
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

232

Abstract—Software organizations are constantly looking for

better solutions when designing and using well-defined software
processes for the development of their products and services.
However, while the technical aspects are virtually easier to arrange,
many software development processes lack more support on project
management issues. When adopting such processes, an organization
needs to apply good project management skills along with technical
views provided by those models. This research proposes the
definition of a new model that integrates the concepts of PMBOK
and those available on the OPEN metamodel, helping not only
process integration but also building the steps towards a more
comprehensive and automatable model.

Keywords—OPEN metamodel, PMBOK metamodel, Project
Management, Software Process

I. INTRODUCTION

HE increasing concern on software development issues
drives organizations to the adoption of software

engineering practices. Some most desirable characteristics
include the ability to capture the best practices on software
development, a good level of flexibility in order to reach a
wide variety of projects, and also good management skills.
 Developing software products requires the planning and
execution of activities, defined in accordance to the scope of
the project, and where it is necessary to deal with both
management and technical issues. We must consider the fact
that projects are always unique and temporary endeavors. They
also have one or more goals, require resources and have a
defined sponsor. Besides, all projects involve a great level of
uncertainty [1]. Still, most models or guides for project
management, such as the PMBOK Guide, do not specifically
address software development processes. On the other hand,
existing software development processes lack of more project
management skills in their models or methodologies.

Project management in a software development environment
is defined as the management of people and other resources by
a project manager in order to plan, analyze, design, build, test
and maintain an information system [2].

M. C. Rosito is with the Pontifical Catholic University of Rio Grande do

Sul, 6681 Ipiranga Avenue, 90619-900 Porto Alegre, RS, Brazil (phone: 51-
3320-3558; e-mail: mauricio.rosito@acad.pucrs.br).

D. A. Callegari is with the Pontifical Catholic University of Rio Grande do
Sul, 6681 Ipiranga Avenue, 90619-900 Porto Alegre, RS, Brazil (phone: 51-
3320-3558; e-mail: daniel.callegari@pucrs.br).

R. M. Bastos is with the Pontifical Catholic University of Rio Grande do
Sul, 6681 Ipiranga Avenue, 90619-900 Porto Alegre, RS, Brazil (phone: 51-
3320-3558; e-mail: bastos@pucrs.br).

In order to fulfill these intents, a project manager needs

some kind of support, generally based on a project
management methodology which can deal with many singular
project variants, responsibilities and tasks. Still, software
development processes generally provide just a set of practices
that deal with certain activities and workflows related to
management. Yet these processes do not adequately address
human resources and other kinds of resources such as
equipment and involved material.

As pointed out by [2], two important software development
processes, Rational Unified Process (RUP) [3] and Object-
oriented Process, Environment and Notation (OPEN) [4],
respectively, need more support for project management
concerns. Both RUP and OPEN help the execution of the so
called “best practices for software development” . Despite that,
RUP, for instance, does not cover essential project
management skills like human management and subcontract
management. On the other hand, OPEN presents a set of
activities and techniques that address areas such as quality,
cost rating and management metrics. Nevertheless both models
seem to lack enough support on essential knowledge areas of
project management, namely: procurement, communication
and human resources.

Past and present works on the literature indicate the
importance of using well defined software processes in
organizations. Meanwhile, there seems to be not enough work
in fulfilling the lack of project management skills in those
processes. In order to have a more comprehensive process for
management and software development, we need to apply
well-known project management skills to the appropriate
software development process. As a consequence, we need
more research for a solution that can provide a greater level of
integration among the concepts and models for these two
areas. More than that, the desired solution should allow the
development of tools that support the decision making process
of an organization through the automation of technical and
managerial planning processes.

While the Project Management Book of Knowledge Guide
(PMBOK) [5] can provide a managerial perspective of the
solution, the technical view may be provided by a software
process model such as OPEN. The integration of the PMBOK
concepts with other software development process (e.g. RUP)
was already addressed in [6]. This research adds to the field
by proposing the same approach with the OPEN Process
Framework. By analyzing how project management knowledge
can help improving current software development processes
we can derive new tools to support different levels of
automation in the planning and execution of activities inside a
software project.

