
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:8, 2011

1308

Covering-based Rough sets Based on the
Refinement of Covering-element
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Abstract—Covering-based rough sets is an extension of rough
sets and it is based on a covering instead of a partition of the
universe. Therefore it is more powerful in describing some practical
problems than rough sets. However, by extending the rough sets,
covering-based rough sets can increase the roughness of each model
in recognizing objects. How to obtain better approximations from
the models of a covering-based rough sets is an important issue.
In this paper, two concepts, determinate elements and indeterminate
elements in a universe, are proposed and given precise definitions
respectively. This research makes a reasonable refinement of the
covering-element from a new viewpoint. And the refinement may
generate better approximations of covering-based rough sets models.
To prove the theory above, it is applied to eight major covering-
based rough sets models which are adapted from other literature.
The result is, in all these models, the lower approximation increases
effectively. Correspondingly, in all models, the upper approximation
decreases with exceptions of two models in some special situations.
Therefore, the roughness of recognizing objects is reduced. This
research provides a new approach to the study and application of
covering-based rough sets.

Keywords—Determinate element, indeterminate element, refine-
ment of covering-element, refinement of covering, covering-based
rough sets.

I. I NTRODUCTION

ROUGH sets theory proposed by Pawlak [1] is a math-
ematical tool which is used to deal with the uncertain,

inaccurate and vague data. It approximately describes a target
set via a pair of lower and upper approximations. In this
way, it gives a good description of the fuzzy idea proposed
by G. Frege. The rough sets has a powerful objectivity in
recognizing the target set through a partition that is gotten from
the equivalence relation between elements of universe and is
independent of any priori knowledge. Therefore, since it was
proposed, the rough sets theory has drawn much attention of
many scholars and has been widely applied into many fields
in both academia and industry such as data mining, machine
learning, pattern recognition, and so on [2]–[10]. However,
due to the rigid binary relation of the equivalence relation in
rough sets, it limits the development of the rough sets itself and
its application. So, plenty of extensive studies on generalized
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rough sets have been done by many researchers. For examples,
the equivalence relations of rough sets were extended to such
generalized binary relations as compatibility relations [11],
[12], similar relations [13], [14]. Correspondingly, a partition
of universe in rough sets was extended to a covering [15]–[17].

Covering-based rough sets is an extensive study of Pawlak’s
rough sets. It extends a partition in rough sets to a covering of a
universe. Becauseunlike a parititiona covering does not results
from a rigid equivalence relation, so it is more consistent with
reality than partition is when a judgement and a description
is given to an object. But it also enlarges the boundary set
between lower and upper approximations at the same time. In
addition, the problem of the redundancy of covering-element
arises. In order to narrow the boundary set, some new models
of covering-based rough sets have been proposed [15], [16],
[18]–[27] by many scholars after they have made lots of
studies about this field . Moreover, Moreover, a very important
work in solving the redundancy of covering-element has been
done by Zhu [28]. This work stimulates the development
and application of covering-based rough sets. Nowadays, the
covering-based rough sets models are usually studied through
defining a new one by many scholars. Actually, different
models may be applicable to different situations. And in
different coverings, the results of comparisons between the
lower and upper approximation generated from these models
may be different, so it is difficult to judge which model is
better than others. Hence, different from the research done
previously, this paper, from a new point of view, studies how
to get a pair of preferable lower and upper approximations in
each model. By refining the covering-elements in a covering-
based rough sets, the lower approximation can be increased
and the upper approximation can be decreased. In this way, the
object recognition capability of each model is fundamentally
improved. Basing on the refinement of covering-element, we
have studied and analyzed eight main models of covering-
based rough sets. We found that the size of the lower ap-
proximation of each model after the refinement of covering-
element is not smaller than the one which covering-element
has not been refined. As for the upper approximation, every
model except the first and the third ones can get a smaller
upper approximation after the refinement of covering-element.
In this paper, we also present an algorithm of refinement of
covering-element.

The following content of this paper is organized as follows:
section 2 is an introduction of some basic knowledge of the
rough sets and the covering-based rough sets. In section 3,
the reason and principle of refinement of covering-element
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are analyzed; some basic concepts of refinement of covering-
element are defined; After a study of the relation between
refinement and reduction has been conducted, some significant
conclusions are drawn; And an algorithm of refinement of
covering-element is also presented in this section. In section
4, several major models of covering-based rough sets are
introduced and a comparative study on each model’s lower
and upper approximations which arise from a covering and
refinement of the covering is made. Finally, the study is
concluded in section 5 with remarks for future works.

II. BACKGROUND

To better understand the content of the following section,
we will introduce some fundamental concepts of rough sets.

A. The basic concepts of rough sets

Let U be a nonempty finite set which is called universe
U . R is a cluster of equivalence relation of universeU . A
pair S = (U,R) is called approximation space of universe
U [1], [29]. If P ⊆ R and P 6= Ø, then P is still an
equivalence relation of universeU and is called indiscernible
relation, which denoted byIND(P ) [30]. U/IND(P ) is a
partition of equivalence relationIND(P ) to universeU and
is a basic knowledge of universeU in the approximation space
S = (U,R). Each element of partition is called a equivalence
class aboutIND(P ). The elements of the same equivalence
class are indiscernible. We denoteIND(P ) asP simply.

An equivalence relationP can produce a partition of
universeU and is considered as knowledge we master. For
all X ⊆ U , it is hard to precisely describeX according to
the knowledge. Then, for any target setX, we can employ a
pair of approximation sets to approach to it and to describe it
roughly. The pair of approximation sets is defined as follows:

apr(X) = ∪{K|K ∈ U/P ∧K ⊆ X}
apr(X) = ∪{K|K ∈ U/P ∧ (K ∩X 6= Ø)}
We call them the lower and upper approximations ofX,

respectively. And the subtraction of upper and lower approx-
imations is called the boundary region ofX [1], and it is
denoted asBnP (X), that is,BnP (X)=apr(X)− apr(X).

For any subsetX of universeU , if apr(X) = apr(X), then
the partition ofU generated byP can describeX accurately.
On the contrary, the partition ofU generated byP can describe
X roughly, and the ordered pair of(apr(X), apr(X)) is called
the rough set with respect toX.

B. The fundamental concepts of covering-based rough sets

Definition 2.1: (Covering, covering approximation space)
[15] Let U be a universe,C is a family of subsets ofU .
If all subsets inC are non-empty and∪C = U , then C
is a covering. We call the ordered pair< U,C > covering
approximation space.

