
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2724

Dynamic Bayesian Networks Modeling for Inferring

Genetic Regulatory Networks by Search Strategy:

Comparison between Greedy Hill Climbing and

MCMC Methods
Huihai Wu, Xiaohui Liu

Abstract—Using Dynamic Bayesian Networks (DBN) to model
genetic regulatory networks from gene expression data is one of
the major paradigms for inferring the interactions among genes.
Averaging a collection of models for predicting network is desired,
rather than relying on a single high scoring model. In this paper,
two kinds of model searching approaches are compared, which are
Greedy hill-climbing Search with Restarts (GSR) and Markov Chain
Monte Carlo (MCMC) methods. The GSR is preferred in many
papers, but there is no such comparison study about which one is
better for DBN models. Different types of experiments have been
carried out to try to give a benchmark test to these approaches.
Our experimental results demonstrated that on average the MCMC
methods outperform the GSR in accuracy of predicted network, and
having the comparable performance in time efficiency. By proposing
the different variations of MCMC and employing simulated annealing
strategy, the MCMC methods become more efficient and stable. Apart
from comparisons between these approaches, another objective of
this study is to investigate the feasibility of using DBN modeling
approaches for inferring gene networks from few snapshots of high
dimensional gene profiles. Through synthetic data experiments as
well as systematic data experiments, the experimental results revealed
how the performances of these approaches can be influenced as the
target gene network varies in the network size, data size, as well as
system complexity.

Keywords—Genetic regulatory network, Dynamic Bayesian net-
work, GSR, MCMC.

I. INTRODUCTION

THe main task of molecular biology is to decipher the

mechanism of diverse cellular processes which involve

interactions among a range of biomolecules inside the cell.

One of such processes is about how to the gene transcription

be regulated [22]. The well-known central dogma of molecular

biology tell us that DNA is transcribed into mRNA and

then translated into protein, but people yet do not know

the complete interactions among genes and proteins, which

form a genetic regulatory network(GRN). In such network

one gene can control (inhibit or activate) another genes’

expression through its product proteins called transcriptional

factors. Recently, microarray technology allow us to detect the

gene expression level. This provides a snapshot of thousands

of genes expression profiles simultaneously, and recently it

is possible to make several consecutive such snapshots of

microarray in a shot time scale, resulting in a gene expression

Huihai Wu and Xiaohui Liu are with the School of Information Systems,
Computing and Mathematics, Brunel University, London, UK, email: hui-
hai.wu@brunel.ac.uk, xiaohui.liu@brunel.ac.uk

time series data. From the analysis of such data, we are able to

infer the causal interactions between the genes, and contribute

to the reconstruction of GRNs.

There are many methods have been developed to analyze

the genetic regulatory network by time series data. Clustering

techniques are well used for analyzing the gene interactions,

their methods are focused on classify the genes that have

similar expression patterns from a set of microarray data

[2], [3], [10]. Clustering is proven to be very useful in

discovering co-regulated relationship in genes, but do not be

able to infer the underlying transcriptional networks. so some

other systematic method have been proposed such as Boolean

network [1], [24], differential equation models [20]. Dynamic

Bayesian network is one of most popular method for modeling

GRNs [25], [13], [18], which use probabilistic graphic model

for modeling the interaction uncertainties between genes.

These modeling methods have different strength. Boolean

network can logically model the function of regulations,

and allow large regulatory networks to be analyzed in an

efficient way by making strong simplifying assumptions on the

structure and dynamics of a GRN system. Since the Boolean

network is intrinsic rule based method, just has two states

to represent the gene expression level, for this reason it is

difficult to build model more precisely. While the Bayesian

network can infer network structure statistically. Using dy-

namic Bayesian network structure learning algorithm, one can

obtain a probabilistic graphical model capable of representing

causal relationship among genes. The capability of handling

uncertainty is the main strength for the DBN modeling, due

to the inherent stochastic aspects of gene expression and

the existing of measurement noise. Once having a model

of Bayesian network, it is possible to infer either direct or

indirect causation. Another main strength of DBN is the ability

to model cyclic interactions among genes, since the control

loop such as feedback loops are very important structures in

biological networks, especially in GRNs.

Using DBN for modeling gene regulatory network is ad-

dressed by many papers, but one big problem in these papers

is hard to estimate the real performance of algorithms, since it

is impossible to predict a gene interaction that is not supported

by the literature. In this paper we give a strict test for DBN

modeling only using two kinds of artificial data: synthetic data

from a predefined DBN model and systematic data from a

predefined a linear dynamic system. Due to dimensionality

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2725

problem of gene expression time series data set, which means

the number of genes is huge relative to the number of time

slices. We show how limited the learning algorithms of DBN

could be when the time series data size become smaller. two

kinds of model searching strategies are used, one is greed hill-

climbing search [9], [4], and the other is Markov Chain Monte

Carlo (MCMC) methods [11], [17]. Some works [8], [4] argue

that hill-climbing methods works better than MCMC methods

upon Bayesian network framework, while it is not clear for

DBN model. In [17], they applied MCMC methods to DBN

successfully, and give rise to a basic approach for DBN model

searching with MCMC methods. Based on their works, we

further investigate overall performance for these two kinds of

search strategies through the model averaging technique. The

GRNs are characterized by highly looped dynamic systems

and often exhibit modularity [31], where nodes are connected

functionally or physically, which can be seen as relatively

stable automatons. A linear dynamic system is used to simulate

such scenario, by which we investigate how the performance

of algorithms changes as the complexity of system increase.

