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Abstract—In this paper, we propose a robust disease detection 

method, called adaptive orientation code matching (Adaptive OCM), 

which is developed from a robust image registration algorithm: 

orientation code matching (OCM), to achieve continuous and 

site-specific detection of changes in plant disease. We use two-stage 

framework for realizing our research purpose; in the first stage, 

adaptive OCM was employed which could not only realize the 

continuous and site-specific observation of disease development, but 

also shows its excellent robustness for non-rigid plant object searching 

in scene illumination, translation, small rotation and occlusion changes 

and then in the second stage, a machine learning method of support 

vector machine (SVM) based on a feature of two dimensional (2D) 

xy-color histogram is further utilized for pixel-wise disease 

classification and quantification. The indoor experiment results 

demonstrate the feasibility and potential of our proposed algorithm, 

which could be implemented in real field situation for better 

observation of plant disease development.  

 

Keywords—Cercospora Leaf Spot (CLS), Disease detection, 

Image processing, Orientation Code Matching (OCM), Support 

Vector Machine (SVM). 

I. INTRODUCTION 

UGAR beet is a commercial plant which has been the 

second only to sugarcane as major source of global sugar 

production. However, foliar diseases in sugar beet often cause 

significant reduction in both quality and quantity and economic 

loss for sugar production. In particular, Cercospora leaf spot 

(CLS) is the most prevalent and destructive leaf in worldwide, 

and leads to major loss of gross sugar yield and less income for 

sugar factories and growers [1]. Therefore, this large economic 

demanding is the driving force for early detection and precise 

quantization of CLS in sugar beet, to timely and optimally 

determine the foliar fungicide application for reducing losses 

from CLS. 

In general, the traditional way to decide the timing and 

quantity of CLS fungicide spraying is to monitor the field 

situation by aid of naked eye observation of disease specialists. 

And the objectives of the field monitoring are commonly 

divided into two phases: disease onset observation and spraying 

interval decision. The first fungicide application should occur 

at disease onset timing (the first spot is visible by human naked 

eye), which indicates the first phrase, and it plays vital role in 
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disease control management. This is because if the first 

application is late, control will be difficult all season, even if 

shorter than normal application intervals are used once 

applications start [2]. The other phase is to determine the 

subsequent fungicide spraying interval which mainly depends 

on the combination of disease severity evaluation and climate 

condition. Usually, the frequency and interval of the following 

fungicide applications are not constant, durable, profitable and 

eco-friendly control of CLS could be obtained if fungicides are 

adaptively applied according to some action thresholds, which 

mean to apply the fungicide at the timing of disease severity 

exceeding amount of threshold that can be tolerated in the field. 

Therefore, early detection and consecutive quantization of CLS 

in sugar beet are crucially demanded as the fundamental work 

for further sugar beet protection and environmental safety in 

both agriculture and horticulture field. However, these 

assignments require continuous monitoring and observation by 

disease specialists in the traditional way, which will be 

labor-intensive, prohibitively expensive, and subjective in 

large-scaled field. Furthermore, the farmers in some 

undeveloped agriculture counties may be have to walk a long 

way to contract experts, which might be time consuming and 

costly. 

To overcome this, automatic detection and quantization of 

plant disease is extremely required for precise plant protection 

under the large field scale. In recent years, image processing 

and machine vision techniques have been extensively explored 

for plant disease study for their merits of invasive, rapid, 

continuous and precise measurement capacities. Moreover, a 

number of inspiring algorithms have developed by image 

processing and computer vision techniques to detect, categorize, 

diagnose and quantize the plant disease in this multi-discipline 

field linking computer science with agriculture engineering. 

A pixel-wise image registration was employed by using 

penalized likelihood warping and robust point matching 

methods with time sequence RGB and photosynthetic 

efficiency (PE) images of cabbage plant leaf in [3] for early 

predicting the outbreak of disease, which could deal with the 

leaf warping and slit overlapping problems during live leaf 

growing and moving processes. However, the method was only 

applied for a single leaf observation rather than a holistic plant 

which is more desirable to provide comprehensive information 

of plant in a field. Moreover, problems of leaf rotation and 

illumination changes during the realistic plant growth 

development were not taken into account. Camargo et al. [4] 

developed a disease segmentation algorithm by analyzing one 

dimensional (1D) distribution of intensity histogram to set a 

threshold by the position of a set of local maximums in the 
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histogram for diverse crop disease images identification. 