Project Management and Software Development
Processes: Integrating PMBOK and OPEN

T

Maurício Covolan Rosito, Daniel Antonio Callegari and Ricardo Melo Bastos

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

233

Fig. 1 Project Management metamodel based on the PMBOK Guide [6]

In this text, we first present an overview of the PMBOK and
a project management metamodel based on the PMBOK
Guide. Section III introduces OPEN Process Framework and
the main components of its model. Section IV contains a
comparative analysis of PMBOK and OPEN concepts
organized as classes. The integrated metamodel for the
PMBOK and OPEN is detailed in section V, while the
conclusion and comments on future work are presented in
section VI.

II. PMBOK METAMODEL

A project is a temporary endeavor with the purpose of
producing a unique product or service [5]. A project is
generally directed to a specific result and involves the
coordinated execution of inter-related activities. More than
that, projects are planned, executed and controlled by people,
and they are constrained by limited resources.

The lack of a methodology for project management, as well
as the complexity and volume of the projects in an
organization, contributes to an increase of project management
problems [7]. But, most management models or guides are not
software-specific. In addition, this management models (e.g.
PMBOK) are generally more applied to industrial and
manufacturing activities. Besides, most of the software
development processes generally provide just an adequate set
of practices that supports the suggested activities and
associated workflows.

According to [5], project management means applying
knowledge, skills, tools and techniques to the project’s
activities, in order to meet or exceed the needs and
expectations of the interested parties (stakeholders). Project
management has the aim of finishing a project inside schedule
and within the defined budget, according to a previously
arranged set of specifications. These elements characterize the
Triple Constraint of project management, in which a project is

made of three basic components: scope, time and cost. A well
succeeded project, thus, means fitting these three objectives
and satisfying the sponsors.

Internationally recognized by the effort on defining norms
and supporting project management professionals, the Project
Management Institute (PMI) published a general guide on
project management: the PMBOK. The Project Management
Book of Knowledge provides the best practices on project
management that are applicable to the vast majority of the
projects in many areas.

According to [5], the primary goal of the PMBOK Guide is
to identify the subset of the Project Management Body of
Knowledge that is generally recognized as good practice. But,
in spite of being a well accepted guide, the PMBOK is not a
process in the strict sense, as it does not define actions nor
states how they must be followed and executed for the correct
development of a project.

The PMBOK Guide does not include a metamodel. For this
very reason, the managerial perspective of the integrated
model proposed will use the metamodel designed by [6]. In
order to compare and perform an integration of two models,
they must be represented in compatible structures. As we can
see in Fig. 1, that model covers concepts from general
structures such as Organization, Program and Project, as well
as the most important ones, such as Activities, Stakeholders,
Roles, Deliverables, and associated classes. A fully detailed
analysis of the classes on the metamodel is presented in section
IV.

III. OPEN METAMODEL

OPEN is an object oriented software development
methodology maintained by the OPEN Consortium group [4].
It can be defined as a framework (OPEN Process Framework,
OPF) which provides an extensible metamodel that can be
configured for distinct software development processes. OPEN

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

234

encapsulates concepts and activities related to business,
quality, analysis and reuse, that are common to any software
development process using the object oriented approach.

A process is instantiated and customized from the OPEN
metamodel by the addition and removal of process
components [8], [9]. This operation helps in a better adequacy
of the organization needs in terms of size, culture, investment
and other characteristics, and involves choosing activities,
tasks, techniques and specific configurations for the business.

OPEN’s framework focuses on the cooperative interaction
among the producers, their work units and what they produce
[4]. Indeed, the OPEN Process framework (OPF)
acknowledges the elements in Fig. 2 as the central components
in its framework.

Fig. 2 Core Process Component Classes in OPEN [9]

The Endeavor class refers to a component that models the

effort made from a Producer when executing Work Units
during one or more Stages. Work Product refers to the
components that are produced during the development of the
project. The Language class models the type of language used
to document and produce the project’s products (e.g. UML,
Java and even natural language). The Producer class refers to
the element responsible for producing or modifying, either
directly or indirectly, the artifacts of the process. Producers
can be people (defined for Roles) or even tools. Work units
consist of a set of cohesive operations performed by the
producer to build a work, and they can be classified as Tasks,
Techniques, Workflows and Activities. Finally, the time
division dimension is provided by the Stage class, such as
cycles, phases and instantaneous stages (like milestones).