The rest of the paper is organized as follows. In the next

section, we give a detailed introduction on the DBN modeling

approaches, including the principle of DBN modeling, scoring

functions for DBN learning, model search strategies, and

some different Markov chain mixing approaches have been

proposed. In the section 3, we investigate the performances

of DNB modeling methods, and present experiments results.

Finally, we give a brief discussion and conclusion in Section

4.

II. METHODOLOGY

Bayesian Networks (BN) is a graphic model G = (V,E),
where nodes V represent random variables which correspond

to gene expression levels, denoted as {X1, X2, . . . , Xp}, and

E indicate the dependence relationship between nodes which

can be causal relationship of interactions among genes. The

graphic structure should be Directed Acyclic Graph (DAG),

such as X1 → X2 , here X1 is called parents of X1 and

X2 is called child of X1. By the chain rule of probability

and conditional independence between the nodes, the joint

probability distribution of X can be calculated as: P (X) =
∏p

i=1 P (Xi|Pa(Xi)), where Pa(Xi) is parents of node Xi,

the P (Xi|Pa(Xi)) for node i is called Conditional Probability

Distribution (CPD), also called local distribution, this is a table

for discrete nodes and density function for continuous nodes.

A. Dynamic Bayesian networks

Dynamic Bayesian Networks (DBN) can be regarded as an

extension of BNs, which is designed for dynamic time series

data. Consider a microarray time series variable X ∈ R
n×p,

where n for number of time slices and p for number of

genes, xti represent an observation for gene i at time t, then

observation vector at the time t can be represent as vector

X(t) = [Xt1, . . . , Xtp]
T , and ith gene at all time points can

be represent as vector Xi = [X1i, . . . , Xni]
T . DBN models

assume time dependence in which directed arcs should flow

forward in time. Normally, it is assumed to be first order

Markov model, in which each gene is directly influenced only

by the previous genes. Due to the time dependence, feedback

loop networks can be easily modeled, Fig.1 shows a simple

example where a three genes’ cyclic network is unrolled to

a acyclic DBN model. In DBN model every observation xti

can be assigned as a individual random variable so that the

joint probability distribution for DNB can be decomposed as

follows:

P (X11, . . . , Xnp) =

p
∏

i=1

n
∏

t=1

P (Xti|Pat−1,i),

where Pat−1,i is parents of gene Xti. The local distributions

of genes at fist time slice with no parents can be seen as

their prior distribution for genes. Also the CPD is called

transition model which is assumed to be the same for every

pair of neighboring time slices, representing the stationary

dynamic process between genes. Since the causal relationship

between genes always follows the time flow, hence there is

no equivalent class problem, or different DBN models must

represent different joint probability distributions.

X1

X2 X3

X1

X2

X3

X1

X2

X3

Time: t t+1

Fig. 1. Dynamic Bayesian network. Left figure is a simple gene network,
where X2 and X3 form a multi-component loop control, and X1 has a
Auto-regulation. The left figure shows the corresponding Dynamic Bayesian
network by unrolling the gene network followed by time points.

The main goal of modeling gene network is to find a

model that best fits the data. To this end, one should learn

the structure and parameters of DBNs from data. The task of

learning a DBN can be stated as follows, Given a time series

data set D = {X(1), . . . , X(n)}, which contain n instances of

X in time, one should find a model M = (G, Θ) that best

fits D, where M is specified by the network structure G of

DBN and corresponding parameters Θ of CPD families. By

the bayes rule, the posterior distribution over model M is

P (M|D) =
P (M)P (D|M)

P (D)
, (1)

where the denominator P (D) =
∑

G P (D|M)P (M) is a

normalization factor which is independent of M, therefore,

taking logarithm, a scoring function for a model M can be

built as follows,

S(M) = log P (D|M) + log P (M), (2)

where, P (M) is prior for a model, which is used to panel-

ize the complex models so as to avoid overfitting problem.

P (D|M) is called marginal likelihood over data D given M,

that is

P (D|M) =

∫

P (D|Θ, G)P (Θ|G)dΘ,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2726

where P (Θ|G) is prior distribution for parameters. The ob-

jective for selecting the best model M can be reached by

maximizing the marginal likelihood. The parameter prior

also have the effect on penalizing the complex models. In

order to obtain a closed form solution for the integration of

marginal likelihood, normally one can choose the conjugate

prior distribution, such as Dirichlet family for a discrete

multinomial distribution, and Normal-Wishart family for a

continual Gaussian distribution.

B. Scoring function

There are some assumptions that commonly are assumed

[15], [14], [12], such as global parameter independence which

says the parameters of each node in a BN are independent, and

parameter modularity which says the same node having the

same parents in distinct BNs has the same local distribution of

parameters. By these assumptions the scoring function can be

decomposed as S(M) =
∑p

i=1 S(Mi), where Mi = (Gi, θi)
is the model for gene Xti, in which Gi specify the parents Pai

of Xi, θi ⊂ Θ. And the scoring function for Mi of a DBN

can be expressed as

S(Mi) = log P (Gi)

+ log

∫ n
∏

t=1

P (Xti|Pat−1,i, θi)f(θi|Gi)dθi. (3)

From the equation 2, as we can see, given the structure,

the scoring of a model is determined by local distribution

and its prior distribution of parameters. There are two types

of transition model for DBNs, which are discrete model

and continuous model. For the discrete model, the transition

model is a CPT, in which the parameter at any time slices

is set to be P (Xi = xk|Pai = paj) = θijk, and set

r and q as total number of discrete state of Xi and Pai

respectively. Hence the likelihood probability can be calcu-

lated as P (Xi|Pai, θijk) =
∏r

k=1 θ
Nijk

ijk , which belongs to

multinomial family, here Nijk is sufficient statistics that is

total count of observations when Xi = xk with Pai = paj

occurs over all time slices. The conjugate prior distribution of

parameters is Dirichlet distribution, for parameter θijk, which

can be expressed as Γ(αij)
∏r

k=1(θ
αijk−1
ijk /Γ(αijk)), where

αijk is its hyperparameters, αij =
∑r

k=1 αijk,and Γ(·) is

Gamma function. Then, by the equation 3, the BDe criterion

[7], [15] can be obtained as:

SBDe(Mi) = log P (Gi)

+ log

q
∏

j=1

Γ(αij)

Γ(αij + Nij)

r
∏

k=1

Γ(αijk + Nijk)

Γ(αijk)
,

where sufficient staticstics Nij =
∑r

k=1 Nijk, together with

hyperparameters αij determine the scoring of a DBN model.