Definition 2.2: (Minimal description) [15] Let< P,C >
be a covering approximation space.∀x ∈ U ,

Md(x) = {K ∈ C|x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K ⇒
K = S)}
is called the minimal description ofx.

In the following example, we can better understand the
conception of minimal description.

Example 2.1:Let U = {a, b, c, d}, K1 = {a, b}, K2 =
{b, c}, K3 = {b, c, d}, and C = {K1,K2,K3} be the
covering of U . The minimal description ofb is Md(b) =
{{a, b}, {b, c}} = {K1,K2}.

Definition 2.3: (Covering lower approximation set family,
covering lower approximation and so on) [15] LetC be a
covering of universeU andX ⊆ U , then:

Set family C∗(x) = {K ∈ C|K ⊆ X} is called the
covering lower approximation set family ofX;

SetX∗ =
⋃

C∗(x) is called the covering lower approxima-
tion of X;

Set X∗
∗ = X − X∗ is called the covering boundary

approximation ofX;
Set family Bn(X) = {Md(x)|x ∈ X∗

∗} is called the
covering boundary approximation set family ofX;

Set familyC∗(X) = C∗(x)
⋃

Bn(X) is called the covering
upper approximation set family ofX;

Set X∗ =
⋃

C∗(X) is called the covering upper approxi-
mation ofX;

Definition 2.4: (Reducible element, irreducible element)
[28] Let C be a covering of a universeU , K ∈ C. If K
is a union of some sets inC −{K}, we sayK is a reducible
element ofC, otherwiseK is an irreducible element ofC.

Proposition 2.1: [28] Let C be a covering of a universe
U . If K is a reducible element ofC, thenC − {K} is still a
covering ofU .

Proposition 2.2: [28] Let C be a covering of a universeU ,
K ∈ C, K is a reducible element ofC, andK1 ∈ C − {K},
then K1 is a reducible element ofC if and only if it is a
reducible element ofC − {K}.

Definition 2.5: (Reduct of covering) [28] LetC be a cover-
ing of a universeU , the new covering come from the reducing
process of proposition 2.1 and proposition 2.2 is called the
reduct ofC, and denoted byreduct(C).

The definition of reducible element solves effectively the
problem of redundant covering-element in covering rough sets.
In the next section, we will explore the problem of refinement
of covering-element by the concept of reduct of covering.

III. T HE REFINEMENT OF COVERING-ELEMENT

A. The origin and analysis of the refinement of covering-
element

According to the definition of partition and covering in the
same universe, we know that the similarity between partition
and covering is that the union of all equivalent classes in
partition is the same as the union of all covering-elements in
covering, that is, the two union is equal to the universeU . And
the difference between partition and covering is that join of
any two equivalence classes in partition is empty, but, the join
of any two covering-elements in covering maybe not empty. A
covering is a partition when the join of all covering-elements is
null set. In covering-based rough sets, an elementx of universe
could be from several covering-elements, that is,x belongs
to several covering-elements. And this increases the difficulty
of distinguishingx exactly. Certainly, there are also some
elements of universe only appear in one covering-element, but
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some other elements of this covering-element maybe appear
in another covering-elements, so it also increases the difficulty
of distinguishing these elements which only appear in one
covering-element. These will cause a too small lower approx-
imation and a too large upper approximation when recognizing
target set. And the recognition capability of covering-based
rough sets is reduced.

For these reasons, we introduce a new method to refine
covering-element. The main idea of the method is as follows:

According to the definition of lower and upper approx-
imations in rough sets, we know that the less number of
elements of equivalence class to a partition of universe, the
larger lower approximation and the larger upper approximation
may be generated. That is, this partition has more strong
recognition capability to target set. This idea is also apply
to covering-based rough sets. It is that the smaller the size
of covering-element, the more strong recognition capability of
the covering-based rough sets. So, if we can reduce the size of
covering-element effectively, the recognition capability of the
covering-based rough sets would be improved. How to reduce
the size of covering-element?

Let universeU = a, b, c, d, C = {K1,K2,K3,K4} =
{{a, b, c}, {b, c}, {b, d}, {e}} is a covering ofU . It is easy
to see that elementb appears in covering-elementK1, K2 and
K3, elementc appears in covering-elementK1 andK2. And
a, d and e appear inK1, K3 and K4 respectively. Thus, we
can considerb and c as indeterminate element anda, d, e as
determinate element. Then take out the determinate element
from each covering-element to form a new covering-element
respectively, and combine every indeterminate element with
determinate element of each covering-element to form new
covering-element. If all elements of a covering-element are
determinate element or indeterminate element, then we leave
it as it is. By doing this, a covering-element is refined. In
the coveringC given above, for instance,a is a determinate
element andb, c are indeterminate element toK1. So, we
take out a as a new covering-element{a}, and combine
respectively withb andc to form two covering-element{a, b},
{a, c}. Similarly, K3 can be refined as{b, c}, {c}. And leave
K2 andK4 as them are because all the element of them are
determinate or indeterminate. Finally, we get a new cover-
ing {{a}, {a, b}, {a, c}, {b, c}, {b, d}, {d}, {e}}. As shown in
Fig.1, the upper level are the covering-elements of the primary
covering and the lower level are the refinement of covering-
elements of the primary covering-elements. The bold italic
letters of each covering-element are determinate elements.

Fig. 1. The refinement of covering-element

B. The concepts of the refinement of covering-element

In this subsection, we will define some new concepts.
Through these concepts, we will propose the definition of the
refinement of covering-element. Meanwhile, we will discuss

some interesting results after refining covering-element. Paper
[31] studies a special covering which is called the fined
covering. In a fined covering, the join of any two covering-
elements is equal to the union of some covering-elements.
In paper [31], the author defines a concept named neighbor
family. We will borrow the concept in this paper. But, in order
to vividly describe the idea of the refinement of covering-
element, we will call this concept family of membership and
the definition as follows:

Definition 3.1: (Family of membership) Let< U,C > be
a covering approximation space,x ∈ U , we call {K|x ∈
K∧K ∈ C} the family of membership ofx to coveringC, and
denote asFM(x), namely,FM(x) = {K|x ∈ K ∧K ∈ C}.

Example 3.1:Let U = {a, b, c, d, e} be a universe,C =
{{a, b, c}, {b, c}, {b, d}, {e}} is a covering ofU , then:

FM(a) = {{a, b, c}}, FM(b) = {{a, b, c}, {b, c}, {b, d}},
FM(c) = {{a, b, c}, {b, c}}, FM(d) = {{b, d}}, FM(e) =
{{e}}.

Proposition 3.1:Let U be a universe.C is a covering of
universeU . For anyx ∈ U , we haveMd(x) ⊆ FM(x).