Furthermore, a continuous study was carried on and reported in 

[5] by using Support Vector Machine (SVM) to classify 

different disease causing agents of cotton crop based on RGB 

image. A set of feature such as shape, textures or fractal 

dimension were extract from different disease regions and best 

classification model with classification rate 93.1% was 

accessed via cross-validation. For improving the accuracy and 

stability of classifier model for disease classification by pattern 

recognition, Tian et al. [6] developed a SVM-based multiple 

classifier system (MCS) with color, texture and shape feature 

extracted from diverse disease regions to categorize different 

wheat leaf diseases. A better accuracy rate of 96.16% was 

demonstrated for the performance of the MCS with comparison 

of other pattern recognition methods. Hyperspectral imaging 

was used in [7] with eight vegetation indices related to 

physiological parameters based on image spectral reflection, as 

input of SVM classifier to detect disease at early stage and 

differentiate different pathogens caused sugar beet leaves. The 

potential of pre-symptomatic plant disease detection was 

demonstrated with the classification accuracy of 97% between 

healthy and disease leaves. Whereas the hyperspectral 

techniques are commonly costly and not portable to extend into 

the real field environment. Moreover, besides the disease 

detection and classification, few studies in the field of plant 

disease diagnosing could robustly, continuously and 

quantitatively provide the site-specific development of plant 

disease in a pixel-level, which is crucial and the challenge in 

precision agriculture for better disease observation and control. 

To address these issues, in this paper, we propose a novel 

plant disease quantization algorithm based on a robust 

matching scheme called orientation code matching (OCM) [8] 

[9], which has shown its excellent performance in wide 

applications in areas like visual control [10], [11], medical 

imaging [12], surveillance [13], intelligent transport system [14] 

and other practical application. In order to continuously 

observe and study the site-specific disease development on 

leaves in a spatially coherent way, it is always difficult to 

handle the changes both in external environment (illumination 

variations, camera vibration) and internal plant circadian and 

growth (leave translation, small rotation, and occlusion). But 

the problems become simple by using the OCM method which 

could provide robust, continuous, and site-specific plant 

observation over time based on its template matching 

framework. In addition, by employing a pattern recognition 

approach of support vector machine (SVM) with our proposed 

two dimensional (2D) xy-color histogram feature, the 

pixel-wise quantization of plant disease development could 

also be assessed. In other words, this study shows its great 

potential to observe disease changes in plant health at anytime 

and anywhere. 

II. MATERIALS AND METHODS 

A. Experimental Treatment 

1.  Plant Cultivation  

The Sugar beet plants (cv. Amaibuki, 2004, Nippon beet 

sugar manufacturing Co., Ltd., Japan) were cultivated in a 

ceramic pots (ø31cm) at 25/2 �  (day/night), 15% relative 

humidity (RH) and with the help of daily spraying the water on 

the leaf surface for improving the RH. Plant were watered as 

necessary and fertilized every two weeks with 200ml of a 2% 

solution of fine powder HYPONeX (HYPONeX Co., Ltd., 

Japan).  

Cercospora leaf spot (CLS) of sugar beet was chosen in this 

study as the specific disease detection due to its most 

economically important disease of sugar beets in worldwide. 

The disease is caused by the fungus Cercospora beticola which 

survives on infected crop residual as spores (conidiophores) 

and stromata. Under the favorable conditions, spores will 

geminate and penetrate the leaf surface to damage of the 

photosynthetic apparatus of leaf which will often begin from 

the symptom of an isolated leaf spot. 

In this experiment, Cercospora beticola was infected by 

manually sprinkling the infected leaf residual on surface of the 

healthy plant leaves at the vegetative stage of sugar beet plant. 

Subsequently, the infected plants were put into plastic 

greenhouse to realize 90% RH at 25�  (day/night) for two 

weeks in order to produce conidiophores and experience 

through the incubation period. 

