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Ten limit cycles in a quintic Lyapunov system
Li Feng

Abstract—In this paper, center conditions and bifurcation of limit
cycles at the nilpotent critical point in a class of quintic polynomial
differential system are investigated. With the help of computer algebra
system MATHEMATICA, the first 10 quasi Lyapunov constants are
deduced. As a result, sufficient and necessary conditions in order to
have a center are obtained. The fact that there exist 10 small amplitude
limit cycles created from the three order nilpotent critical point is also
proved. Henceforth we give a lower bound of cyclicity of three-order
nilpotent critical point for quintic Lyapunov systems. At last, we give
an system which could bifurcate 10 limit circles.

Keywords—Three-order nilpotent critical point, Center-focus prob-
lem, Bifurcation of limit cycles, Quasi-Lyapunov constant.

I. INTRODUCTION

T
HE nilpotent center problem was theoretically solved by

Moussu [10] and Stróżyna [12]. Nevertheless, in fact,

given an analytic system with a monodromic point, it is very

difficult to know if it is a focus or a center, even in the case

of polynomial systems of a given degree. In this paper, we

consider an autonomous planar ordinary differential equation

having a three–order nilpotent critical point with the form

dx
dt

= y + a12xy
2 + a03y

3 + a31x
3y + a22x

2y2

− 4b04xy
3 + a04y

4 − y(x2 + y2)2,
dy
dt

= −2x3 + b21x
2y + b03y

3 + b40x
4 − 3

2
a31x

2y2

+ b13xy
3 + b04y

4 + x(x2 + y2)2.

(1)

where µ 6= 0, and all parameters are real.

In some suitable coordinates, the Lyapunov system with the

origin as a nilpotent critical point can be written as

dx
dt

= y +
∞∑

i+j=2

aijx
iyj = X(x, y),

dy
dt

=
∞∑

i+j=2

bijx
iyj = Y (x, y).

(2)

Suppose that the function y = y(x) satisfies X(x, y) =
0, y(0) = 0. Lyapunov proved (see for instance [3]) that the

origin of system (2) is a monodromic critical point (i.e., a

center or a focus) if and only if

Y (x, y(x)) = αx2n+1 + o(x2n+1), α < 0[
∂X
∂x

+ ∂Y
∂x

]
y=y(x)

= βxn + o(xn),

β2 + 4(n+ 1)α < 0,

(3)

where n is a positive integer. The monodromy problem in

this case was solved in [4] and the center problem in [10],

see also in [12]. As far as we know there are essentially

three differential ways of obtaining the Lyapunov constant:

by using normal form theory [8], by computing the Poincaré

return map [6] or by using Lyapunov functions [11]. Álvarez
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study the momodromy and stability for nilpotent critical points

with the method of computing the Poincaré return map, see for

instance [1]; Chavarriga study the local analytic integrability

for nilpotent centers by using Lyapunov functions, see for in-

stance [7]; Moussu study the center-focus problem of nilpotent

critical points with the method of normal form theory, see

for instance [10]. Takens proved in [13] that system (2) can

be formally transformed into a generalized Liénard system.

Álvarez proved in [2] that using a reparametrization of the time

to simplify even more. Giacomini et al. in [14] prove that the

analytic nilpotent systems with a center can be expressed as

limit of systems non-degenerated with a center. therefore, any

nilpotent center can be detected using the same methods that

for a nondegenerate center, for instance the Poincaré-Lyapunov

method can be used to find the nilpotent centers.

For a given family of polynomial differential equations,

let N(n) be the maximum possible number of limit cycles

bifurcating from nilpotent critical points for analytic vector

fields of degree n. In [5] it is found that N(3) ≥ 2, N(5) ≥
5, N(7) ≥ 9; In [1] it is found that N(3) ≥ 3, N(5) ≥ 5;

For a family of Kukles system with 6 parameters, in [2] it

is found taht N(3) ≥ 3. Hence in this paper. Recently, Liu

Yirong and Li Jibin in [15] proved that N(3) ≥ 8. Hence in

this paper, employing the integral factor method introduced in

[9], we will prove N(5) ≥ 10. To the best of our knowledge,

our results on the lower bounds of cyclicity of three-order

nilpotent critical points for quintic systems are new.

We will organize this paper as follows. In Section 2, using

the linear recursive formulae in [15] to do direct computation,

we obtain with relative ease the first 10 quasi-Lyapunov

constants and the sufficient and necessary conditions of center.