IV. COMPARATIVE ANALYSIS OF PMBOK AND OPEN

METAMODELS

In a previous study (see [6]) we have presented an
integration of concepts arising from the PMBOK and RUP
models. The detailed study of the PMBOK, RUP and OPEN
metamodels helped to identify how their classes are organized
and which are the valid relations between the elements of each
model. The PMBOK metamodel includes the elements needed
for project management while the concepts of software
development processes are obtained by RUP and OPEN
metamodels. The analysis of these software development
processes metamodels (see Table I) allows us to identify
elements of conformity between the central elements of RUP

and OPEN. This comparative analysis is based on studies
performed in [2] and [21] and add to the study presented by
[22].

TABLE I
COMPARATIVE ANALYSIS BETWEEN RUP AND OPEN MAIN CONCEPTS

RUP OPEN
Tool

Tool Mentor
Artifact
Activity

Role
Discipline
Lifecycle

Phase
Workflow Detail

Signature
-
-

Producer (Tool)
Work Unit (Technique)

Work Product
Work Unit (Task)
Producer (Role)

Activity
Stage (Lifecycle)

Stage(Phase)
Activity

-
Endeavor
Language

In RUP, the Tool class describes the tools that help the

production or modification of an artifact. The OPEN
metamodel also contains a class named Tool, which is a
subclass of the Producer class, and represents a software used
to create or modify versions of work products. In this case, we
observed that the Tool class in RUP is equivalent to the Tool
class in OPEN.

There is a similarity of concepts coming from the
ToolMentor class in RUP and the Technique class in OPEN.
The ToolMentor class is responsible for guidance on how
activities are performed using a particular tool. The Technique
class, a subclass of Work Unit class, is responsible for
determining how to perform one or more activities, workflows
and tasks by a producer.

According to the RUP, the Artifact class describes the types
of work products that are produced and modified during the
project. The Work Product class of OPEN models everything
that is produced, used, modified or destroyed during the
performance of one or more work units by one or more
producers. In this case, there is a minimal difference between
RUP and OPEN regarding the relationship of these two classes
with a role (Role class). In RUP, an artifact should be the
responsibility of only one role and can be modified by any or
several roles. In OPEN, a work product must be related to one
or more producers. Thus, the Artifact class of RUP is
equivalent to the Work Product class of OPEN.

The definition of the Activity class in RUP meets the
definition of the Task class in OPEN. The Activity class
represents a work unit that produces a significant result for the
project while the Task class models a specific work that
produces or modifies one or more work products.

Both RUP and OPEN use the term Role to define who is
responsible for performing the activities and produce or
modify work products. In OPEN, the Role class is a subclass
of Producer.

In RUP, the Discipline class is responsible for the division
of the elements of the process in areas of interest. A discipline
is composed of one or more workflows. Workflow Detail class
groups related activities and defines how the roles should work

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

235

together to achieve specific objectives of the process. The
latter class determines the sequence and interdependence
between the activities belonging to a discipline. In OPEN,
however, the set of elements based on a single activity, such as
producers, work products and work units, which are part of a
single field of knowledge is defined as the Activity class.
Thus, in OPEN a discipline is organized around a single
activity, which can contain multiple tasks. In addition, this
class is composed of set of tasks, grouped according to a
common goal, and produces a set of interconnected products
where the dependency relationships between activities can be
defined using pre-conditions and post-conditions.
Consequently, the Activity class in OPEN encompasses the
concepts of the Workflow Detail class and Discipline class in
RUP.

According to RUP, the Lifecycle class defines the life cycle
of software development. The OPEN proposes a division
between product and process life cycles through the Business
Engineering Cycle, Life Cycle e Development Cycle classes.
Thus, the subclass Life Cycle class in OPEN is compatible
with the Lifecycle class in RUP, as it represents the set of
phases in which a single system, application, or main
component is produced or used.