2.  Experimental Configuration 

An indoor experiment was conducted to assess health 

changes in sugar beet leaves under controlled conditions. The 

experiment system was settled next to the window of laboratory 

for utilizing the natural light to simulate the outdoor sunlight 

condition. The RGB plant images with 640×480 resolution 

were captured by a CMOS camera (CMOS130-USB2, 

Fortissimo Co., Japan) which was mounted on a horizontal 

beam supported by two vertical poles at a constant height of 1.9 

m above the plant. The image captured from top view of plant 

canopy with the interval of each hour. An indoor fluorescent 

lamp was used for providing the light resource to capture the 

plant images during night period (17:00-6:00). 

B.  Adaptive OCM for Continuous and Site-Specific Plant 

Observation 

1.  Definition of OCM 

OCM has been proposed as a robust image registration 

algorithm. It is defined as matching the orientation codes 

between two images which are to be compared for similarity 

evaluation. 

For digital images, the orientation codes are obtained with 

quantized gradient angle of each pixel by applying some 

operator like for Sobel operator to compute the horizontal and 

vertical derivatives. If a discrete image is presented as I�x, y� 

then its gradient angle θ
,� could be obtained from: 

 θ
,� � tan�� ��������              (1) 

 

where  �I
 � ���
 and  �I� � ���� are the horizontal and vertical 

gradient of pixel location  �x, y�. 
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Then, orientation code (OC) is defined by quantizing  θ
,� 

using a preset sector angle∆θ: 

 

c
,� � ����,�∆� �:   |�I
| !  "�I�" # $L:          |�I
| ! "�I�" & γ (                          (2) 

 

A separate code   L  (� )*∆� �   is assigned for low contrast 

regions, for which it is not possible to compute the gradient 

angels. For all experiments, we used 16 (N � 16) orientation 

codes (∆θ � *.   ), which have been found to be the best through 

experiment evaluation. The threshold value γ  plays an 

important role in suppressing the effect of noise and has to be 

selected according to the problem at hand. Small value of 10 

was used for  γ  which was good for most of our experiment. A 

dissimilarity measurement is defined as the summation of the 

difference between the orientation codes of the corresponding 

pixels of the two regions being matched. The cyclic property of 

orientation codes is used for finding the difference. 

If O1�i, j� and O2�i, j�  represent the orientation codes of the 

template image and any subimage from the scene, then the 

dissimilarity function between them is given by: 

 D � �4 ∑ d�O1�i, j�, O2�i, j� �                          (3) 

 

where   M  is the total number of pixels used in matching 

and  d�·�  is the error function based on an absolute difference 

criterion: 

 

d�m, n� � : min�|m ; n|, N ; |m ; n|�:   m < N = n < N                                         0:   m � n � N                                                 ?@ :   m < N A n < N(     (4) 

 

In order to account for the differences in the quantization 

width, we normalize  D by using maximum of error 

function   ?  )  and refer to the result as dissimilarity DBCD �   E  FG . 

Then the similarity is defined by using the dissimilarity DBCD as 

follows: 

 S � 1 ; DBCD       �0 & S & 1�                          (5) 

 

2. Adaptive OCM for Continuous Plant Observation 

Prior to disease detection and quantization, adaptive OCM 

was initially employed for the time sequence plant images for 

site-specific and continuous observation of disease 

development. An illustration of the above-mentioned procedure 

is given in Fig. 1. 

Supposed TJ,KL�∆L  is the template at time t ; ∆t  among the 

time sequence plant images, which �p, q� indicates the upper 

left position of the template and then searching its best match in 

the chronologically next plant image at t inside a window of 

pre-defined size within the neighbourhood around the center 

position of the TJ,KL�∆L. The reason for setting a search window is 

that the motion and growth of plant between adjacent two 

frames of plant images do not have severe variance. 

Consequently, the setting of the search window could not only 

improve the accuracy of matching result but also save the 

computation time. The size of the search window in this study 

is 50 P 50 pixels. 

