash (kg/m3), 
Sand (kg/m3), Coarse Aggregate (10 mm) (kg/m3), Coarse 
Aggregate (20 mm) (kg/m3), Water Content (kg/m3), 
Water/Binder ratio and Super-Plasticizer (kg/m3), which are 
taken as input variables (i.e. neurons in the input layer). The 
output layer consists of only one neuron, i.e. Slump in 
concrete (in cm). 

Amongst various architectures and paradigms, the Feed-
Forward Back-Propagation is one of the simplest and most 
applicable network being used in performing higher level 
human task such as classification, decision-making and 
prediction. It is one of the most popular, effective and easy to 
learn learning algorithms for complex and multi layered 
networks. Thus, a multilayered Feed-Forward Back-
Propagation Neural Network (created by generalizing the 
Levenberg-Marquardt’s learning rule to multiple layer 
networks and non-linear differential transfer functions) is used 
for predicting slump in concrete. 
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TABLE I 
SPECIFIC WEIGHTS OF CONSTITUENTS OF CONCRETE IN  

DATA SETS 
(as collected from both the batching plants) 

Concrete Constituents Specific Weights 

Cement 3.15 

Fly Ash 2.22 

Water 1.00 

Super-Plasticizer 1.20 

Coarse Aggregate 2.65 

Fine Aggregate 2.66 

 
TABLE II 

RANGE OF CONSTITUENTS OF CONCRETE IN  
DATA SETS 

(as collected from the first batching plant) 

Concrete Constituents 
Minimum 
(kg/m3) 

Maximum 
(kg/m3) 

Cement 100  450 

Fly Ash 0 200 

Sand 550 860 

Coarse Aggregate (10mm) 350 1114 

Coarse Aggregate (20mm) 0 764 

Water Content 136 186 

Super-Plasticizer 1.00 5.80 

Water/Binder ratio 0.37 0.78 

 
A typical Back-Propagation network has an input layer, an 

output layer, and at least one hidden layer. There is no 
theoretical limit on the number of hidden layers but normally 
there is just one or two. The input layer is connected to the 
hidden layer and the hidden layer is connected to output layer 
by interconnection weights, as shown in Fig. 1. 

The complex part of this learning mechanism is for the 
system, to determine that, which input contributed the most to 
an incorrect output and how does that element get changed to 
correct the error. To solve this problem, training inputs are 
provided to the input layer of the network, and desired outputs 
are compared at the output layer. The difference between the 
output of the final layer and the desired output is back-
propagated to the previous layer (or layers), usually modified 
by the derivative of the transfer function, and the connection 
weights are normally adjusted using the Gradient Descent rule 

 
 

TABLE III 
RANGE OF CONSTITUENTS OF CONCRETE IN 

DATA SETS 
(as collected from the first batching plant) 

Concrete Constituents 
Minimum 
(kg/m3) 

Maximum 
(kg/m3) 

Cement 120  400 

Fly Ash 0 180 

Sand 662 815 

Coarse Aggregate 
(10mm) 

365 1067 

Coarse Aggregate 
(20mm) 

0 740 

Water Content 105 190 

Super-Plasticizer 0.00 4.5 

Water/Binder ratio 0.32 0.70 

 

 
Fig. 1 Typical Feed-Forward Back-Propagation Neural Network 

or its variant. This process proceeds for the previous layer, 
until the input layer is reached [16]. During the training of the 
network, the same set of data is processed many a times as the 
weights are refined on a regular basis. The sequence of 
learning of Neural Networks is shown in Fig. 2. 
 