This paper is ended with Section 3 in which the 10-order weak

focus conditions and the fact that there exist 10 limit cycles

in the neighborhood of the three-order nilpotent critical point

are proved.

II. QUASI–LYAPUNOV CONSTANTS AND CENTER

CONDITIONS

According to Theorem in [9], for system (1). Carrying out

calculations in MATHEMATICA, we have

ω3 = ω4 = ω5 = 0,
ω6 = − 1

3
b21(−1 + 4s),

ω7 ∼ 3(s+ 1)c03,

ω8 ∼ − 2(a12+3b03)

5
(−3 + 4s),

ω9 ∼ − 2(2a22+3b13)

3
(−1 + s).

(4)

From (3.1), we obtain the first two quasi-Lyapunov constants

of system (1):

λ1 = ω6

1−4s
= b21

3
,

λ2 ∼ ω8

3−4s
= 2(a12+3b03)

5
.

(5)
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we see from ω7 = ω9 = 0 that

c03 = 0, s = 1. (6)

Furthermore, take s = 1, we obtain the following conclu-

sion.

Proposition 2.1: For system (1), one can determine succes-

sively the terms of the formal series M(x, y) = x4+y2+o(r4),
such that

(
∂X
∂x

+ ∂Y
∂y

)
M − 2

(
∂M
∂x

X + ∂M
∂y

Y
)
=

11∑

m=1

λm[(2m− 5)x2m+4 + o(r28)],
(7)

where λm is the m-th quasi-Lyapunov constant at the origin

of system (1), m = 1, 2, · · · , 12.

Theorem 2.1: For system (1), the first 12 quasi-Lyapunov

constants at the origin are given by

λ1 = b21
3
,

λ2 = 2(a12+3b03)

5
,

λ3 = b40(2a22+3b13)

35
,

λ4 = − (2a22+3b13)a31

15
,

λ5 = 20b04(2a22+3b13)

77
,

λ6 = −4b03(172a22−13b13)(2a22+3b13)

3003
,

λ7 = 8b03(41067a04−7658a22)(2a22+3b13)

405405
,

λ8 = 112(160681+733941a03)a22b03(2a22+3b13)

45379035
,

λ9 = 4a22b03(2a22+3b13)

6240681974475
(−9539331965897

+ 20127128261760b203),

λ10 = −a22b03(2a22+3b13)

188992023730839771840450
(632226312156980494004945

+ 815899547527119916257024a222)
(8)

In the above expression of λk, we have already let λ1 = λ2 =
· · · = λk−1 = 0, k = 2, · · · , 10.

From Theorem 2.1, we obtain the following assertion.

Proposition 2.2: The first 10quasi-Lyapunov constants at

the origin of system (1) are zero if and only if the following

condition is satisfied:

b21 = a31 = b03 = b40 = b04 = a12 = 0; (9)

b21 = 0, a12 = −3b03, a22 = − 3

2
b13. (10)

Proof. When condition (9) of Proposition 3.2 holds, system

(1) can be brought to

dx
dt

= y + a03y
3 + a22x

2y2 + a04y
4 − y(x2 + y2)2,

dy
dt

= −2x3 + b13xy
3 + x(x2 + y2)2.

(11)

whose vector field is symmetric with respect to the y-axis.

When condition (10) of Proposition 3.2 holds, system (1)

can be brought to

dx
dt

= y +−3b03xy
2 + a03y

3 + a31x
3y − 3

2
b13x

2y2

− 4b04xy
3 + a04y

4 − y(x2 + y2)2,

dy
dt

= −2x3 + b03y
3 + b40x

4 − 3

2
a31x

2y2 + b13xy
3

+ b04y
4 + x(x2 + y2)2.

(12)

the system (12) has an analytic first integral

H(x, y) = − 1

2
y2 − 1

2
x4 − 1

2
a31x

3y2 + 1

2
b13x

2y3 + b04xy
4

− 1

4
a03y

4 − 1

5
a04y

5 + b03xy
3 + 1

3
(x2 + y2)3.

We see from Propositions 2.2 that

Theorem 2.2: The origin of system (1) is a center if and

only if the first 10 quasi–Lyapunov constants are zero, that is,

one of the conditions in Proposition 2.2 is satisfied.

III. MULTIPLE BIFURCATION OF LIMIT CYCLES

This section is devoted proving that when the three–order

nilpotent critical point O(0, 0) is a 10-order weak focus, the

perturbed system of (1) can generate 10 limit cycles enclosing

an elementary node at the origin of perturbation system (1).