Then the best match region TJQR,KQSL  at time t is computed as 

following process and will be the adaptive template for 

searching object at time t ! ∆t: if  OJ,KL�∆L and OJQR,KQSL  are the 

corresponding orientation code images for the images involved 

in the template matching, then the best matching position �p ! u, q ! v�at time t can be expressed as: 

 �u, v�J,K � arg min
,� DJ,K�x, y�                   (6) 

 

DJ,K�x, y� � 1M X d YOJ,KL�∆L�i, j�, OJQR,KQSL �i ! x, j ! y�Z[,\  

]�p ! x, q ! y�^W                             (7) 

 

where ∆t is is the image-capturing interval. W, centred at the 

former template position, whose size is pre-selected to 

accommodate the maximum expected displacement of template 

within plant image frames, is the search window for the 

adjacent template matching. 

 

 

Fig. 1 An illustration of the adaptive OCM procedure 

C. Support Vector Machine (SVM) Classifier for Plant 

Disease Classification 

By employing the template matching based on the adaptive 

OCM scheme, the site-specific information of plant leaves 

could be accessed for further plant health analysis.  In this study, 

a machine learning method SVM was used to forward identify 

and quantify the disease development, by which could be 

involved in the application of decision-making of fungicide 

reduction. 

1. Feature Definition and Extraction 

A two dimensional (2D) xy-color histogram feature was 

introduced in this study for training SVM classification model 

to segment the disease pixels from healthy and their 

background pixels. We use a luminance-chromaticity CIE xyY 

color space rather than RGB color space because the former 

one could separately represent the luminance and chromaticity 

of the color. A CIE x-y chromaticity diagram could tell us the 
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chromaticity of a color in a “horseshoe” curve by eliminating 

the luminance component of the color, by which could provide 

more stable performance of object color information against 

illumination change. Figs. 2 (a) and (b) shows an intensity 

curve of a single pixel P (Fig. 2 (c)) in RGB and xyY color 

space individually from different plant images under various 

illumination changes. It can be seen that the R, G and B 

intensities of P are changing over large range due to light 

changes, whereas the x and y intensities are more stable due to 

eliminating the luminance information (intensity of Y) of 

object. 

Based on the above color analysis, a 2D xy-color histogram 

is defined as the feature of SVM input for disease classification. 

For a template  I
�i, j� which is extracted from the plant image 

frame, its 2D xy-color histogram is given as: 

 H
,� � PbI
�i, j� � x, I��i, j� � yc   ]�i, j� d template    (8) 

 

where �0 & I
�i, j� & 1� and g0 & I��i, j� & 1hare the x and y 

color intensities in xyY color space. Fig. 3 demonstrates a 

comparable example of 2D xy-color histogram for templates 

belonging to disease, healthy and background (a white 

cardboard as background for eliminating the soil and pot 

resembles the color of CLS) respectively.  

It can be seen that the 2D xy-color histogram shows a strong 

discriminative ability for segmenting the three different 

patterns. Therefore, the color intensity of x and y of image pixel 

was chosen and extracted as features for SVM classifier. 

2. SVM Classifier 

Support vector machine [15], [16] provides a solution for 

nonlinear two-class classification problems by mapping the 

training vectors into a higher dimensional space via a nonlinear 

mapping, and an optimal separate hyperplane can be 

constructed by the maximum margin between two sets of 

vectors. The Radial Basis Function (RBF) kernel was selected 

as kernel function for the nonlinear mapping in this study. 

When the classification problem involves more than two 

classes, several methods are available to extend dichotomous 

SVM classifier into multi-class classification. In this study, we 

use one-against-one [17] approach. The process of 

multi-classifier is to construct the classifiers for k �k ; 1�/2 

times, where  k  is the number of classes. Then each one is 

trained from data of two classes. Finally, the classification 

decision is made by a majority vote of the class assignments. If 

classes have identical votes, the one with the smallest index is 

selected. 
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Fig. 2 Intensity curves of a single pixel P under various illumination 