For continuous model, we consider Gaussian networks, that

is, the JPD is assumed multivariate Gaussian distribution,

thereby the CPD are conditional Gaussian distributions. In

[12], Dan and David developed a criterion, called BGe, here

we give an concise interpretation. Suppose a Gaussian model

M = (Gc,Θ), where Gc is a complete DAG with no missing

arcs, Θ = (µ,B, V) = (µ,W) is a set of parameters in

which µ is unconditional mean of X , B = {b1, . . . , bp}
is linear regression coefficients, such as bi = {bi1, . . . , bip}
represent coefficient between gene Xi and its parents Pai,

V = {v1, . . . , vp} where vi is conditional variance of node Xi

given its parents Pai, W equals inverse of covariance matrix

of data, called precision matrix, that can be determined by

parameters B and V . Then marginal likelihood for a complete

Gaussian network can be expressed as:

f(X|Gc) =

∫

f(X|µ,W, Gc)f(µ,W|Gc)dµdW,

where, if f(X|µ,W, Gc) = N (µ,W) is a normal distri-

bution, and the conjugate prior distribution f(µ,W|Gc) is

a normal-Wishart distribution, then f(X|Gc) must be an p

dimensional multivariate t distribution. Based on the assump-

tion of likelihood and prior modularity and global parameter

independence, given any complete DAG Gc and data D, then

the likelihood with arbitrary structure G can be computed as

follows:

f(D|G) =

p
∏

i=1

f(D(Xi,Pai)|Gc)

f(D(Pai)|Gc)
,

where D(Xi,Pai) represents the subset of data for gene Xi

and its parents, and D(Pai) is in the same way, let a subset

data of genes be DY , then the likelihood density have an

closed form as follows:

p
∏

i=1

f(DY |Gc) = (2π)−np/2(
sw

sw + n
)p/2 c(l, sµ)

c(l, sµ + n)

|T0|
sµ/2|Tn|

−(sµ+n)/2

where, sµ is equivalent sample size for µ, sw is equiv-

alent sample size for W, n is number of time slice,

c(·) is a normalization constant given by c(a, b) =
[2ba/2πa(a−1)/4

∏a

i=1 Γ(b+1−i
2)]−1. Given a network struc-

ture, parameter matrix T0 and Tn can be assessed by W

and mean µ0 from data which is assumed generating from a

prior Gaussian network. For more details, please refer to [12].

In contrast to BDe criterion, the BGe is only able to

modeling the linear relationship between genes. While the BGe

criterion have the advantage that it use the low polynomial

dimensionality of the parameter space of a multivariate normal

distribution, whereas their discrete counterparts often require a

parameter space that is exponential in the number of domain

variables. In addition, discrete model is hugely affected by

discretization methods.

C. Model selection

Having the decomposable scoring function, selecting a

proper model for a gene network is a big challenge for learning

DBNs. There are some reasons for that. First, the model

space for searching is huge, even in DBNs, there is no cyclic

graph problem which one should prevent in BNs. However

the number of parents set for each node is still exponential in

number of nodes n, that is,
∑n

k=0

(

n
k

)

= 2n, the optimization

problem of identifying high scoring model is known to be

NP-hard [6]. Second, the searching algorithm is not always

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2727

reach the best model, normally the model selected is local

optimal one in terms of searching algorithm, such as greedy

hill climbing approach. Third, due to the overfitting problem,

the single high scoring model does not always agree with the

best desired model, whereas such problem can be alleviated

by penalizing the complex model and restricting the number

of parents set, since gene networks prefer the sparse models.

For the above reasons, one can not rely on just one ”best

scoring” model, whereas the model averaging is a good

strategy for model selecting. If two genes are highly correlated,

then it is likely that the edge between them will appear in any

high scoring models, such that the posterior probability of an

edge between two genes can be evaluated. In this paper, we

mainly focus on the search strategies by model averaging.

One traditional approach to search space for model search-

ing is greedy hill-climbing search with restarts (GSR). At

each restart, a random structure should be produced. Starting

with this base structure, the mutation of structure will be

made by a single edge addition or removal to a DBN model.

The algorithm will check all the possible mutations of initial

structure and choose the one with the highest scoring, and set

it as new base structure, iterate this procedure until it reach

a local maximum, and then store the structure and restart a

new run. Finally, a set of models are sampled, the number of

which is the same as the number of restarts. The algorithm

can be depicted as in Algorithm 1.