Proof: Let C = {K1,K2, . . . , Km}, FM(x) =
{K1,K2, . . . , Kp}, where1 ≤ p ≤ m. For anyKi ∈ FM(x),
if there is not existKj ∈ FM(x)−{Ki} such thatKi ⊆ Kj ,
then Md(x) = FM(x). On the contrary, if there exists
Kj ∈ FM(x)−{Ki} such thatKi ⊆ Kj , thenKj /∈ Md(x),
that is,Md(x) ⊂ FM(x). According to the above results, we
get thatMd(x) ⊆ FM(x).

Definition 3.2: (Determinate element, indeterminate ele-
ment) Let U be a universe.C is a covering ofU . For any
x ∈ U , x is a determinate element if and only if|FM(x)| = 1.
Otherwise,x is indeterminate element.

In example 2,a, d, e are determinate elements andb, c are
indeterminate elements.

Definition 3.3: (Determinate element set, indeterminate ele-
ment set) LetU be a universe.C = K1,K2, . . . , Km is a cov-
ering ofU . We callDS(Ki) = {x|x ∈ Ki∧ (|FM(x)| = 1)}
the determinate element set ofKi, and IDS(Ki) = {x|x ∈
Ki ∧ (|FM(x)| > 1)} the indeterminate element set ofKi.
We suppose thatDS(Ki) = Ø, |DS(Ki)| = 0.

Example 3.2:Let U = {a, b, c, d, e} be a universe,C =
{{a, b, c}, {b, c}, {b, d}, {e}} is a covering ofU , then,

DS(K1) = {a}, DS(K2) = Ø, DS(K3) = {d},
DS(K4) = {e};

IDS(K1) = {b, c}, IDS(K2) = {b, c}, IDS(K3) = {b},
IDS(K4) = Ø.

Definition 3.4: (Combination of covering-element) Let
U = {x1, x2, . . . , xn} be a universe.C = {K1,K2, . . . , Km}
is a covering, wherei = 1, 2, . . . , m and j = 1, 2, . . . , n. If
xj ∈ Ki, then,

CCE(xj) =
{

DS(Ki) ∪ {xj}, |DS(Ki)| > 0
IDS(Ki), |DS(Ki)| = 0

is called the combination of covering-element about
covering-elementKi.

In example 3, for covering-elementK1, we can get that
CCE(a) = {a}⋃{a} = {a}, CCE(b) = {a}⋃{b} =
{a, b}, and CCE(c) = {a}⋃{c} = {a, c}. For covering-
elementK2, becauseb andc are both indeterminate elements,
then |DS(K2)| = 0, CCE(b) = CCE(c) = {b, c}.
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Definition 3.5: (Refinement of covering-element) LetU be
a universe,C = {K1,K2, . . . , Km} is a covering ofU .
For any Ki ∈ C(i = 1, 2, . . . , m), we call RCE(Ki) =
{CCE(x)| x ∈ Ki} the refinement of covering-elementKi.

Example 3.3:Let U = {a, b, c, d, e}. C =
{{a, b, c}, {b, c}, {b, d}, {e}} is a covering of universe
U , where K1={a, b, c}, K2={b, c}, K3={b, d}, K4={e}.
Then,

RCE(K1)= {{a}, {a, b}, {a, c}}, RCE(K2)={{b, c}},
RCE(K3)={{b, d}, {d}}, RCE(K4)={{e}}.

Proposition 3.2:Let U be a universe, C =
{K1,K2, . . . , Km} is a covering ofU . For any Ki ∈ C,
Ki = ∪RCE(Ki).

Proof: According to definition 3.4 and 3.5, we can
easily get that∪{CCE(x)|x ∈ Ki} = Ki, that is, Ki =
∪RCE(Ki).

Definition 3.6: (Refinement of covering). LetU be a uni-
verse,C = {K1,K2, . . . , Km} is a covering ofU . RC(C) =
∪{RCE(Ki)|Ki ∈ C} is called the refinement of covering
C. For anyx ∈ U , we call RMd(x) = {K ∈ RC(C)|x ∈
K ∧ (∀S ∈ RC(C)∧ ∈ S ∧ S ⊆ K ⇒ K = S)} the minimal
description ofx to RC(C).

In example 4, according to definition 3.6, we can get that:
RC(C) = {{a}, {a, b}, {a, c}}∪ {{b, c}}∪ {{b, d}, {d}}∪

{{e}} = {{a}, {a, b}, {a, c}, {b, c}, {b, d}, {d}, {e}};
RMd(a) = {{a, b}, {a, c}}, RMd(b) =

{{a, b}, {b, c}, {b, d}}, RMd(c) = {{a, c}, {b, c}},
RMd(d) = {{b, d}}, RMd(e) = {{e}}.

Proposition 3.3:Let U be a universe andC be a covering
of U . ThenRC(C) is a covering of universeU .

Proof: Let U be a universe andC = {K1,K2, . . . , Km}
be a covering ofU . According to proposition 3.2, we get that
RCE(Ki) = Ki. Meanwhile∪K1 ∪K2 ∪ . . .∪Km = U . So,
(∪RCE(K1)) ∪ (∪RCE(K2)) ∪ . . . ∪ (∪RCE(Km)) = U ,
that is ,∪RC(C) = U .

Proposition 3.4:Let U be a universe andC =
{K1,K2, . . . , Kn} be a covering of U . RC(C) =
{T1, T2, . . . , Tm} is a refinement ofC. For anyTi ∈ RC(C),
there existsKj ∈ C such thatTi ⊆ Kj .

Proof: According to definition 3.3 and 3.4, we get that,
for any Ti ∈ RC(C), there existsKj ∈ C such thatTi ∈
RCE(Kj). From proposition 3.2, we get that∪RCE(Kj) =
Kj . So,Ti ⊆ Kj .

Proposition 3.5:Let U be a universe andC be a covering
of U . If C is a partition, then the refinement of coveringC is
itself.

Proof: WhenC is a partition ofU , namely,x ∈ U , x only
appears in one covering-element. According to definition 3.1,
we can know thatFM(x) has only one element. Then
|FM(x)| = 1. According to definition 3.2, we know that
every element of covering-element is determinate element.
From definition 3.3, we get that the determinate element
set of every covering-element in covering is itself and the
indeterminate element set is empty. From the definition 3.4
and 3.5, we can know that the refinement of every covering-
element in covering is itself. Finally, we get that the refinement
of coveringC is itself according to definition 3.6.

Proposition 3.6:Let U is a universe andC is a covering

of U . For anyx ∈ U , if |FM(x)| > 1, then, the refinement
of coveringC is itself.