conditions in RGB and xyY color space individually (a) RGB color 

space; (b) xyY color space; (c) illustration of the single pixel P in No.1, 

NO.3, NO.4 and NO.6 plant image frames 

3. Evaluation of the Classification Model 

For optimizing and evaluating the SVM classifier, a training 

sample and testing sample were made as follow steps: firstly, 

one day captured plant images (00:00-23:00) were randomly 

chosen, of which 12 plant images from every two hour 

capturing interval were further as the image sets of training 

sample and testing sample; Then, 400 pixel-level x and y color 

intensities were extracted for each of three patterns (health, 

disease, white background) per image (that is 400 P 3 

pixels/image); Finally, all image data were divided into two 

sets: one is the training data at time of 2:00, 6:00, 10:00, 14:00, 

18:00, 22:00, the other is test data at that of 0:00, 4:00, 8:00, 

12:00, 16:00, 20:00. A desired classification accuracies (the 

proportion of correctly classified pixels in relation to all 

classified pixels) of  99.44% and 99.07% were obtained for 

training sample and testing sample respectively with the 

relative parameters setting are c � 4, σ) � 2. 
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Fig. 3 A comparable examples of 2D xy-color histogram for templates 

belonging to disease, healthy and background respectively

different templates extraction from plant image

of healthy, disease, and background (c) 2D xy-

three patterns (d) the bird view of (c)

III. EXPERIMENT RESULTS

In this section, experiment was implemented to evaluate the 

performance of our proposed method for continuous, 

site-specific and quantitative disease observation over time, 

compared with corresponding manually classification results.

A. Pixel-Wise Disease Segmentation and 

For better observing the CLS disease changes in sugar beet, 

we chose one image per day as the observational interval during 

one-week period from 28th Dec, 2012 to 3rd Jan, 2013 

(recorded as image frames: No.1-7) in this experiment. In 

addition, to observe the relationship between disease 

development process and its environmental RH, different 

amount of watering was sprayed on the plant leaves with a 

sprinkler at 1:00 am in each day. Five randomly chosen 

effective templates from the foremost plant frame on 28th Dec, 

2012 in Fig. 4 (a) were implemented by our proposed algorithm 

for continuous and site-specific disease development 

observation over time. For demonstration the various 

illumination conditions of the seven plant frames, Fig. 4 (b) 

shows the average intensity of each frame. Clearly, 

illumination of each plant frame varies significantly and 

abruptly. 

Fig. 5 (a) shows the disease classification 

results measured by proposed algorithm for the five effective 

templates over the week period. In addition, for evaluation and 

comparison the performance of the disease classification 

algorithm employed in this study, a similar result was a

with manually classification (Fig. 5 (b)) under the guidance of 

the disease specialists. The similar growing trends of disease 

number for all five effective templates over time could be seen 

both in our proposed algorithm and manually classificatio

results, which also corresponds to the mechanism of the CLS 

disease spreading. Moreover, the correlation between the 

extending speed of the CLS disease and its environmental 
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In this section, experiment was implemented to evaluate the 

performance of our proposed method for continuous, 

specific and quantitative disease observation over time, 

ompared with corresponding manually classification results. 

egmentation and Quantization 
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we chose one image per day as the observational interval during 
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development process and its environmental RH, different 

amount of watering was sprayed on the plant leaves with a 

sprinkler at 1:00 am in each day. Five randomly chosen 

effective templates from the foremost plant frame on 28th Dec, 

2012 in Fig. 4 (a) were implemented by our proposed algorithm 

specific disease development 

For demonstration the various 

illumination conditions of the seven plant frames, Fig. 4 (b) 

shows the average intensity of each frame. Clearly, 

illumination of each plant frame varies significantly and 

Fig. 5 (a) shows the disease classification and quantization 

results measured by proposed algorithm for the five effective 

templates over the week period. In addition, for evaluation and 

comparison the performance of the disease classification 

algorithm employed in this study, a similar result was assessed 

with manually classification (Fig. 5 (b)) under the guidance of 

the disease specialists. The similar growing trends of disease 

number for all five effective templates over time could be seen 

both in our proposed algorithm and manually classification 

results, which also corresponds to the mechanism of the CLS 

disease spreading. Moreover, the correlation between the 

extending speed of the CLS disease and its environmental 

factor of RH could also be revealed: the CLS disease grows 

faster in higher RH condition than lower one. That is because 

sports of Cercospora beticola

and infect leaves in much the same way that seeds require 

moisture to germinate and grow.
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Fig. 4 Illustration of the five effective templates extraction and 