The Signature class in RUP contains two mutually exclusive
attributes that indicate whether an attribute is used to input or
output to a particular activity. In this case, it was not identified
a similar class in the OPEN metamodel.

The Endeavor class in OPEN models the effort undertaken
by producers during the execution of work units. This concept
was not found in the RUP metamodel.

Finally, the Language class (which refers to the type of
language used to document and produce the project), did not
show compliance with any class of RUP.

V. INTEGRATING PMBOK AND OPEN MODELS

The Meta Object Facility (MOF) provides a metadata
management framework, and a set of metadata services to
enable the development and interoperability of model and
metadata driven systems [19]. This architecture model
proposed by OMG is composed of four layers or levels. Then,
a model defined on a higher layer defines the language to be
used on the next lower layer [20]. When extending models it is
important to be aware of the problems that may arise when
representing concepts that belong to different levels of the
MOF in a single diagram. In this paper, we are working with
models that belong to the M1 layer (process model) of MOF.

The integrated model for the PMBOK and OPEN is
composed of three packages: one for the project management
concepts, one for the concepts of software processes (in this
case OPEN), and finally, a common package that holds the
concepts that occur in both models.

The OPEN metamodel classes represent the elements that
compose process development software. The set of classes
attributes defined in the OPEN package were based on [2], [8]
and [9]. The PMBOK reference metamodel includes the

required elements for project management. The main
contribution of this model is the proposition of a set of classes
and attributes (depicted in a UML class diagram) that
corresponds to the concepts of general project management.
The design of this model was based on [1] and [5].

When realizing an integration of two models, the conditions
below may occur [6]:

• an overlapping of concepts (two classes with the same
concept on each model) - in such case we can transform
and join them into a single concept inside the common
package;

• a relation of concepts (a class of one of the original
models relates to some other class on the other original
model, but they do not represent exactly the same
concept), in such case we must create an association
between them;

• classes with independent and distinct concepts from each
original model, in such case we must leave each class in
its own package.

In this model (see Fig. 3), the Organization class represents
a company that is organized by programs (Program class).
Programs are groups of projects (Project class) designated to
reach a strategic objective. The organizations usually divide
projects in several phases (Phase class) aiming a better
managerial control. The definition of the project phases
depends of the project type and adopted methodology but they
are usually the following: Initiation, Development,
Implementation and Closing. According to [1], a project
should successfully finish each phase before beginning the
next one. So, this way, there is a kind of dependence between
the phases (relationship PhaseDependency).

Any necessary resource for the project, like people,
equipment or place, is represented by Resource class. These
resources are divided into active resources (Stakeholder class)
and non-active (PhysicalResource class). Stakeholders
correspond to all the individuals and organizations that have
any kind of relation to a project [10]. The OtherStakeholder
class represents a non-relevant stakeholder and the
RelevantStakeholder class represents people and organizations
whose interests are affected by the project. A resource can be
either a direct member of the company’s project team
(TeamMember class) or a third party member of the company
(ThirdPartyMember class). Also, the PhysicalResource class
represents a physical resource in a project, such as a necessary
material to accomplish an activity (Material class), a necessary
equipment to accomplish an activity (Equipment class) or a
physical place, for instance, a meeting room (Facility class).

The attribute unitCost contains the unitary cost of this
resource and the attribute timeUnit contains the kind of time
unit for this resource.

The ProjectStakeholder class was added to the model to
represent the relationship of the stakeholder with the project.
This class informs if it is a key stakeholder of the project
(attribute isKeyStakeHolder), his level of interest in the project
(attribute levelOfInterest) and his level of influence in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

236

Fig. 3 PMBOK+OPEN Integrated Model

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

237

the project (attribute level of influence).The
ResourceAvailability class adds relevant information regarding
each resource’s availability when assigning them to the
activities, whether this is done manually or automatically. The
AvailableTime class was added to the model to inform when a
resource (such as a room or person) is available to be used.
This availability is project independent, but it is not company
independent. The attribute percentAvailable contains resource
allocation percentage for a certain period. The attribute
startDate and the atribute endDate defines the initial and final
availability allocation date of a resource. In parallel, the
ActivityPhysicalResourceWork class associates zero or more
physical resources to zero or more activities (Activity class). It
establishes the physical resources work load (attribute
workload) in that activity. This relationship allows the
automation of the resource allocation process, therefore an
activity, for instance, can use a computer (resource) without
the need of people’s interaction.