Proof: If ∀x ∈ U , |FM(x)| > 1. Then, according to
definition 3.1 and 3.2, we can know that all element of universe
U are indeterminate element. From definition 3.3, we get
that the indeterminate element set of each covering-element
in covering is itself and determinate element set is empty.
According to definition 3.4 and 3.5, we get that the refinement
of each covering-element is itself. Lastly, according to 11, we
can know that the refinement of coveringC is itself.

For convenience, LetMd(x) and RMd(x) represent the
minimal description ofx on reduct(C) andRC(reduct(C))
respectively. The proposition 3.7 can be obtained as follows:

Proposition 3.7:Let U is a universe andC is a covering
of U . For anyx ∈ U , |RMd(x)| ≥ |Md(x)|.

Proof: Let C = {K1,K2, . . . , Km},Md(x) =
{K1,K2, . . . , Kp}, where1 ≤ p ≤ m. For anyKi ∈ Md(x),
we suppose thatRCE(Ki) = {Ti1, Ti2, . . . , Tiq}, where
q ≥ 1. According to definition 3.3and 3.4, we can get that
there at least existsTij ∈ RCE(Ki)(1 ≤ j ≤ q) such that
x ∈ Tij . So, |RMD(x)| ≥ |Md(x)|.

Let U be a universe, andC = {K1,K2, . . . , Km} is a
covering of U . I is an index set andi, j, p, q, r, s ∈ I.
Let the reduction ofX is reduct(C) = {K1,K2, . . . , Kp},
Md(x) andRMd(x) are respectively the minimal description
of x in reduct(C) and RC(reduct(C). Then, we can get
proposition 3.8, 3.9 and corollary 3.1.

Proposition 3.8:Let U be a universe,C is a covering of
U , Ki ∈ reduct(C), x ∈ Ki, Ki ∈ Md(x), if there exists
Kj ∈ reduct(C) such thatKi ⊆ Kj , then there existsy ∈ Kj

such that|FM(y)| = 1 if and only if
⋃

RMd(x) ⊆ ⋃
Md(x).

Proof: Sufficiency. BecauseKi ⊆ Kj , according to
definition 2.2, we can know thatKj /∈ Md(x). While
there existsy ∈ Kj , and |FM(x)| = 1, according to
definition 3.2 we can know thaty is a determinate element
in reduct(C). So, y /∈ ∪Md(x), We can get thatKj /∈
RC(reduct(C)) according to definition 3.3, 3.4, 3.5. Let
RCE(Kj) = Tj1, Tj2, . . . , Tjq(q ≥ 2). Then, there at least
exists an elementTjr in RCE(Kj)(1 ≤ r ≤ q) such that
x ∈ Tjq andy ∈ Tjq. According to definition 3.6, we can know
thatTjr ∈ RMd(x). So,y ∈ ∪RMd(x), that is,y /∈ ∪Md(x)
andy ∈ ∪RMd(x). Therefore,∪RMd(x)

Necessity. Because∪RMd(x)and there existsy ∈ RMd(x)
andy /∈ Md(x). Let y /∈ Kj −Ki, for anyKp ∈ C, if x, y ∈
Kp, then these surely existsKs ∈ C such thatKs ⊆ Kp,
x ∈ Ks andy /∈ Ks. Then,y /∈ ∪RMd(x). This is contract to
y ∈ RMd(x). The hypothesis is not hold. Thus,y ∈ Kj−Ki,
that is,y is only in Kj . Then |FM(y)| = 1.

Proposition 3.9:Let U be a universe,C is a covering of
U , Ki ∈ reduct(C), x ∈ Ki, Ki ∈ Md(x), if there exists
Kj ∈ reduct(X) such thatKi ⊆ Kj , then there existsy ∈ Kj

such that|FM(y)| > 1 if and only if RMd(x) ⊆ Md(x).
Proof: Sufficiency. For anyy ∈ Kj , |FM(y)| > 1,

according to definition 3.2 we can know that all elements of
Kj are indeterminate elements. We get thatKj = RCE(Kj)
from definition 3.3, 3.4 and 3.5. Thus,Kj ∈ RC(reduct(C)).
For Ki ⊆ Kj , if Ki ∈ Md(x), then Kj /∈ Md(x), that is,
Ki ∈ RMd(x) and Kj /∈ RMd(x). For anyKp ∈ Md(x),
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we suppose thatRCE(Kp) = {Tp1, Tp2, . . . , Tpq}, where
q ≥ 1. If x ∈ Tp1, Tp2, . . . , Tps(1 ≤ s ≤ q), then
Tp1, Tp2, . . . , Tps ∈ RMd(x). Let Ap = {Tp1, Tp2, . . . , Tps},
then∪Ap ⊆ Kp. Thus, if Md(x) = {K1,K2, . . . , Kr}, then
there correspondingly existsRMd(x) = {A1∪A2∪ . . .∪Ar}
such that∪A1 ⊆ K1, ∪A2 ⊆ K2, . . ., ∪Ar ⊆ Kr.
Accordingly,∪RMd(x) ⊆ ∪Md(x).

Necessity. For∪RMd(x) ⊆ ∪Md(x), if ∀y ∈ RMd(x),
then y ∈ ∪Md(x). Let y ∈ Kj −Ki, if y ∈ ∪Md(x), then
Kj /∈ Md(x), for Ki ⊆ Kj . There surely existsKp ∈ C such
that x, y ∈ Kp, andKp ∈ Md(x) , that is,y ∈ Kj and y ∈
Kp. So, |FM(x)| > 1. Of course, ify /∈ Md(x), assume that
y is a determinate element, according to definition 3.4, we get
that y ∪RMd(x). This is contract to∪RMd(x) ⊆ ∪Md(x).
So, y is an indeterminate element. Then|FM(x)| > 1. If
y /∈ Kj−Ki andy ∈ Ki, theny ∈ Kj , that is,|FM(x)| > 1.
Of course, if y ∈ Ki, then y ∈ Kj . Therefore, the above
results hold.

Corollary 3.1: Let U be a universe,C is a covering ofU ,
Ki ∈ reduct(C), x ∈ Ki and Ki ∈ Md(x), if there is not
existKj ∈ reduct(X) such thatKi ⊆ Kj , then∪RMd(x) ⊆
∪Md(x).