illumination conditions for plant frames over the experimental week 

period. (a) Extraction of five effective templates from plant image 

frame on Dec 28th, 2012 for disease development observation over 

time; (b) Average intensity for each plant frame among all plant time 

sequence images

Fig. 5 Quantitative results for the disease development o

effective templates, (a) by our proposed method
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Cercospora beticola require moisture to germinate 

and infect leaves in much the same way that seeds require 

moisture to germinate and grow.    
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Plant  time sequence images  over a week  [1 image/day]

 

 

effective templates extraction and 

illumination conditions for plant frames over the experimental week 

period. (a) Extraction of five effective templates from plant image 

frame on Dec 28th, 2012 for disease development observation over 

ntensity for each plant frame among all plant time 

sequence images 
 

 

Quantitative results for the disease development of the five 

(a) by our proposed method, (b) by manually 

classification 

 

Fig. 6 illustrates the visualization results of disease 

classification and its development process for two different 

effective templates (template_1 and template_3) of the five 

_5) in both image processing and 

manually segmentation approaches: 1) the disease in the first 

) is an isolated spot, it can be seen that the 

single spot was outward expanding both in size and shape over 
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time, and diffuses faster in the days with higher RH condition; 2) 

the disease in the third template (template_3) initially started 

from one isolated and big spot, along with two isolated and 

small spots, as the disease processes, individual spots coalesce 

and heavily infected leaf tissue with size expanding. Therefore, 

it can be seen that the site-specific disease quantization and 

their expanding speed over time could be accessed by the 

proposed method, which will provide the information for 

fungicide-spraying decision. Moreover, it could also help the 

disease specialists find out whether the applied fungicide is 

effective or not. However, from the contrastive visualization 

results compared with the manually classification, we could see 

that there is a distinct under-classification problem in the 

templates on Dec 31th, 2012. It might be attributed to the darker 

light condition in that day's plant image frame, which might lost 

its prior information in the training data. 

 

 

Fig. 6 Visualization result of disease classification and development process for two different effective templates of five. For the three images in 

each day, the upper left one indicates the RGB template image, upper right one is the corresponding disease classification result by our proposed 

method, and lower middle one is the result by manually classification. (a) shows the result of template_1; (b) shows the result of template_3. Blue 

areas correspond to disease region 

 

B. Algorithm Evaluation 

Correlated to the manually disease classification results, 

three statistical measurements [18]: precision, recall and 

F-measure, are utilized in this study to analyze the temporal 

stability of the proposed method. In which precision can be 

seen as a measure of exactness of fidelity, while recall is a 

measure of completeness, and the F-measure considers both 

precision and the recall in computing the score, which could be 

interpreted and formulated as a weighted harmonic mean of 

precision and recall. The formulas for the three statistical 

measurements are:  

 precision � pRDqrCs[L[CBpRDqrCs[L[CBQtuvsqrCs[L[Sq                     (9) 

 Recall � pRDqrCs[L[CBpRDqrCs[L[CBQtuvsq?qxuL[Sq                    (10) 

 y � 2 · rDqz[s[CB·{qzuvvrDqz[s[CBQ{qzuvv                             (11) 

 

Comparative results of precision, recall and F-measure for 

the five templates are shown in Fig. 7. It can be seen that the 

classification accuracy for precision, recall and F-measure is 

consistent in a higher than the value of 0.74, which indicates the 

good performance and temporal stability of our proposed 

algorithm. But again, the lower value appears for all five 

templates on the fourth day (Dec 31th, 2012) over the one-week 

period due to the darkest illumination condition. 