Using the fact λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = λ7 =
λ8 = λ9 == 0, λ10 6= 0, we obtain

Theorem 3.1: The origin of system (1) is a 10–order weak

focus if and only if

b21 = b40 = a31 = b04 = 0,

a12 = −3b03, b13 = 171

13
a22,

a04 = 7658

41067
a22,

a03 = − 160681

733941
,

b03 = ±

√
9539331965897

90610

14904
, a22 6= 0.

(13)

Proof. By letting λ1 = λ2 = λ3 = λ4 = λ5 =
λ6 = λ7 = λ8 = λ9 = 0, we obtain the relations of

b21, b40, a31, b04, a12, b13, a22, a04, a03, b03. Because

a22 6= 0, the origin of system (1) is a 10–order weak focus.

We next study the perturbed system of (1) as follows:

dx
dt

= δx+ y + a12xy
2 + a03y

3 + a31x
3y + a22x

2y2

− 4b04xy
3 + a04y

4 − y(x2 + y2)2,
dy
dt

= 2δy − 2x3 + b21x
2y + b03y

3 + b40x
4 − 3

2
a31x

2y2

+ b13xy
3 + b04y

4 + x(x2 + y2)2.
(14)

When conditions in (13) hold, we have

J = ∂(λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8,λ9)

∂(b21, a12, b40, a31, b04, b13, a04, a03, b03)

= ∂λ1

∂b21

∂λ2

∂a12

∂λ3

∂b40

∂λ4

∂a31

∂λ5

∂b04

∂λ6

∂b13

∂λ7

∂a04

∂λ8

∂a03

∂λ9

∂b03

=
4720881626272548607185227793232964573995264a9

22
b03

4283058355201979039129867771096953125

6= 0.
(15)

The statement mentioned above follows that
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Theorem 3.2: If the origin of system (1) is a 10-order

weak focus, for 0 < δ ≪ 1, making a small perturbation

to the coefficients of system (1), then, for system (14), in a

small neighborhood of the origin, there exist exactly 10 small

amplitude limit cycles enclosing the origin O(0, 0), which is

an elementary node.

IV. EXAMPLE OF BIFURCATION OF LIMIT CYCLES AT

ORIGIN

Now we consider bifurcation of limit cycles at the origin

for perturbed system (14).

Theorem 4.1: Suppose that the coefficients of system (14)

satisfy

δ = 1

2
ε55, b21 = 3ε45,

a12 = − C
4968

− 243386597004525ε
41133599436947864

+ 5

2
ε36,

b40 = 65

77
ε28, a31 = 195

539
ε21,

b03 = 13

140
ε15, a22 = 1,

b13 = 171

13
− 145314C

7
ε10,

a04 = 7658

41067
− 40365C

49
ε6,

a03 = − 160681

733941
− 61395165C

3773
ε3,

b03 = 1

1914C
+ 81128865668175

41133599436947864
ε,

(16)

where C =
√

90610

9539331965897
. Then, if ε = 0, the origin of

system (14) is an tenth fine focus with stability. If 0 < ε ≪ 1,

there exist ten limit cycles in a small enough neighborhood of

the origin of system (14).

Proof. According to Theorem 2.1, we have

v1(2π, δ) = −ε55 +O(ε55),

v2(2π, δ) = ε45 +O(ε45)

v3(2π, δ) = −ε36 +O(ε36),

v4(2π, δ) = ε28 − 5667246C
3773

ε38 +O(ε38),

v5(2π, δ) = −ε21 + 5667246C
3773

ε31 +O(ε31),

v6(2π, δ) = ε15 − 5667246C
3773

ε25 +O(ε25),

v7(2π, δ) = −ε10 − 151143076739810025C
5141699929618483

ε11 +O(ε11),

v8(2π, δ) = ε6 + 151143076739810025C
5141699929618483

ε7 +O(ε7),

v9(2π, δ) = −ε3 − 151143076739810025C
5141699929618483

ε4

+ 5667246C
3773

ε13 +O(ε13),
v10(2π, δ) = ε+ 151143076739810025C

5141699929618483
ε2

− 5667246C
3773

ε11 +O(ε11),
v11(2π, δ) = − 780539838369730121131201291C

36617582581897667473630868400

− 1448125859684100410261969

2311103383443064036777392
ε+O(ε),

(17)

Because the sign of the focal values of the origin has reversed

eleven times, from Theorem in [15] there exist ten limit cycles

in a small enough neighborhood of the origin of system (14).
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