 

Fig. 2 Sequence of learning of an Artificial Neural Network 
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To train a network and measure how well it performs, an 
error function (or performance function) must be defined to 
provide an unambiguous numerical rating of the system 
performance. Selection of an error function is very essential 
for representing the design goals and deciding which 
algorithms can be chosen. The typical error functions (or 
parameters that are used to evaluate the performances of 
neural network models developed) those are commonly used 
for training Feed-Forward Neural Network and employed in 
the study are:  
1. The Mean Square Error (MSE) of the network errors that is 

shown in equation: 

( )∑ −=
=

N

1i

2

ii at
N

1
MSE                   (1) 

 
 
 
 
 

2. Correlation Coefficient (R2), which is shown in the equation 
below: 

( ) ( )
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Where, N is the number of observations, i, j indexing the 
output and the average output nodes; ti, ai are the target 
(desired) and actual network output, respectively; and tj, aj are 
the average target (desired) and average actual network output, 
respectively. 

Fig. 3 shows the example of proposed neural network 
model for the study while TABLE IV shows the architecture 
of the neural network models developed in the study, having 
‘One hidden layer’ and ‘Two hidden layers’. 

 
 
 
 

 
 

 
Fig. 3 Proposed Neural Network model 
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TABLE IV 
ARCHITECTURE OF THE NEURAL NETWORK MODELS DEVELOPED HAVING ONE AND TWO HIDDEN LAYERS 

MODELS Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

Input Layer 8 8 8 8 8 8 8 8 

Hidden 
Layer 1 

11 12 13 14 6 6 7 6 

Hidden 
Layer 2 

- - - - 5 6 6 7 N
U

M
B

E
R

 
O

F
 

N
E

U
R

O
N

S
 

Output 
Layer 

1 1 1 1 1 1 1 1 

Hidden 
Layer 1 

Log-sig Log-sig Log-sig Log-sig Log-sig Log-sig Log-sig Log-sig 

Hidden 
Layer 2 

- - - - Tan-sig Tan-sig Tan-sig Tan-sig 

A
N

N
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R
C

H
IT

E
C
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U

R
E

 

T
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Output 
Layer 

Purelin Purelin Purelin Purelin Purelin Purelin Purelin Purelin 

V.   SAMPLING OF THE DATA 

For creating the Neural Network model (yielding optimal 
performance) and to minimize the true error between actual 
and desired output, the data is randomly divided into three 
disjoint sets namely: Training set, Validation set, and 
Testing set. Training set is used to train the network and to 
fit the parameters of the classifier. In multi layer 
perceptron, this data set is used to find the ‘optimal’ 
weights with the Back-Propagation algorithm. The 
Validation set is used to fine tune the parameters of a 
classifier. This proved to be helpful in deciding the 
‘optimal’ number of hidden units or for determining a stop 
point for the back-propagation algorithm. The Testing set is 
used to test the performance of a fully trained classifier. 
This is usually employed to determine the error rate of the 
final chosen model. 

Out of the 349 slump tests results or data sets (as 
obtained from the first batching plant), 190 data sets (55 %) 
are used for training, 89 data sets (25 %) are used for 
validation and remaining 70 data sets (20 %) are used for 
testing the Neural Network. The easy way of representing 
the sampling of data is shown in Fig. 4. 
 

 
 

Fig. 4 Sampling of the Data 
 
 

VI. NEURAL NETWORK MODEL SELECTION AND PERFORMANCE 

EVALUATION  

Following steps are followed for selecting the Neural Network 
model (yielding the optimal performance): 
1) Randomly dividing the available data sets (349) into training 

(190), validation (89), and testing set (70). 
2) Selecting the neural network architecture (Feed-Forward Back-

Propagation with Levenberg – Marquardt training algorithm), 
number of hidden layers and hidden layer neurons), transfer 
functions (Log-sigmoid and Purelin), training parameters 
(Learning rate, learning cycles) and training function 
(TRAINLM) to be employed for modeling slump in concrete. 

3) Training the model using the Training Set only, till saturation 
limit is reached or the error function (Mean Square Error) does 
not show any appreciable reduction in its value. 

4) Evaluating the model using the validation set. 
5) Repeating the steps 2 to 4 using different network architecture 

and training parameters to build different models. 
6) Selecting the best model amongst all (i.e. one having optimal 

performance), on the basis of its error (or performance) 
function (i.e. Mean Square Error). 