In other words, by our proposed method, the site-specific, 

continuous and pixel-level quantifying of plant disease could 

be obtained for providing more precise information about the 

disease development, by which can lead us to optimally 

determine the timing and amount of fungicide spraying with 

climate condition. Moreover, our proposed method could also 

assist to judge the effect of the sprayed fungicide.  
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Fig. 7 Evaluation of the performance of our proposed method

IV. CONCLUSION 

In this paper, we proposed a novel OCM

quantitatively deducing changes in plant health. Differing from 

the conventional plant disease analysis schemes, a robust 

matching scheme OCM was introduced in t

could not only realize the continuous, site-

of disease development, but also showed its excellent 

robustness for non-rigid plant object searching in scene 

illumination, live plant translation, small rotation and occlusi

changes. The indoor experiment results, comparing the 

proposed method with manually classification, indicated the 

feasibility and potential of our proposed algorithm, which could 

be further implemented in real field situation for observing and 

quantifying the site-specific plant health development and 

fungicide spraying management. It should be also noted that 

this approach might be also generally applicable and suitable to 

other leafy plant varieties like cabbage and lettuce.

 

of our proposed method  

In this paper, we proposed a novel OCM-based algorithm for 

quantitatively deducing changes in plant health. Differing from 

the conventional plant disease analysis schemes, a robust 

matching scheme OCM was introduced in this study which 

-specific observation 

of disease development, but also showed its excellent 

rigid plant object searching in scene 

illumination, live plant translation, small rotation and occlusion 

changes. The indoor experiment results, comparing the 

proposed method with manually classification, indicated the 

feasibility and potential of our proposed algorithm, which could 

be further implemented in real field situation for observing and 

specific plant health development and 

fungicide spraying management. It should be also noted that 

this approach might be also generally applicable and suitable to 

other leafy plant varieties like cabbage and lettuce.  

REFERENCES  

[1] W. W. Shane, P. S. Teng, “Impact of Cercospora leaf spot on root weight, 

sugar yield, and purity of Beta vulgaris”, Plant Dis. Vol. 76, pp. 812
1992. 

[2] J. Stachler, M. Khan, D. Franzen, M. Boetel, L.Smith, A. Sims, J.Lamb, 

A. Cattanach, “Sugarbeet Production Guide
and Education Board of Minnesota and North Dakota, pp.74

[3] G. Polder, G. W. A. M. van der Heijden, H. Jalink, J. F. H. Snel, 

“Correcting and matching time sequence images of plant leaves using 
Penalized Likelihood Warping an
and Electronics in Agriculture, vol. 55, pp. 1

[4] A. Camargo, J. S. Smith, “An image
automatically identify plant disease visual symptoms”, Biosystems 

Engineering, vol. 102, pp. 9-21,

[5] A. Camargo, J. S. Smith, “Image pattern classification for the 
identification of disease causing agents in plants”, Computers and 

Electronics in Agriculture, vol. 66, pp. 121

[6] Y. Tian, C. J. Zhao, S. L. lu, X. Y. Guo, “SVM
System for recognition of wheat leaf diseases”, Intelligent Automation 

and Soft Computing, vol. 15, No. X, pp. 1

[7] T. Rumpf, A. K. Mahlein, U. Steiner, E. C. Oerke, H. W. Dehne, L. 
Pumer, “Early detection and classification of pl

vector machines based on hyperspectral refelcetance”, Computers and 

Electronics in Agriculture, vol.74,
[8] F. Ullah, S. Kaneko, S. Igarashi, “Orientation Code Matching for robust 

object search”,  IEICE Trans. On Inf. 

2001. 
[9] F. Ullah, S. Kaneko, “Using orientation codes for rotation

template matching”, Pattern Recognition, vol. 37, pp. 201

[10] S. Hutchison, G. D. Hager, P. Coreke, “A tutorial introduction to visual 
servo control”, IEEE Trans. RA, vol. 12, pp. 651

[11] N. Papanikolopoulos, P. Khosla, T. Kanade, “Visual tracking of a moving 
target by a camera mounted on a robot: A combination of control and 
vision”, IEEE. Trans. RA, vol. 9, pp. 317

[12] E. Bardinet, L. Cohen, N. Ayache, “Tracking medical 3D data with a 

deformable parametric model”, Proc. ECCV, vol.1, pp. 317
[13] R. Howarth, Buxton, “Visual surveillance monitoring and watching

Proc. ECCV, vol.2, pp. 321-334, 1996.