The proposed model defines three different types of
activities [11]. Activities directly related to the construction of
the product, such as coding or database modeling, are called
productive activities (ProductiveActivity class). Managerial
activities (ManagerialActivity class), however, may belong to
the software development workflow (attribute isExternal =
false) or belong to the business organization workflow
(attribute isExternal = true). Activities that are only necessary
to coordinate the construction of the product are referred to as
managerial activities. Any other activities that do not belong to
an individual project’s activity workflow (and may be else
shared by other projects) are called management supporting
activities. Following this nomenclature, the activity of
organizing and conducting a follow-up meeting of the project
is an example of a managerial activity that belongs exclusively
to the software development project. In contrast, the activity of
hiring a database administrator is an example of a management
supporting activity that belongs exclusively to the other
enterprise workflows to support the project activities of the
organization (in this case, this activity is performed by the
human resources department).

Each activity can belong to one or more baselines. In each
baseline generation, an activity should maintain the
relationships with the roles and work products (WorkProduct
class). Thus, the ActivityDetail class was defined as
responsible for maintaining these relationships, while the
Activity class was defined as an aggregation of one or more
ActivityDetail classes. This class will be responsible for
storing pertinent information about the execution of an activity
and, mainly, for maintaining the relationship between
activities. Each activity should have a defined work product, a
given responsible role, involved resources (human and
material), the necessary effort to execute the activity, the
dependence relationships with other activities, the necessary
time (duration) to execute the activity, and, cost information.
The field isBaseline represents a specific activity of the
baseline.

The ActivityDetailDependency class defines the sequence of
activities in a project. This class also defines if one or more
activities can be executed in parallel, and if two activities can
be overlapped. In addition, an activity can have a duration of
time to be defined (RealActivity class), has a starting date and
a finishing date, and may be subdivided in tasks (Task class) or
an activity may not have a duration of time (Milestone class).
Thus, while the relationship called baselines allows an activity
to belong to one or more baselines, the relationship
trackingActivity differentiates the current activity of those that
belong to the baselines.

Stakeholders can play several roles (Role class) during the
execution of project activities. Thus, for each association
between a role and activity (ActivityStakeholderWork class)
there must be an association of this activity with a stakeholder
able to play that role. Moreover, as the concept of roles
appears in both models (PMBOK and OPEN), those were
divided into managerial roles (ManagerialRole class) and
productive roles (ProductiveRole class). Then, managerial
activities are performed by managerial roles and productive
activities are performed by productive roles. In addition, the
Team class defines a collection of one or more related roles
which collaborate to perform productive activities. So, one
role can take part of multiple teams and a team can contain
multiple roles. Also, the OrganizationTeam class is originally
called Organization in OPEN’s metamodel and consists of a
cohesive collection of teams. It is responsible for dividing the
company’s human resources into smaller and more
manageable organizational units.

The WorkProduct class represents something that is
produced, consumed or modified (such as documents, models
or source codes) during the execution of activities. A work
product should be associated to one role, which is formally
responsible for the production of this work product. The
attribute isExternal indicates that the work product should be
approved by the sponsor or the customer. The attribute
percentage contains the development rate of the product. Also,
a work product can be subdivided in managerial products
(Deliverable class) or productive products
(ProdutiveWorkProduct class). The WorkProductType abstract
class contains information about the type of a work product in
a specific software project. Thus, the DeliverableType class
describes a category of managerial work product, such as
meeting minutes, and the ProdutiveWorkProduct describes a
category of productive work product, such as UML model or
code library. The ProductiveWorkProduct class is originally
called WorkProduct in OPEN’s metamodel. It is a core method
component that represents a work product that is produced,
consumed or modified during the execution of productive
activities by productive roles.