7) Assessing the performance of the final model using the testing 
set. 

The results are tabulated in TABLE V. 

VII.  TESTING THE SELECTED NEURAL NETWORK MODEL WITH 

UNSEEN DATA 

From the results obtained by training the Neural Network 
(TABLE V), it is evident that Neural Network model 8 is giving 
least Mean Square Error (MSE) and the maximum Correlation 
Coefficient (R2) with the target outputs. Thus, Model 8 is 
selected as the final Model whose parameters and architecture 
will be employed to assess the performance of the testing set. 

Model 8 had Neural Network architecture of two hidden layers 
with 6 neurons in first layer and 7 in the second layer. The model 
(earlier trained with training and validation data sets), is tested 
with the testing data set so as to compute the final error in the 
optimized model. 

Available Data Set 
(349) 

Training 
Data Set 

(190) 

Validation 
Data Set 

(89) 

Testing 
Data Set 

(70) 
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The training parameters included ‘Log-sigmoid’ as the 
transfer function in each layer and TRAINLM as the 
training function. The results obtained are shown in 
TABLE VI (Also refer Fig. 5 and Fig. 6).The value of 

Correlation Coefficient (R2) 0.99848 and the error (MSE) 
0.00124 indicates, that the selected Neural Network model has 
been fully trained to recognize any pattern within the available 
dataset. 

 
TABLE V 

TRAINING AND VALIDATION RESULTS OF ALL NEURAL NETWORK MODELS DEVELOPED 

Training Set Validation Set 
Model 

No. of Data 
Mean Square Error 

(MSE) 
No. of data 

Correlation Coefficient 
(R2) 

Mean Square Error 
(MSE) 

Model 1 190 0.000720 89 0.98760 0.08861 

Model 2 190 0.000403 89 0.99309 0.00494 

Model 3 190 0.000186 89 0.99626 0.00274 

Model 4 190 0.000110 89 0.99846 0.00146 

Model 5 190 0.000277 89 0.99523 0.00339 

Model 6 190 0.000249 89 0.99570 0.00306 

Model 7 190 0.000100 89 0.99828 0.00124 

Model 8 190 0.000100 89 0.99828 0.00122 

 

TABLE VI 
TRAINING AND TESTING OF SELECTED NEURAL NETWORK MODEL 

Training of Neural Network Testing of Neural Network 

Epochs 
Mean Square  Error 
(MSE) 

Correlation 
Coefficient 

(R2) 

Mean Square 
Error (MSE) 

50 0.007649 0.85237 0.10732 

100 0.006272 0.92233 0.05645 

200 0.004412 0.96887 0.04272 

300 0.001477 0.98383 0.02674 

400 0.000459 0.99297 0.00886 

500 0.000413 0.99792 0.00148 

600 0.000353 0.99810 0.00135 

800 0.000346 0.99848 0.00124 
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Fig. 5 Training of selected Neural Network Model 

Testing of Selected Neural Network Model
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Fig. 6 Testing of selected Neural Network Model
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VIII.    TESTING THE SELECTED NEURAL NETWORK MODEL 

WITH THE DATA OBTAINED FROM THE SECOND READY M IX 

CONCRETE (RMC) BATCHING PLANT 

Since Neural Network model 8 is found out to be most 
optimal amongst all the models, therefore, it is tested with 
the data set which is obtained from second batching plant. 
This testing is done so as to compute the error and compare 
its performance with the model (that is earlier tested with 
the testing data set using data obtained from the first 
batching plant. (Refer TABLE VI). The training parameters 
includes ‘Log-sigmoid’ as the transfer function in each 
layer and TRAINLM as the training function. In TABLE 
VII , the Correlation Coefficient (R2) 0.91845 and the Mean 
Square Error (MSE) 0.05795 (Refer Fig. 7 and Fig. 8) 
indicates, that the chosen Neural Network model has been 
fully trained to recognized any pattern within the available 
dataset obtained from the first batching plant, but fails to do 
so for the dataset which is obtained from the second 
batching plant. The reason for this is the use of different 
types of Cement and Super-Plasticizers by both the Ready 
Mix Concrete batching plants. Adoption of different ranges 
of constituents of concrete by both the batching plants also 
affects the results. 