[14] T. Franc, M. Haag, H. Kollning, H. H. Nagel, “Traching of occluded 
vehicles in traffic scenes”, PROC. Eccv, vol. 2, pp. 485

[15] N. V. Vapnik, Statistical learning theory, Wiley: New York, 1998.

[16] N. V. Vapnik, The nature of Statistical Learning Theory (Statistics for 
engineering and information science), 2rd ed., Springer

York, 2000. 

[17] S. Knerr, L. Personnaz, G. Dreyfus, 
stepwise procedure for building and training a neural network

Neurocomputing , Springer Berlin Heidelberg

[18] J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel, “Performance 
measures for information extraction

Broadcast News Workshop, pp. 249

 

EFERENCES   

P. S. Teng, “Impact of Cercospora leaf spot on root weight, 

sugar yield, and purity of Beta vulgaris”, Plant Dis. Vol. 76, pp. 812–820, 

J. Stachler, M. Khan, D. Franzen, M. Boetel, L.Smith, A. Sims, J.Lamb, 

Sugarbeet Production Guide”, The Sugarbeet Research 
and Education Board of Minnesota and North Dakota, pp.74-80, 2013. 

G. Polder, G. W. A. M. van der Heijden, H. Jalink, J. F. H. Snel, 

“Correcting and matching time sequence images of plant leaves using 
Penalized Likelihood Warping and Robust Point Matching”, Computers 
and Electronics in Agriculture, vol. 55, pp. 1-15, 2007. 

A. Camargo, J. S. Smith, “An image-processing based algorithm to 
automatically identify plant disease visual symptoms”, Biosystems 

21, January, 2009. 

A. Camargo, J. S. Smith, “Image pattern classification for the 
identification of disease causing agents in plants”, Computers and 

Electronics in Agriculture, vol. 66, pp. 121-125, 2009. 

Y. Tian, C. J. Zhao, S. L. lu, X. Y. Guo, “SVM-based Multiple Classifier 
System for recognition of wheat leaf diseases”, Intelligent Automation 

and Soft Computing, vol. 15, No. X, pp. 1-10, 2009. 

T. Rumpf, A. K. Mahlein, U. Steiner, E. C. Oerke, H. W. Dehne, L. 
Pumer, “Early detection and classification of plant disease with support 

vector machines based on hyperspectral refelcetance”, Computers and 

Electronics in Agriculture, vol.74, pp. 91-99, 2010. 
F. Ullah, S. Kaneko, S. Igarashi, “Orientation Code Matching for robust 

object search”,  IEICE Trans. On Inf. & Sys, E48- D, No. 8, pp. 999-1006, 

F. Ullah, S. Kaneko, “Using orientation codes for rotation-invariant 

template matching”, Pattern Recognition, vol. 37, pp. 201-209, 2004. 

S. Hutchison, G. D. Hager, P. Coreke, “A tutorial introduction to visual 
vo control”, IEEE Trans. RA, vol. 12, pp. 651-670, 1996. 

N. Papanikolopoulos, P. Khosla, T. Kanade, “Visual tracking of a moving 
target by a camera mounted on a robot: A combination of control and 

, IEEE. Trans. RA, vol. 9, pp. 317-328, 1993. 

dinet, L. Cohen, N. Ayache, “Tracking medical 3D data with a 

, Proc. ECCV, vol.1, pp. 317-328, 1996. 
R. Howarth, Buxton, “Visual surveillance monitoring and watching”, 

334, 1996. 

Kollning, H. H. Nagel, “Traching of occluded 
, PROC. Eccv, vol. 2, pp. 485-494, 1996. 

N. V. Vapnik, Statistical learning theory, Wiley: New York, 1998. 

N. V. Vapnik, The nature of Statistical Learning Theory (Statistics for 
eering and information science), 2rd ed., Springer-Verlag: New 

Dreyfus, “Single-layer learning revisited: a 
stepwise procedure for building and training a neural network”. In 

Springer Berlin Heidelberg, pp. 41-50, 1990.  

J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel, “Performance 
measures for information extraction”, In Proceedings of DARPA 

Broadcast News Workshop, pp. 249-252, 1999. 