Proof: Because there is not existKj ∈ reduct(C) such
that Ki ⊆ Kj . Then, for anyKp ∈ reduct(C), if x ∈ Kp,
then Kp ∈ Md(x). Let RCE(Kp) = {Tp1, Tp2, . . ., Tpq},
where p ≥ 1. If x ∈ Tp1, Tp2, . . . , Tps(1 ≤ s ≤ q), then
Tp1, Tp2, . . . , Tps ∈ RMd(x). Let Ap = {Tp1, Tp2, Tps},
then, ∪Ap ⊆ Kp. So, if Md(x) = {K1,K2, . . . , Kr},
then RMd(x) = {A1 ∪ A2 ∪ . . . ∪ Ar}, correspondingly.
So, ∪A1 ⊆ K1,∪A2 ⊆ K2, . . . ,∪Ar ⊆ Kr. We get that
∪RMd(x) ⊆ ∪Md(x).

We maybe consider that two different coverings of the same
universe whether produce the same refinement. Let us see the
following example.

Example 3.4:Let U={a, b, c, d}, C1 andC2 are two cover-
ing of U , andC1={{a, b, c}, {b}, {b, c}, {b, d}, {c, d}}, C2 =
{{a}, {a, b, c, d}, {a, c}, {c, d}}, please computer the refine-
ment ofC1 andC2.

Solve: According to the definition 3.6,RC(C1) = {{a},
{a, b}, {a, c}, {b}, {b, c}, {b, d}, {c, d}}, RC(C2) = {{a},
{a, b}, {a, c}, {b}, {b, c}, {b, d}, {c, d}}.

Accordingly, RC(C1) = RC(C2).Therefore, two different
coverings of the same universeU maybe produce the same
refinement.

Whether we can continue to refine the covering after the
refinement of covering? Or, what we do is meaning? Through
studying and analyzing, we discover that it will not produce
a covering when refine a covering has been refined. Namely,
RC(C) = RC(RC(C)). Therefore, we can get the following
theorem.

Theorem 3.2:Let U be a universe andC be a covering of
universeU , thenRC(C) = RC(RC(C)).

Proof: Let U be a universe andC is a covering of
U . I is an index set andm, p, n, i, j, r ∈ I. Let
C = {D1, D2, . . . , Dm,H1,H2, . . . , Hp,K1,K2, . . . Kn},
wherem ≥ 0, p ≥ 0, n ≥ 0 andm+n+p ≥ 1. Di(1 ≤ i ≤ m)
is composed by all determinate elements of coveringC, that
is, ∀x ∈ Di(1 ≤ i ≤ m), |FM(x)| = 1. Hj(1 ≤ j ≤ p) is

composed by all indeterminate elements of coveringC. Then,
∀x ∈ Hj , |FM(x)| > 1. Kr(1 ≤ r ≤ n) is composed by such
elements of coveringC that there at least one determinate
element and indeterminate element in the same covering
element, that is, there existsx, y ∈ Kr such that|FM(x)| > 1
and |FM(y)| = 1. We suppose thatD = {D1, D2, . . . , Dm},
H = {H1,H2, . . . , Hp}, K = {K1,K2, . . . , Kn}. For own
convenience, we regardRFM(x) as the family of membership
x corresponding to coveringRC(C).

According to definition 3.4 and 3.6, we can know that
DRC(C), HRC(C). From definition 3.5 we getRCE(K1),
RCE(K2), . . ., RCE(Kn). So, RC(C) = D ∪ H ∪
RCE(K1)∪RCE(K2)∪ . . .∪RCE(Kn). For any elementx
of Kr, if |FM(x)| = 1, then, according to definition 3.5,
we get that|RFM(x) > 1|. If |FM(x)| > 1. Similarly,
we get that |RFM(x) > 1|. That is, for anyx ∈ ∪K
in RC(C), |RFM(x)| > 1. From definition 3.4 and 3.5
again, we get thatD ⊆ RC(RC(C)), H ⊆ RC(RC(C)),
RCE(Kr) ⊆ RC(RC(C)). Therefore, RC(RC(C)) =
D ∪ H ∪ RCE(K1) ∪ . . . ∪ RCE(Kn), namely,RC(C) =
RC(RC(C)).

Accordingly, it will not produce a new covering to refine a
refined covering. Hence, it is not necessary to refine a refined
covering.

C. Reduction

Through reducing of a covering, we can reduce redundant
covering-element. It is necessary to reduce before or after the
refinement of covering-element. Sine we get a new covering
after the refinement of covering-element, then this new cover-
ing satisfies all the properties of covering and reduction [28].
Now, the problem is that whether the new covering reduce
before refine is the same as it is reduced after refined. Or, under
what conditions does they are the same under what conditions.

Please read an example first.
Example 3.5:Let U = {a, b, c, d}, be a universe,C =

{K1,K2, K3, K4, K5} = {{a, b, c}, {a, b}, {b, c}, {b, c, d},
{a, b, c, d}} is a covering ofU . Please computer the refinement
of C in a different order of reduct and refinement.

Solve: (1) Reduct before refinement.
BecauseK1 = K2

⋃
K3, K5 = K1

⋃
K2

⋃
K3

⋃
K4,

according to the definition 2.4, we know thatK1 and K5

are two reducible element. With definition 2.5 shows that
K1 and K5 can be reduct, soreduct(C) = {K2, K3, K4}.
Then according to definition 3.5, we know thatRCE(K2) =
{{a}, {a, b}}, RCE(K3) = {{b, c}}, RCE(K4) = {{b, d},
{c, d}, {d}}. At last, according to definition 3.6, we can
work out RC(reduct(C)), that is,RC(reduct(C)) = {{a},
{a, b}, {b, c}, {b, d}, {c, d}, {d}}.

(2) Refinement before reduct.
According to definition 3.1, we can know that, for any

x ∈ U, |FM(x)| > 1, that is to say, all elements ofU are inde-
terminate elements. From definition 3.3 we get that the refine-
ment ofC is itself. That is,RC(C) = {K1,K2,K3,K4,K5}.
After reducing of RC(C), we get thatreduct(RC(C)) =
{K2,K3,K4}. Thus,RC(reduct(C)) 6= reduct(RC(C)).
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Here, we can see that if the order of reduction and refine-
ment is different, then the new covering is different.

The result in the above is different, for the reason is that
we produce new determinate elementsa and d after reduce
C, which bring about the changing of refinement. If the cov-
ering isC = {{a, b, c}, {a, b}, {a, c}, {b, c}, {b, c, d}} and the
order is refinement after reduction, then,RC(reduct(C)) =
{{a, b}, {b, c}, {b, d}, {c, d}, {d}}. If the order is reduction af-
ter refinement, thenreduct(RC(C)) = {{a, b}, {b, c}, {b, d},
{c, d}, {d}}. Hence,RC(reduct(C)) = reduct(RC(C)). The
appearance of this result is that the number of determinate
element after reduceK1 is not change in the process of
refinement after reduction. Accordingly, we can get propo-
sition 3.10.