TABLE VII 
TRAINING AND TESTING OF SELECTED NEURAL NETWORK MODEL WITH 

THE DATA OBTAINED FROM THE SECOND BATCHING PLANT 

Training of Neural Network Testing of Neural Network 

Epochs 
Mean Square 
Error (MSE) 

Correlation 
Coefficient 

(R2) 

Mean Square  
Error (MSE) 

50 0.010134 0.82532 0.12414 

100 0.009485 0.83651 0.11619 

200 0.006645 0.88546 0.08140 

300 0.006286 0.89165 0.07700 

400 0.005684 0.90202 0.06963 

500 0.005503 0.90514 0.06742 

600 0.005369 0.90745 0.06577 

800 0.004730 0.91845 0.05795 
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Fig. 7 Training of selected Neural Network Model with the Data 

obtained from the second batching plant 

Testing of Selected Neural Network Model
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Fig. 8 Testing of selected Neural Network Model with the Data obtained 

from the second batching plant 

IX.  CONCLUSION 

The findings of the study presented here are based on the 
evaluations of the Neural Network models developed on a 
limited data set. The conclusions made out of the study are as 
follows: 
1) As the final selected and tuned Artificial Neural Network 

model is tested with the unseen data obtained from the first 
batching plant, the Mean Square Error (MSE) and the 
Correlation Coefficient (R2) is found out to be 0.00124 and 
0.99848, respectively. This proves clearly that the Neural 
Network models developed are reliable and useful, thus 
proving that splitting the data into three sets (i.e. training 
dataset, validation dataset and testing dataset) is quite 
effective for developing and selecting optimal Artificial 
Neural Network model and its final error estimation. 

2) When the final selected and fine tuned Neural Network model 
is tested with the data obtained from the second batching 
plant, the Mean Square Error (MSE) and the Correlation 
Coefficient (R2) comes out to be 0.05795 and 0.91845, 
respectively, indicates clearly that the applicability of the 
selected and fine tuned model for predicting slump in 
concrete is limited. The model can give optimal performance 
or can predict any mix proportions (giving suitable or desired 
slump) as long as their type of Cement, Admixtures (in 
particular, Super-Plasticizer) and Range of Constituents of 
Concrete is same. 

3) Artificial Neural Networks can be used by engineers to 
estimate the slump in concrete whose constituents mainly 
includes cement, fly ash, sand, coarse aggregates, water and 
super-plasticizer. It becomes convenient and easy to use these 
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models to predict any mix proportions (giving suitable 
or desired slump). 

X.   FURTHER SCOPE OF STUDY 

The present study has been done to predict slump in 
concrete (of various mix design proportions) considering 
Cement, Fly Ash, Water, Sand, Coarse Aggregates and 
Super-Plasticizer as the constituents of concrete. Further 
research in predicting workability or slump in concrete 
using Artificial Neural Networks may be: 
 
1) Predicting Slump in concrete using Neural Networks 

considering many more constituents of Concrete (like 
Silica, Blast Furnace slag, etc.). 

2) Comparing the results or effectiveness of using Artificial 
Neural Networks for modeling slump in concrete with 
the linear and non-linear regression models (developed 
using the same data), for concluding which one is the 
best. 

3) Performance sensitivity analysis (in addition to modeling 
of Slump in Concrete using Artificial Neural Network), 
so as to evaluate the impact of various concrete mix 
constituents on the concrete slump, based on the best 
Neural Network model developed. In other words, the 
Neural Networks can be used to explore the cause and 
affect relationship between networks’ input and output. 
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