Algorithm 1: Greedy Hill-Climbing Search with Restarts

for DBN

Input: D (time series training data)

Nres (number of restarts)

Output: Mout (A collection of models with high

scoring)

for i = 1 to Nres do
Produce random structure M0

repeat
Mbest ← M0

foreach pair of nodes in DBN do
if edge=0 (no connection between two nodes)

then
M′ ← AddEdge(M0)

else
M′ ← RemoveEdge(M0)

end

if Score(M′) > Score(Mbest) then
Mbest ← M′

end

end

until Mbest == M0 (reach local maximum)

return Mout ← Mbest

end

Another class of sampler we focus is Markov Chain Monte

Carlo (MCMC) method [5], [17], a approach for generating

samples from some high dimensional complex distribution of

interest. The distribution we want draw here for DBN models

is posterior P (M|D) from equation 1, and more importantly,

for MCMC methods there is no need to compute the normal-

ization constant P (D). The mechanism of MCMC method is

to construct a Markov chain process in which a new model M∗

is generated only in terms of previous one M, eventually a

chain of models will be produced, that will convergence to the

target distribution. A sufficient condition for such convergence

is that the detailed balance equation holds for all models, that

is P (Mi|Mk)P (Mk|D) = P (Mk|Mi)P (Mi|D), where

P (Mi|Mk) is transition probability from Mk to Mi.

One of most important MCMC methods is Metropolis-

Hastings (MH) algorithm, which is based on acceptance-

rejection sampling algorithm. For each run, the algorithm will

sample a new candidate model from the jumping distribution

Q(M∗,M), which is the probability of returning a new

model M∗ given a current model M. Given the candidate

model M∗, the acceptance probability can be computed as

α(M,M∗) = min
{

1,
P (M∗

|D)Q(M|M
∗)

P (M|D)Q(M∗|M)

}

, note that, since

the ratio of two target distributions of models, the normalizing

constant cancels out. Then the Markov chain will choose the

current model with this acceptance probability. The algorithm

is described as in Algorithm 2.

Algorithm 2: Metropolis-Hastings sampling algorithm for

DBN

Input: D (time series training data)

Nsam (number of sampling)

Output: Mout (a sampling chain of models)

Produce initial model M0

for i = 0 to Nsam do
sample a new model M∗ from Q(M∗ |M)
compute

α(Mi,M
∗) ← min

{

1,
P (M∗

|D)Q(Mi|M
∗)

P (Mi|D)Q(M∗|Mi)

}

sample u from U(0,1) (uniform distribution on (0, 1))
if α(Mi,M

∗) > u then
Mi+1 ← M∗

else
Mi+1 ← Mi

end

return Mout ← Mi+1

end

Due to the model space of a BN grows super-exponentially

with the number of nodes, applying MCMC methods to

learning BNs is always expensive computationally. In [11],

they apply MCMC methods to get the posterior distribution

given a order which is a sequence of nodes for a BN, then use a

feature average technique to compute a posterior of this feature

such as a particular choice of parents for a node. There are

total number n! of orders, and for each order, they need to sum

over all possible structures consistent to this order to compute

the scoring of the posterior, therefore cost of computation is

very high even they restrict the number of fan-in parents of

nodes and the scope in which the parents can be choose. But

for DBN, as discussed above, edges are only allowed between

neighboring time slices, there is no acyclic and equivalence

problems, further the transition model is same for all intra-

slices. Plus the restriction on the number of fan-ins, the cost

of computation for DBN can be considerably alleviated.

Recall that the acceptance probability is determined by ratio

of target distribution P (M|D) and the jumping distribution

Q(M∗,M). The ratio of target distribution can calculated

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2728

from scoring function of equation 2. The jumping distribution

for DNB is probability of jumping from one model to another

one. The MH algorithm has no restriction on the jumping

distribution, but different choice of jumping distribution do

affect efficiency of the algorithm, such as how good a Markov

chain to be mixed, a well mixing chain is the one that

attempts to explore the whole model space equally, vice

versa a chain is said to be poorly mixing. One approach

for model jumping is random walks. As in GSR method,

the new model is mutated based on the previous one by an

elementary edge operation. In [17], they give the Hastings ratio

as Q(M|M∗)/Q(M∗|M) = N(M)/N(M∗), where N(M)
is the size of the neighborhoods of M, namely, the number

of mutations that can be obtained from M by applying one

of the elementary operations. Since adding or removing an

edge in DBN is always acyclic networks, as a results we have

N(M) = N(M∗), so Hasting ratio always equals 1. Another

approach of model jumping is independent chain sampling, in

which the probability of jumping to model M∗ is independent

of the current model M, so that the jumping distribution

reduced as Q(M∗,M) = R(M∗). Thus the candidate model

is simply drawn from a distribution of interest. In this paper

uniform distribution is used for it, such that a model can can

be chosen randomly and equally, so its Hasting ratio also is

one.

The property of posterior distribution of DBN models is

highly multimodaled and discontinuous as structure changes.

For such target distribution, it is easy to get poorly mixing

chain of samples, in which case the rejection rate could be

very high. As discussed above, a suitable jumping distribution

is one way to avoid this. On the other hand, the ratio of target

distribution is also important for chain mixing, in our case,

that is ratio of scoring of models. The higher scoring, then

the higher acceptance probability a model will be. But the

BDe scoring function is not well consistent with the model

posterior distribution. The BDe criterion is sensitive to the

number of parents of a node, here called fan-in size, different

fan-in size has different scale of scoring. It is observed that for

BDe criterion, the larger fan-in size a node has then the higher

scoring could be, as a results the chain mixing is not stable

as shown later in experiments. To avoid this, a simple way is

to compensate fan-in size so as to make the nodes with lesser

fan-ins have the same fan-in size as the one with lager fan-ins.

We refer the compensated parents as to pseudo parents which

have the while-noise data distribution, this approach making

the ratio of scoring more effective for chain mixing process.

In contrast to the BDe, the BGe criterion has no such problem,

which can treat the scoring in the same scale.

Since the model distribution always has the multiple modes,

it is possible that the MH sampling could be trapped in one

mode, so that the algorithm will get highly rejection rate, and

resulting the poorly mixing chain. To tackle this problem, we

resort to simulated annealing (SA) method which is always

used to find the global maximum of a complex function.