Proposition 3.10:Let U be a universe andC be a covering
of U . C1 is the new covering of refinement after reduction.
C2 is the new covering of reduction after refinement. IfC and
reduce(C) has the same number of determinate element, then
C1 = C2. Otherwise,C1 6= C2.

Proof: Let U = x1, x2, , xn be a universe.C =
K1,K2, , Km is a covering ofU . I is an index set and
i, j, p, q, r ∈ I.
(1) C and reduce(C) have the same number of determinate
elements. Firstly, we analyze the condition of refinement after
reduction. For anyKi ∈ C, if Ki is a reducible element ,
then there at least exists more than two covering-elements
K1,K2, . . . , Kr(r ≥ 2) in C − {Ki} such thatKi = K1 ∪
K2 ∪Kr. Ki will be deleted after reductionC. If there still
exists reducible elementKp in C, we will delete it according
to definition 2.5 until there is not reducible element inC.
Here, we get the reductionreduct(C) of C. After refining of
reduct(C), we get a new coveringC1 = RC(reduct(C)).

On the contrary, if we reduce after refineC, according
to some related definition, we can getRCE(Ki) = Ki

for Ki is a reducible element. Similarly, if there still ex-
ists other reducible elementKp, then RCE(Kp) = Kp.
From definition 3.6, we can know thatKi,Kp ∈ RC(C).
In the following, we can getRCE(K1), RCE(K2), . . .,
RCE(Kr) after refiningK1,K2, . . . , Kr. And RCE(K1) ⊆
RC(C), RCE(K2) ⊆ RC(C), . . . , RCE(Kr) ⊆ RC(C).
So, Ki = RCE(Ki) = RCE(K1) ∪ RCE(K2) ∪ . . . ∪
RCE(Kr). Then, according to the definition of reducible ele-
ment and reduction , we deleteKi from RC(C). Similarly,Kp

can also be deleted fromRC(C). Here, reduct(RC(C)) =
C2.

BecauseC and reduct(C) have the dame determinate
element, that is to say, forKi ∈ C, Kj ∈ reduct(C), if
Ki = Kj , thenDS(Ki) = DS(Kj), IDS(Ki) = IDS(Kj).
From definition 3.4, we get thatC1 = C2.

(2) The number of determinate elements inC and
reduce(C) are different.

When the number of determinate elements inC and
reduce(C) are different, that is to say, there at least exists
Ki ∈ C and Kj ∈ reduct(C) such thatKi = Kj and
DS(Ki) 6= DS(Kj). ThenREC(Ki) 6= REC(Kj). Accord-
ing to definition 3.6, we get thatC1 6= C2.

Now, let we think about a problem. For a covering we know
that the redundant covering-element of the refinement of the

covering would be reduced in the order of refinement before
reduct. Then, what result would be in the order of reduct before
refinement?

Proposition 3.11:Let U be a universe andC be a covering
of U . The refinement after reduction of coveringC will not
produce new reducible element, that is to say,RC(reduct(C))
has not reducible element.

Proof: Let reduct(C) = K1,K2, . . . , Km. For any
Ki ∈ reduct(C), assumeRCE(Ki) = {Ti1, Ti2, . . . , Tip},
where p ≥ 1. Then Tij ∈ RCE(Ki), 1 ≤ j ≤ p.
According to definition 3.3, 3.4, 3.5, we get that there is
not exist Tiq ∈ RCE(Ki) − {Tij} such thatTiq ⊆ Tij .
So, Tij is irreducible inRCE(Ki). Let RC(reduct(C)) =
{T11, T12, . . . , T1a, T21, T22, . . . , T2b, . . . , Tm1, Tm2, . . . , Tmc}(a ≥
1, b ≥ 1, c ≥ 1). If there at least exists a determinate element
y in Ki, according to definition 3.1 and 3.2, we get that
y /∈ ∪(reduct(C) − {Ki}). So, Tij is irreducible in
RC(reduct(C)). If there exists indeterminate element in
Ki, according to definition 3.3, 3.4, 3.5 and 3.6, we get
that Ki ∈ RC(reduct(C)). Let there existTde, Tfg ∈
RC(reduct(C))(1 ≤ d ≤ m, 1 ≤ f ≤ m, e ≥ 1, g ≥ 1) such
that Ki = Tde ∪ Tfg, then Tde and Tfg are composed by
indeterminate elements. According to definition 3.3, 3.4, 3.5
and proposition 3.2, we get thatTde, Tfg ∈ reduct(C).
This is contract toKi ∈ reduct(C). So, there are not exist
Tde, Tfg ∈ RC(reduct(C)) such thatKi = Tde ∪ Tfg.
Accordingly, the refinement after reduction of coveringC
will not produce new reducible element,.

Proposition 3.12:Let U be a universe andC is a covering
of U . If each covering-element ofC at least has one determi-
nate element, thenC is irreducible.

Proof: Let C = {K1,K2, . . . , Km}. For anyKi ∈ C,
if x ∈ Ki and |FM(x)| = 1, according to definition 3.1
and 3.2, we get thatx /∈ (C − {Ki}). So, there are not
exist two or more covering-element inC−{Ki} such that the
union of them equal toKi. That is to say,Ki is a irreducible
element. Similarly, we get that each covering-element ofC is
irreducible. Then,C is irreducible.

Proposition 3.13:Let U be a universe andC be a covering
of U . K ∈ C, if K is a reducible element, then for anyx ∈ K,
|FM(x)| > 1.

Proof: Let C = K1,K2, . . . , Km. For anyKi ∈ C, if Ki

is an irreducible element, then there existK1,K2, . . . , Kp ∈
C−{Ki}(P ≥ 2) such thatKi = K1∪K2∪. . .∪Kp. Accord-
ing to definition 3.1, we get that, for anyxKi, |FM(x)| > 1.

D. The algorithm of the refinement of covering-element

According to proposition 3.10, we get that the result that
reduce a covering which has been refined is different from the
refined covering of reduction. When the two results are differ-
ent, according to the process of proofing in proposition 3.10,
we can know that the number of covering elements of the
former result is not greater than the later. This means that
the judgment of later is stronger than former. When the two
results are the same, according to definition 3.6 we can know
that the number of covering elements is not greater than the
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number of covering-element after refined covering. From this
point we can say that reducing a covering is convenient than
a reduction of refined covering. For this reason, we will give
the algorithm of refinement after reducing a covering.