The cohesive set of products produced by one or more tasks
of activities is represented by the WorkProductSet class, while
the WorkProductVersion class corresponds to a specific
version of the product. The Language class models the
languages used to document work products.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

238

The PMBOK Guide represents their practices in two logical
dimensions. One dimension defines nine knowledge areas
(KnowledgeArea class) while the other dimension describes
thirty-nine management processes of a project
(ManagementProcess class) that are organized in five process
groups (ProcessGroup class). The knowledge areas are
classified as core knowledge area (CoreKnowledgeArea class),
such as scope, team, cost and quality, or facilitating knowledge
area (FacilitatingKnowledgeArea class), such as human
resource, communications, risk and procurement. Therefore,
each managerial activity belongs to a management process and
is also related to a knowledge area.

The Endeavor class describes a core method component that
models an effort undertaken by collaborating producers during
multiple stages to develop and maintain related applications.
The OPEN metamodel defines the following endeavor’s
subclasses: Enterprise, Program and Project. The Enterprise
class represents the highest level endeavor, consisting of a
collection of related programs which are managed as a single
unit.

The Producer class describes a core method component that
provides related services and produces, either directly or
indirectly, versions of related work products. It is subdivided
in direct producers (people and tools) and indirect producers
(organization, team and role). Also, producers should fulfill
their responsibilities by performing their tasks and
collaborating with other producers.

Work units (WorkUnit class) are method components that
model functionally cohesive operations that are performed by
producers during the delivery process. These are classified as
disciplines, techniques, workflows and activities. The
Discipline class models a collection of productive activities
that has a common objective. A discipline produces a set of
one or more related work products. The Workflow class
consists of a collection of productive activities that either
produces a single work product or provides a single service.
The Technique class is responsible for modeling a way of
executing one or more work units. Finally, the
ProductiveActivity class describes the productive activities
accomplished by productive roles.

The Stage class represents a core method component that
models time intervals that provide a macro organization to the
work units. This class is subdivided in stages with duration
(StageWithDuration class), such as cycles, phases and builds,
and stages without duration (StageWithoutDuration class),
such as milestones and inch-pebbles. The Cycle class
represents a period of time when one or more work units can
be executed. A cycle consists of one or more phases. The
Build class is responsible for decomposing the phases in
manageable periods of time. These periods of time should
have a short duration (such as, one day or one month). The
InchPebble class represents miniature milestones.

The Guidance class represents the process orientation
elements. It describes the use of techniques (Technique class)
and necessary tools (ManagerialTool and ProductiveTool

classes) for the execution of some activities. Techniques help
to define the required skills to perform specific types of
activities.

An earlier work [6] developed an integration metamodel
between PMBOK and RUP classes (called PMBOK+RUP).
The integration of these concepts produced a set of 19 rules
(see [11]) to ensure the consistency of the model. This
study allowed the development of a methodology for
integrating models of project management with models for
software development processes. As a result, the integration
metamodel between PMBOK and OPEN (called
PMBOK+OPEN) has a similar structure to the PMBOK+RUP
model (replacing the package for the software development
process). The two software development processes, however,
have particular characteristics that are reflected in different
classes and different relationships with the PMBOK and
Common packages.

Based on the results of current research, 10 new rules (see
Table II) were added to the 19 rules developed previously in
[11]. These constraints could not be expressed in the diagram
due to limitations in the expressiveness of the UML class
diagram.

TABLE II
ADDITIONAL CONSTRAINTS ON INTEGRATED MODEL

Constraints
1. A discipline models only a collection of productive activities

that has a common objective;
2. Products can be documented using several languages. But a

specific product should be documented only with a specific
language;

3. A managerial tool cannot be related to activities that produce or
modify a productive work product, only a managerial work
product. However, it can consult a productive work product;

4. A productive tool cannot be related to activities that produce or
modify a managerial work product, only a productive work
product. However, it can consult a managerial work product;

5. A organizational team is cohesive collection of teams. Then, an
organizational team cannot contain teams that have only
managerial roles. Thus, there would be no productive work
products;