The key ideal of SA is that a cooling schedule is used for

Markov chain process so that the Markov chain will start with

high acceptance rate then cool down in a rate tuned by a

function T (t) called temperature, the acceptance probability

with temperature can be expressed as,

αSA(M,M∗) = min

{

1,

(

P (M∗|D)

P (M|D)

)1/T (t)
}

, (4)

from equation 4, it can be seen that the higher temperature,

the higher acceptance probability could be, under this strategy,

the model space can be well explored. In this work a simple

temperature function is used as, T (t) = max
(

T
1−t/n
0 , 1

)

, by

which, the Markov process start out at temperature T0, and

cool down to origin Markov chain process over n steps, and

keep it for the rest of process.

III. EXPERIMENTS

We compare the GSR and the MCMC approaches by

experimental evaluation. We use two kinds of data set for sim-

ulations, one is synthetic data generated by certain predefined

DBNs, and another one is generated by certain linear systems,

we called it systematic data. For synthetic data, BDe criterion

will be used, and BGe criterion is used for systematic data.

The experiments are also done on the different network sizes,

which is the number of nodes in a network.

After obtaining a collection of model samples from GSR or

MCMC algorithms, we can evaluate the posterior of the edges

that is proportional to the number of the edge in model sam-

ples. By set different threshold for edge posterior, we get a set

of edges. Comparing this set of edges with true networks, then

we can count the number of true edges (True Positive) denoted

as TP , and the number of false edges (False Positive) denoted

as FP . From the true network, the total number of edges

NTP and the total number of true negative edges NTN can

be calculated. Then we define true-sensitivity as TP/NTP

which indicate how many true edges can be learned, and

define false-sensitivity as FP/NTN which indicate how many

edges are learned wrongly. For each set of edges with a

threshold, we can get its true-sensitivity and false-sensitivity.

Plotting true-sensitivities against the false-sensitivity, we got

receiver operator characteristics (ROC) curves which give

an overall evaluation for the algorithms. By integrating the

ROC curve, we obtain the area under the curve (AUC), with

larger scores indicating a better overall performance. It is

desired that algorithms have higher true-sensitivity with lower

false-sensitivity, and the ROC curves rightly indicate such

performance. The ROC curves also qualitatively show how

much cost should be paid for a desired recovery rate of true

edges. It should be noticed that a recovered true edge with

a high posterior probability can not simply ensure a real true

edge when the false sensitivity is as high as the true sensitivity.

A. Experiments on synthetic data

We carried out the different types of experiments in terms

of different network size and data size. The synthetic data

is sampled from a predefined DBN, which is also randomly

selected under certain structure and parameters. We use three

types of DBN structures for data sampling, in which the

network size is set as 10 nodes and 20 nodes respectively,

and each node have the fan-in size of 3 or 4. The local distri-

bution for DBNs is set as discrete trinomial distribution with

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2729

three discrete states representing the gene expression level of

underexpressed, baseline, and overexpressed. The parameters

of local distribution were generated randomly with a parameter

value distribution that is close to being deterministic. The

data size we choose is 100 and 20 respectively, so that the

dimensionality problem can be examined, since so far, the

microarray time course experiment is normally less than 20

points of time. The purpose of experimental settings is to try

to reveal the strengths and weaknesses of approaches.

For synthetic datasets, BDe criterion is used for DBN

learning, in which the model priors is set as uninformative,

that is uniform distribution. We mainly test two types of

model searching approaches which are GSR and MCMC.

In GSR, a 50 restarts are used for model selecting. For

MCMC methods, as mentioned above, there are three different

variations by different jumping approaches, that is, random

jumping approach denoted as MCMC-1, random jumping with

fan-in compensation denoted as MCMC-2, and independent

jumping denoted as MCMC-3. In Markov chain, at burning

phase, a 2,000 runs of chain is thrown out, then 20,000 runs

are used for sampling phase in which we choose a model

with interval of 10 samples. We test these methods within

3 types of predefined DBN models, and demonstrate their

performance using model averaging method. The results are

averaged by repeating 3 times for each method. The ROCs are

shown in Fig.2, Fig.3, and Fig.4, where the dashed diagonal

line is the expected ROC curve of a random model selecting

which used as a reference line. To effectively compared these

approaches, here the values of AUC are computed as ratio:

AUCr = 100 × (AUC − 0.5)/0.5. The Table I,II,III show

the performances: AUCr and time spent by algorithms which

measured by seconds.

As Fig.2 shows, all methods perform perfect when data size

is 100, and all dropped nearly the same amount of AUC when

data size is reduced to 20, where all method reached about

0.8 true sensitivity against 0.3 false sensitivity. MCMC-1 and

MCMC-3 seams to be slightly better than others from ROC

curves. We observed that the performance of GSR improve

very little when the number of restarts increase, since the

models searched by GSR always fell into the same vicinity

of a local optimal one.

The results is changed much just when adding one more fan-

in parent for all nodes. From Fig.3, we can see that the ROC of

MCMC-1 occurs abnormality, it nearly can not distinguish the

true edges for data size of 100, but return normal for data size

of 20. Due to the reason discussed in section II, the MCMC-1

always trapped in some structures especially when fan-in size

is larger than 3. Since the correlation between nodes learned

from data of 20 cases is more uncertain than that from data of

100 cases. The data with more cases can decrease the influence

of such effect. Using a pseudo parent to compensate the fan-

in size can fix this problem. As shown in Fig.3, for data size

of 100, the ROC of GSR and MCMC-3 is dropped slightly,

while MCMC-2 is still can recover all true edges without a

false edge.