The algorithm we give includes two parts: reduction and
refinement. Zhu [32], [33] give a algorithm of reduction. After
we analyze the properties of reduction: (1) for anyKi ∈ C,
if Ki is a reducible element, then there at least exists two
or more covering-elementsK1,K2, . . . , Kr such thatKi =
K1 ∪K2 ∪ . . . ∪Kr; (2) if Ki = K1 ∪K2 ∪ . . . ∪Kr, then
|Ki| > |K1|, |Ki| > |K2|, . . . , |Ki| > |Kr|, that is to say,
the number of element of reducible element toKi is surely
greater than the number of any proper subset. We improve the
algorithm of reduction about Zhu [32], [33], on which we give
the refined algorithm.

Part I: reduction
Input: universeU and coveringC = {K1,K2, . . . , Km}.
Output:reduct(C)
S1 initialization:reduct(C) = C, i = 3;
S2 temp = Ø, j = 1;
S3 we sort the number of element in covering C into

nondecreasing order and getC = {P1, P2, . . . , Pm};
S4 if m < 3, then jump to S14;
S5 if Pj ⊂ Pi , thentemp = temp ∪ Pj ;
S6 j = j + 1;
S7 if j < I, then jump to S5;
S8 if temp 6= Pi, then jump to S12
S9 reduct(C) = reduct(C)− {Pi}
S10 we rearrange the number fromi: Pi = Pi+1, Pi+1 =

Pi+2, . . . , Pm−1 = Pm;
S11 j = 1, jump to S5
S12 i = i + 1;
S13 if i ≤ m, jump to S11
S14 the end.
Part II refinement
Input: a reductionreduct(C) of universeU ;
Output: the refinementRC(reduct(C)) of reduct(C);
S1 initialization:RC(reduct(C)) = Ø, i = 1, h = 1;
S2 if i > r, then jump to S13;
S3 DS(Ti) = Ø, IDS(Ti) = Ø, j = 1;
S4 m = |Ti|;
S5 computeFM(xj);
S6 if |FM(xj)| = 1, thenDS(Ti) = xj , j = j + 1, jump

to S8;
S7 IDS(Ti) = xj , j = j + 1;
S8 if j < m, then jump to S5;
S9 if |DS(Ti)| = 0, then RC(reduct(C)) =

RC(reduct(C)) ∪ IDS(Ti), i = i + 1, jump to S2;
S10 RC(reduct(C)) = RC(reduct(C)) ∪

{IDS(Ti){xh}}, h = h + 1;
S11 if h < m, jump to S10;
S12h = 1, i = i + 1;
S13 the end.
(xj is the jth element ofTi)

IV. T HE COMPARISON OF COVERING-BASED ROUGH SETS

MODEL

In this section, we will compare some mainly covering-
based rough sets based on the refinement of covering-element.
By comparing, we discover that the lower approximation of
all models in original covering are not greater than the lower
approximation in the refinement of covering-element. And the
upper approximation of all models in original covering are
not less than the upper approximation in the refinement of
covering-element. This means that the judgment of each model
to object is stronger on the basis of refinement of covering-
element.

A. The model of covering-based rough sets

In this section, we will mainly introduce eight main models
of covering-based rough sets. In order to better understand
some model, we introduce some new concepts.

Definition 4.1: (Neighbor [25], [34], friend [27], enemy
[18]) Let < U,C > be a covering approximation space, for
any x ∈ U , Neighbor(x) =

⋂{K|x ∈ K ∧K ∈ C} is called
the neighbor ofx and denote asN(x);

⋃{K|x ∈ K ∧K ∈
C} is called the friend ofx and denote asFriends(x);
U−Friends(x) is called the enemy ofx and denote ase.f(x).

Definition 4.2: (Eight models of covering-based rough sets)
[15], [16], [18]–[25] LetC be a covering of a universeU , for
any setX ⊆ U , define:

The lower approximation ofX in eight models of
covering-based rough sets from the first to the eighth are
X∗, X,X#, X@, X+, X$, X%, X&. And X∗ = X = X# =
X@ = X+ = X% = X& =

⋃{K|K ∈ C ∧ K ⊆ X},
X$ = {x|N(x) ⊆ X}. The upper approximation ofX in eight
models of covering-based rough sets are defined respectively
as follows:

The first is [15]:X∗ = X∗
⋃

(
⋃{⋃ Md(x)|x ∈ X −X∗});

The second is [19]:X=
⋃{K|K ∈ C ∧K

⋂
X 6= Ø};

The third is [20]:X# =
⋃{⋃ Md(x)|x ∈ X};

The fourth is [27]:X@ = X@

⋃{K|K ∈ C ∧ K
⋂

(X −
X@) 6= Ø};

The fifth is [26]: X+ = X+

⋃{N(x)|x ∈ X −X+};
The sixth is [21], [23], [25]:X$ = {x|N(x)

⋂
X 6= Ø};

The seventh is [22]:X% = X%

⋃
(∼ ⋃{Friends(y)|x ∈

X −X%, y ∈ e.f(x)});
The eighth is:X& = X&

⋃
(
⋃{ ⋂

K∈Md(x)

K|x ∈ X−X&});
(remark: symbol ”∼” means obtaining complementary set.)
According to the above definitionwe find that the eight

models’s lower approximation are the same except the sixth.
While the upper approximation of the eight models are
different. To these models, we can’t estimate which one is
better or worse than others because different models may
be applicable to different places. Zhu [25], [27], [35] study
the upper approximation of them from the point of view of
containable relation.
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B. The comparison of covering-based rough sets

In this section, we will propose position 16, 17 and 18, and
give the proofs of them in detail. Some concepts of this section
such asMd(x), N(x), Friend(x) are defined onreduct(C).

Proposition 4.1:Let U be a universe, andC is a covering
of U . X ⊆ U is an arbitrary subset ofU . In the eight models of
covering-based rough sets defined in definition 4.2, the lower
approximation ofX produced inreduct(C) is not greater than
it produced inRC(reduct(C)).

Proof: Let redct(C) = {K1,K2, . . . , Km}. I is an index
set andi, j, p, q, r, s, h ∈ I. For convenience, letX∗ is the
lower approximation of other seven models of covering-based
rough sets that except the 6th type of model and it bases on
reduct(C). Correspondingly,RX∗ is the lower approximation
of the seven models of covering-based rough and it bases on
RC(reduct(C)).