6. A organizational team is cohesive collection of teams. Then, an
organizational team cannot contain teams that have only
productive roles. Thus, there would be no managerial work
products;

7. Productive work products must be documented with a so called
productive language;

8. Managerial work products must be documented with a so called
managerial language;

9. The duration of the phases is calculated by adding the time of
their associated activities;

10. The cycles of a software project cannot proceed in parallel.

The PMBOK+RUP and PMBOK+OPEN metamodels

provided the conceptual framework necessary to develop a
unique model to assist in project planning considering the
concepts arising from the software development processes. To
demonstrate the feasibility of proposed concepts, we
developed an integrated model called SPIM - Software
Planning Integrated Model (see [11]). Based on this idea, the
concepts coming from the integration between the PMBOK
and OPEN were added to the SPIM integrated model (which
included only the integration of the PMBOK and RUP). In

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

239

order to illustrate the practicability of the concepts proposed
by the SPIM model and its set of rules, we developed a
prototype called Software Planning Integrated Tool (SPIT).
The SPIT (Fig.4) was developed in C# and acts as an add-in
for Microsoft Office Project 2007. This choice allows SPIT to
take advantage of the features that are already implemented in
accordance with the proposed integration model in this
software for project management. All information needed to
perform the validations of SPIM is stored in custom fields
inside the commercial software.

Fig. 4 SPIT in action

VI. CONCLUSIVE REMARKS AND FUTURE WORK

This paper presented a proposal for the integration of
PMBOK’s main concepts with a model for software
development process, namely, OPEN. We first have identified
the importance of project management activities during a
software development project. Then we noticed the lack of
information about these skills in most software development
processes today. After an individual analysis of each base
model, we proposed a new metamodel that covers both
perspectives into a single integrated model.

According to many empirical studies, the effectiveness of an
organization depends, in some part, on the success of its
projects [10], [12]. Still many researchers work on the
investigation of projects’ success factors, such as product
definition, execution quality, and project management
techniques [10], [13].

In a simplified view, a software development process is a set
of activities and related results that lead to the production of a
software. According to [14], a software development process
is the set of the necessary activities to transform user
requirements in software products. The importance of having a
standard software development process relies on the fact that it
becomes the guide for the execution of all projects inside an
organization. Thus, many processes such as RUP, Extreme
Programming (XP) [15], Microsoft Solutions Framework
(MSF) [16] and OPEN are being used as a common ground
when designing the standard software development processes.

According to [17], a software development process is one of
the main responsible mechanisms to manage and control
projects and software products. Thus, applying project
management knowledge along with an appropriate software

development process makes it possible to obtain a more
complete flow of project management and software
development.

We must remark that the proposed model here is an
evolution of the PMBOK+RUP integrated model presented in
[6]. So, it follows the objectives below:

• it should allow the integrated planning of the product and
management of the project;

• it should make the distinction of activity types
(managerial or productive) and work products;

• it should allow the integrated scheduling of managerial
and productive activities;

• it should add the notion of availability of a resource, so
that this information can be used to automate the resource
allocation processes in software projects;

• it should add the notion of availability to a resource. It
can be used to automate the resource allocation in
projects of software development;

• it should preview workload information for the
associations of a role, activity and stakeholder;

• it should distinguish the possible relations between an
activity and an artifact (create/update/consult);

• it should also allow the integration of project
management concepts provided in PMBOK with the
concepts of software development provided in OPEN.

This work brings new interesting finds which reaffirm the
goal of designing a support tool for software project managers.
During the development of this research we have identified the
need for more development on the items below:

• Definition of constraints for the integrated metamodel via
OCL (Object Constraint Language);

• Extending this integration metamodel to other software
development processes, such as XP and MSF;

• Evaluation of the proposed model with software
companies, using the prototype in real projects.

 We believe that is possible to extend this integration
metamodel to other software development processes because,
in agreement with [18], different models of software
development processes share fundamental activities, such as:
software specification, project and software implementation,
software validation and software evolution.