When the network size enlarged to 20 nodes, as shown in

Fig.4, the performance is further degraded. In particular, they

almost loose the discrimination for data size of 20. While, for

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

GSR

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−3

Fig. 2. ROC curves for synthetic data with network size 10 and fan-in size
3 of all nodes. Each subfigure of ROC is associated with a method denoted
in title, where the solid line is correspond to the data size of 100, and dashed
line correspond to the data size of 20.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2730

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

GSR

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−3

Fig. 3. ROC curves for synthetic data with network size 10 and fan-in size
4 of all nodes. Each subfigure of ROC is associated with a method denoted
in title, where the solid line is correspond to the data size of 100, and dashed
line correspond to the data size of 20.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

GSR

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−3

Fig. 4. ROC curves for synthetic data with network size 20, and half in
fan-in size 3 and half in fan-in size 4. Each subfigure of ROC is associated
with a method denoted in title, where the solid line is correspond to the data
size of 100.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2731

Data size 100 20
AUCr Time(s) AUCr Time(s)

GSR 100 152 62.1 75
MCMC-1 100 263 68.3 158
MCMC-2 100 263 59 158
MCMC-3 100 274 65 201

TABLE I
RESULTS FOR SYNTHETIC DATA SET WITH NETWORK SIZE OF 10 AND

FAN-IN SIZE OF 3.

Data size 100 20
AUCr Time(s) AUCr Time(s)

GSR 95.25 124 57.7 93
MCMC-1 10.53 240 55.3 118
MCMC-2 100 240 61.9 156
MCMC-3 88.92 269 44.9 206

TABLE II
RESULTS FOR SYNTHETIC DATA SET WITH NETWORK SIZE OF 10 AND

FAN-IN SIZE OF 4.

Data size 100 20
AUCr Time(s) AUCr Time(s)

GSR 73.68 675 18 666
MCMC-1 45.34 347 8.6 118
MCMC-2 88.14 258 20.8 137
MCMC-3 71.6 381 19.9 307

TABLE III
RESULTS FOR SYNTHETIC DATA SET WITH NETWORK SIZE OF 20 AND

FAN-IN SIZE OF 3 IN HALF AND 4 IN HALF.

data size of 100, apart from the MCMC-1, other three methods

dropped not so much, in which the MCMC-2 has the best

ROC. The time spent by MCMC methods are nearly identical,

GSR has the half time of MCMC methods in network size of

10, while in network size of 20, the time spent by GSR is

nearly twice more than that by MCMC methods.

B. Experiments on systematic data

From the synthetic data experiments, we can have an

overview of performance of different approaches, especially

how the performance changes when varying the scenarios

with the network size and data size. However, the microarray

time series data is generated from gene networks which is

associated to a complex dynamic system process, while the

synthetic data sets sampled from a predefined DBN that strictly

are not time series of a system. So it is necessary to know how

system complexity influences the performance of modeling

approaches. In this group of experiments, we focus on the

linear system, in which the expression of a gene is linearly

regulated by others. The linear dynamic system model can

be represent as Xt+1 = AXt + BYt + ωt, where A is

system transition matrix which represent the strength of linear

correlation among genes Xt. Yt is input and B is input to

state matrix, and ωt is system noise, here we do not consider

noise model. We test two systems with different degree of

complexity, as shown in Fig.5, where system-1 has no any

loops with just fan-in size of 2, while system-2 is a highly

looped stable autonomous system.

A B C D E

F G H I J

System-1

A B C D E

F G H I J

System-2

Fig. 5. Linear dynamic system. System-1 shows a simple system with no
loops. System-2 shows a highly looped system.

For the system-1, the nodes A ∼ D have random discrete

signal as their input signals, where we choose 20 and 10

consecutive time points for training datasets respectively. Since

system-2 is an autonomous system, given an initial perturba-

tion value, then a continuous time series data can be generated

by the evolution of system process. We sample 100 and 20

time points respectively for two training data. It is observed

that such time point sampling should be within the time scale

between the system stimulated by external perturbation and

system falling into equilibrium. And the sampling interval

should not be too short or too long, in principle, the sampling

interval should be proportional to the data size so as to extract

as much information as this data size could contain. In this

group of experiments, we use BGe criterion for DBN learning.

Apart from GSR, another three variations of MCMC methods

are used for model searching, the first one use random jump-

ing approach denoted as MCMC-A; the second one utilize

simulated annealing strategy on MCMC-A called MCMC-

B; the third one combined independent jumping approach

with simulated annealing strategy denoted as MCMC-C. The

number of runs for GSR and MCMC methods is the same as

synthetic data experiments. The results are demonstrated as

Fig.6, Fig.7, and Table IV,IV.

As we can see From the Fig.6, the MCMC-A works very

well for such simple scenario, and evidently outperforms the

GSR method. But for highly looped system, the situations are

changed dramatically. As shown in Fig.7, the performance of

GSR and MCMC-A dropped considerably, while by the SA

strategy MCMC-B and MCMC-C give an substantial increase

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2732

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

GSR

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−A

Fig. 6. ROC curves for systematic data with network size 10 and fan-in
size 2 as shown in fig5. Each subfigure of ROC is associated with a method
denoted in title, where the solid line is correspond to the data size of 20, and
dashed line correspond to the data size of 10.

Data size 20 10
AUCr Time(s) AUCr Time(s)

GSR 89.11 107 62.7 70
MCMC-A 100 177 68.5 101

TABLE IV
RESULTS FOR SYSTEMATIC DATA SET COMES FROM SYSTEM-1 WITH

NETWORK SIZE OF 10 AND FAN-IN SIZE OF 2.

in performance. Especially the MCMC-C have the best overall

performance among them, for data size of 100, it recovered

the 75 percent true edges by paying the price of 5 percent false

edges. Here, the time spent by MCMC methods is not much

more than by GSR, since the BGe scoring is much faster than

BDe scoring.