 By performing this integration with different software
processes and models we can bring new interesting questions
and provide a more comprehensive approach to the software
engineering field. For each one of these studies researchers
might mainly depart from the concepts found in the PMBOK,
a well-accepted document that contains the so-called best
practices for the vast majority of projects in many areas,
including software development.

This research adds to the field by proposing the same
approach with the OPEN Process Framework in order to bring
new interesting approaches and discussions. The next steps of
this research indicate new contributions for the software
engineering area, improving our understanding of project
management’s relationships to software development projects.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

240

REFERENCES

[1] K. Schwalbe, “Information Technology Project Management”, Thomson
Learning, 2nd edition, 2002.

[2] B. Henderson-Sellers, R. Due, I. Graham, and G. Collins, “Third
generation OO processes: a critique of RUP and OPEN from a project
management perspective”, Seventh Asia-Pacific Software Engineering
Conference, 2000.

[3] P. Kruchten, “The Rational Unified Process: An Introduction”,
Addison-Wesley, 2nd edition, 2000.

[4] I. Graham, B. Henderson-Sellers and H. Younessi, “The OPEN Process
Specification”, Addison-Wesley, 1997.

[5] Project Management Institute, “PMBOK - A Guide to the Project
Management Body of Knowledge” Newtown Square, PA: Project
Management Institute, 4th edition, 2008.

[6] D. Callegari, and R. Bastos, “Project Management and Software
Development Processes: Integrating RUP and PMBOK”, ICSEM -
International Conference on Systems Engineering and Modeling, 2007.

[7] R. Pressman, “Software engineering: a practitioner's approach”,
McGraw-Hill, 6th edition, 2004.

[8] OPEN Consortium. “OPEN - Object-oriented Process, Environment and
Notation”, viewed March 05, 2011, < http://www.open.org.au>.

[9] OPEN Process Framework Repository Organization (OPFRO), “OPEN
Process Framework”, viewed February 15,
2011,<http://www.opfro.org/index.html>.

[10] R.G. Cooper, “Winning at New Products: Accelerating the Process from
Idea to Launch”, Perseus Books, 3rd edition, 2001.

[11] D. Callegari, M. Rosito, M. Blois, R. Bastos. “An Integrated Model for
Managerial and Productive Activities in Software Development”. In:
ICEIS - 10th International Conference on Enterprise Information
Systems, Spain, 8p, 2008.

[12] H. Kerzner, “Applied project management: best practices on
implementation”, New York, Wiley & Sons, 2000.

[13] J. Pinto, and D. Slevin, “Critical factors in successful project
implementation”, IEEE Trans Eng Manage, 34(1): 22–7, 1987.

[14] I. Jacobson, G. Booch, and J. Rumbaugh, “The Unified Software
Development Process”, Upper Saddle River, Addison Wesley, 2001.

[15] K. Beck, “Extreme Programming Explained: Embrace Change”,
Addison Wesley, 2nd edition, 2004.

[16] M. Turner, “Microsoft Solutions Framework Essentials: Building
Successful Technology Solutions”, Microsoft Press, 2006.

[17] W. S. Humphrey, T. R. Snyder, and R. R. Willis, “Software Process
Improvement at Hughes Aircraft”, In: Institute of Electrical and
Electronic Engineers - IEEE, p. 11-23, 1991.

[18] I. Sommerville, “Software engineering”, Addison-Wesley, 8th edition,
2006.

[19] OMG, “OMG Meta Object Facility (MOF) Core Specification”, viewed
February 20, 2011, <http://www.omg.org/spec/MOF/2.4.1/PDF>.

[20] OMG, “OMG Meta Object Facility (MOF) Core Specification”, viewed
February 21, 2011, <http://www.omg.org/spec/SPEM/2.0/PDF>.

[21] OMG, “Software & Systems Process Engineering Meta-Model
Specification”, Version 2.0, viewed January 15, 2011,
<http://www.omg.org/spec/SPEM/2.0/PDF/>.

[22] M. Rosito, D. Callegari, R. Bastos, “Metamodelos de processos de
desenvolvimento de software: Um estudo comparativo”, SBSI -
Brazilian Symposium on Information Systems, 2006.