IV. DISCUSSION AND CONCLUSION

In this study, based on the DBN statistical modeling ap-

proach, we investigated the different model searching ap-

Data size 100 20
AUCr Time(s) AUCr Time(s)

GSR 54.29 128 30.7 74
MCMC-A 53.58 147 23.7 115
MCMC-B 59.61 162 41.4 136
MCMC-C 63.52 256 40.8 209

TABLE V
RESULTS FOR SYSTEMATIC DATA SET COMES FROM SYSTEM-2 WITH

NETWORK SIZE OF 10 AND FAN-IN SIZE OF 2 AND 3.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

GSR

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−A

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−B

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

MCMC−C

Fig. 7. ROC curves for systematic data with network size 10 and fan-in size
2 or 3 as shown in fig5. Each subfigure of ROC is associated with a method
denoted in title, where the solid line is correspond to the data size of 20, and
dashed line correspond to the data size of 10.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2733

proaches involving GSR and MCMC methods. To give a mean-

ingful evaluation, we test them under different scenarios using

model averaging technique. On average, the results demon-

strated that the MCMC methods basically outperform the

GSR. Due to the shortcoming of BDe criterion, the MCMC-1,

which is used in some papers, shows unstable performance,

but through compensating a pseudo parent, surprisingly, it

reached the best performance in synthetic data experiments.

The performance of MCMC-3 is not as good as MCMC-

2, but comparable to GSR. As second group of experiments

shows, the SA strategy makes the MCMC methods more

effective. It is because that SA spreads the searching scope

of model space, thus avoiding model trapping, and eventually

resulting in a well mixed chain for model averaging. That

is why the MCMC-B and MCMC-C got a considerable gain

in performance, and with independent jumping approach the

MCMC-C made further improvement in performance. The

time spent by all methods is sensitive to the restricted number

of parents of a node, with lager this number, more time

will be needed. It is observed that the GSR would need

even more time to compete the MCMC methods, when the

number of nodes increases. MCMC methods could get better

time efficiency, as long as the Markov chain mixing well. In

addition, the BGe criterion is much time efficient than the BDe

criterion, since the lesser parameters are needed in BGe than

that in BDe.

The dimensionality problem of microarray time series plays

a fundamental role in genetic network modeling. The basic

question is how many microarray experiments must be taken

so as to insure the recovered gene networks is reliable. For

learning a Bayesian network with binary nodes, a sufficient

number of samples should be O(n2 log n2 log nk+1) [16],

where n is the total number of genes in the true network and

k is the maximum fan-in size of the model. Unfortunately, our

experiments revealed such serious consequences of dimension-

ality problem. From our experiments of synthetic data, take an

example, for a gene network of 20 genes with up to 4 parents,

given 20 time points data, all of approaches we test here

almost cannot distinguish any interaction reliably. Moreover,

our all experiments were noiseless, while real microarray

data is full of noise, which need to be properly preprocessed

involving primary expression signal filtering, normalization,

and discretization. Also the discretization has strong influence

on the performance of modeling approaches, since loss of

information can be varying as using different discretization

methods.

More importantly, the actual gene networks are characteris-

tic of highly looped and highly modular dynamic systems, so

another key question is how the system complexity influences

the DBN modeling approaches. Unfortunately again, as our

experiments of systematic data reveals, such influence could

be dramatic. One of reasons for that we observed is that time

series generated from a looped system often become more

periodic and similar. Such phenomena is often found in real

microarray time series. As a consequence the scoring function

of DBNs can not distinguish them well, since essentially

linear correlation is not necessary imply causation, such as

a common regulator for two genes. In addition, in real GRN

system, there are lots of other factors could affect the gene

expression levels, such as levels of regulatory proteins, and

the effects of mRNA and protein degradation. A linear state-

space modeling can be used for inferring interactions among

genes with hidden states [28], [27]. Another real issue is that

the response between two genes actually has some time delay

and not uniform[29], such delays could further reduced the

accuracy of predicted gene networks [21].

As these serious issues mentioned above, it is almost im-

possible for DBN modeling approaches to reliably recover the

gene networks by microarray data alone. However, it is proved

that incorporating the relevant biological prior knowledge

to the modeling approaches could effectively increase the

accuracy of predicting [19], [23], [26], [30]. For example, in

[19], biological knowledge they used include protein-protein

and protein-DNA interactions, sequences of the binding site

of the genes controlled by transcription regulators, and even

biological literature. By adding biological knowledge into their

Bayesian network approaches, they succeeded in extracting

more information from microarray data and estimating the

gene network more accurately. Recently, much attention has

been paid in how to incorporate different kinds of biological

knowledge more efficiently upon Bayesian network modeling

framework [30], which is also our main concerns for our future

works.

REFERENCES

[1] T. Akutsu, S. Miyano, and S. Kuhara. Identification of genetic networks
from a small number of gene expression patterns under the boolean
network model. Pac. Symp. Biocomput, page 17C28, 1999.

[2] U. Alon, N. Barkai, D. Notterman, Ybarra S.and Mack D. Gish, K., and
A. J. Levine. Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. Proc. Nat. Acad. Sci. USA, 96:6745C6750, 1999.

[3] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression
patterns. Journal of Computational Biology, 6:281C297, 1999.

[4] Xue-wen Chen, Gopalakrishna Anantha, and Xinkun Wang. An effective
structure learning method for constructing gene networks. Bioinformat-

ics, 22(11):1367–1374, 2006.

[5] S. Chib and E. Greenberg. Understanding the metropolis-hastings
algorithm. Amer. Statist., 49:327–335, 1995.

[6] David Maxwell Chickering, David Heckerman, and Christopher Meek.
Large-sample learning of bayesian networks is np-hard. J. Mach. Learn.

Res., 5:1287–1330, 2004.

[7] F. Cooper and E. H. Herskovits. A bayesian method for the induction of
probabilistic networks from data. Machine Learning, 9:309–347, 1992.

[8] Honghua Dai, Gang Li, and Yiqing Tu. An empirical study of encoding
schemes and search strategies in discovering causal networks. In
Machine Learning: ECML 2002: 13th European Conference on Machine

Learning, Helsinki, Finland, August 19-23, 2002. Proceedings.

[9] LAWRENCE A. DAVID and CHRIS H. WIGGINS. Benchmarking of
Dynamic Bayesian Networks Inferred from Stochastic Time-Series Data.
Ann NY Acad Sci, 1115(1):90–101, 2007.

[10] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and
display of genomewide expression patterns. Proc. Nat. Acad. Sci. USA,
95(14863C14868), 1998.

[11] N. Friedman and D. Koller. Being bayesian about network structure: A
bayesian approach to structure discovery in bayesian networks. 2001.

[12] Dan Geiger and David Heckerman. Learning gaussian networks. (MSR-
TR-94-10), 1994.

[13] A. J. Hartemink, D. K. Gifford, T. S. Jaakkola, and R. A. Young. Using
graphical models and genomic expression data to statistically validate
models of genetic regulatory networks. Pac. Symp. Biocomput., 6:422–
433, 2001.

[14] David Heckerman. Bayesian networks for data mining. Data Min.

Knowl. Discov., 1(1):79–119, 1997.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2734

[15] David Heckerman, Dan Geiger, and David M. Chickering. Learning
bayesian networks: The combination of knowledge and statistical data.
Mach. Learn., 20(3):197–243, 1995.

[16] K. Hoffgen. Learning and robust learning of product distributions.
in:Sixth Annual Workshop on Computational Learning Theory, pages
77–83, 1993.

[17] Dirk Husmeier. Sensitivity and specificity of inferring genetic regula-
tory interactions from microarray experiments with dynamic Bayesian
networks. Bioinformatics, 19(17):2271–2282, 2003.

[18] S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and
functional structures between genes by using bayesian networks and
nonparametric regression. Pac. Symp. Biocomput., 7:175–186, 2002.

[19] Seiya Imoto, Tomoyuki Higuchi, Takao Goto, Kousuke Tashiro, Satoru
Kuhara, and Satoru Miyano. Combining microarrays and biological
knowledge for estimating gene networks via bayesian networks. In
CSB ’03: Proceedings of the IEEE Computer Society Conference on

Bioinformatics, page 104, 2003.
[20] B. Kholodenko, A. Kiyatkin, F. Bruggeman, E. Sontag, H. Westerhoff,

and J. Hoek. Untangling the wires: a strategy to trace functional
interactions in signaling and gene networks. Proc. Natl. Acad. Sci.,
99:12841C12846, 2002.

[21] Tie-Fei Liu, Wing-Kin Sung, and Ankush Mittal. Learning multi-time
delay gene network using bayesian network framework. In ICTAI ’04:

Proceedings of the 16th IEEE International Conference on Tools with

Artificial Intelligence (ICTAI’04), pages 640–645, 2004.
[22] D.J. Lockhart and E.A. Winzeler. Genomics, gene expression and dna

arrays. Nature, 405:827–836, 2000.
[23] N. Nariai, S. Kim, S. Imoto, and S. Miyano. Using protein-protein

interactions for refining gene networks estimated from microarray data
by bayesian networks. Pac Symp Biocomput, pages 336–347, 2004.

[24] D. Peer, A. Regev, G. Elidan, and Friedman. Inferring subnetworks from
perturbed expression profiles. Bioinformatics, 17:S215CS224, 2001.

[25] D. Peer, A. Regev, G. Elidan, and Friedman. Inferring subnetworks from
perturbed expression profiles. Bioinformatics, 17(S215CS224), 2001.

[26] a Phillip P. Le, a Amit Bahl, and Lyle H. Ungar. Using prior knowledge
to improve genetic network reconstruction from microarray data. In

Silico Biology, 4(0027), 2004.
[27] Claudia Rangel, John Angus, Zoubin Ghahramani, Maria Lioumi, Eliz-

abeth Sotheran, Alessia Gaiba, David L. Wild, and Francesco Falciani.
Modeling T-cell activation using gene expression profiling and state-
space models. Bioinformatics, 20(9):1361–1372, 2004.

[28] Claudia Rangel, David L. Wild, and Francesco Falciani. Modelling bi-
ological responses using gene expression profiling and linear dynamical
systems. 2001.

[29] Nitzan Rosenfeld and Uri Alon. Response delays and the structure of
transcription networks. Journal of Molecular Biology, 329.

[30] Adriano V. Werhli and Dirk Husmeier. Reconstructing gene regulatory
networks with bayesian networks by combining expression data with
multiple sources of prior knowledge. Statistical Applications in Genetics

and Molecular Biology, 6.
[31] Z.Bar-Joseph, G.K.Gerber, T.I.Lee, N.J.Rinaldi, J.Y.Yoo, F.Robert,

D.B.Gordon, E.Fraenkel, T.S.Jaakkola, and R.A.Young. Computational
discovery of gene modules and regulatory networks. Nat. Biotechnol,
21:1337–1342, 2002.