For anyKi ∈ reduct(C), RCE(Ki) is the refinement of
Ki and we suppose thatRCE(K) = {Ti1, Ti2, . . . , Tir}. If
Ki ⊆ X, according to definition 4.2, we get thatKi ⊆ X∗.
Since∪RCE(Ki) = Ki, then Tij ⊆ Ki where 1 ≤ j ≤
r. Accordingly, for eachTij ∈ RCE(Ki), Tij ⊆ RX∗.
Similarly, if X∗ = K1 ∪ K2 ∪ . . . ∪ Kp, then the union
of RCE(K1), RCE(K2), . . . , RCE(Kp) that correspond to
K1,K2, . . . , Kp equals toRX∗, that is,RX∗ = RCE(K1)∪
RCE(K2) ∪ . . . ∪ RCE(Kp). Here, if there at least exists
Kq ∈ reduct(C) − {K1,K2, . . . , Kp} andTqh ∈ RCE(Kq)
such thatTqh ⊆ X, thenRX∗ ⊂ X∗. Of course, ifKq or Tqj

are not exist, thenRX∗ = X∗. Accordingly, the result holds.
In the following, we prove that the 6th type of model of

covering-based rough sets also satisfies proposition.
Let reduct(C) = {K1,K2, . . . , Km}. I is an index set and

i, j, p, q, r, h, s, e, f ∈ I. RN(x) is the neighbor ofx produced
in RC(reduct(C)). RX$ is the 6th type of model of the lower
approximation ofX produced inRC(reduct(C)).

In reduct(C), if x ∈ Ki,Kj , then N(x) = Ki ∩
Kj . Let RCE(Ki) = {Ti1, Ti2, . . . , Tip}, RCE(Kj) =
{Tj1, Tj2, . . . , Tjq}. If there existss(1 ≤ s ≤ p) elements in
RCE(Ki) andh(1 ≤ h ≤ q) elements inRCE(Kj) contain
x. Let A = Ti1 ∩ Ti2 ∩ . . . ∩ Tis, B = Tj1 ∩ Tj2 ∩ . . . ∩ Tjh.
Then A ⊆ Ki, B ⊆ Kj . Accordingly, RN(x) = A ∩ B ⊆
Ki ∩ Kj = N(x), that is, RN(x) ⊆ N(x). Similarly, in
RC(reduct(C)), if x ∈ K1,K2, . . . , Kr, then RN(x)N(x)
still holds. So, ifN(x) ⊆ X, thenRN(x) ⊆ X. That is, for
any x ∈ U , if x ∈ X$ , thenx ∈ RX$. Here, if there at least
existsy ∈ U−X$ such thatRN(y) ⊆ X, thenX$ ⊂ RX$. If
there is not exist suchy or RN(y), thenX$ = RX$. Thus, in
the 6th type of model of covering-based rough sets, the lower
approximation ofX produced inreduct(C) is not greater than
it produce inRC(reduct(C)).

In conclusion, we get that, in the eight models of covering-
based rough sets defined in definition 4.2, the lower approx-
imation of X produced inreduct(C) is not greater than it
produce inRC(reduct(C)).

Proposition 4.2:Let U be a universe, andC is a covering
of U . X ⊆ U is an arbitrary subset ofU . In the eight models
of covering-based rough sets defined in definition 4.2, beside
the 1th and the 3th types, the upper approximation ofX to

reduct(X) is not less than it is toRC(reduct(C)).
Proof: Let reduct(C) = {K1,K2, . . . .Km}. I is an

index set andi, j, p, qr, h, s ∈ I.
(1)The upper approximationX = ∪{K|K ∈ C ∧K ∩X 6=

Ø} of the 2th type of covering-based rough sets.
Let RX = ∪{K|K ∈ RC(reduct(C)) ∧K ∩ X 6= Ø} is

the upper approximation ofX in RC(reduct(X)).
For any Ki ∈ reduct(C), assume RCE(Ki) =

{Ti1, Ti2, . . . , Tip}, if Ki ⊆ X and there exists
Ti1, Ti2, . . . , Tis(1 ≤ s ≤ p) such thatTi1∩X 6= Ø, Ti2∩X 6=
Ø, . . . , Tis ∩ X 6= Ø. Let Ai = {Ti1, Ti2, . . . , Tis}, then
∪Ai = Ki. If X = K1 ∪ K2 ∪ . . . ∪ Kj , correspondingly,
RX = {Aq|q = 1, 2, . . . , j} and RX ⊆ X. That is, the
upper approximation ofX in the 2th type of model of
covering-based rough sets toreduct(C) is not less than it is
to RC(reduct(C)).

(2) The upper approximationX@ = X@∪{K|K ∈ C∧K∩
(X −X@) 6= Ø} of the 4th type of model of covering-based
rough sets.

Let RX@ is the lower approximation ofX and RX@ =
RX@ ∪ {K|K ∈ RC(reduct(C)) ∧K ∩ (X − RX@) 6= Ø}
is the upper ofX in RC(reduct(X)), respectively.

According to proposition 4.1, we getX@ ⊆ RX@. Because
X − X@ = (X − RX@) + (RX@ − X@), then {K|K ∈
C ∧K ∩ (X −X@) 6= Ø} ={K|K ∈ C ∧K ∩ (X −RX@) 6=
Ø}+{K|K ∈ C ∧ K ∩ (RX@ − X@) 6= Ø}. For anyKi ∈
reduct(C), assumeRCE(Ki) = {Ti1, Ti2, . . . , Tip}. If Ki ∩
(X −RX@) 6= Ø, then there existsTi1, Ti2, . . . , Tis(1 ≤ s ≤
p) such thatTi1∩(X@−RX@) 6= Ø, Ti2∩(X@−RX@) 6= Ø,
. . ., Tis∩(X@−RX@) 6= Ø. If Ai = {Ti1, Ti2, . . . , Tis}, then
∪Ai ⊆ Ki. Similarly, if K1,K2, . . . , Kj ∈ C andK1∩(X@−
RX@) 6= Ø, K2∩(X@−RX@) 6= Ø, . . ., Kj∩(X@−RX@) 6=
Ø, then there existsA1, A2, . . . , Kj such that∪{∪Aq|q =
1, 2, . . . , j} ⊆ ∪{Kq|q = 1, 2, . . . , j}. Accordingly, we can
get that:{K|K ∈ RC(reduct(C))∧K∩(X−RX@) 6= Ø} ⊆
{K|K ∈ reduct(C) ∧K ∩ (X − RX@) 6= Ø} On the other
hand,RX@−X@ ⊆ {K|K ∈ reduct(C)∧K∩(RX@−X@) 6=
Ø}. So,(RX@−X@)+{K|K ∈ RC(reduct(C))∧K ∩ (X−
RX@) 6= Ø}⊆{K|K ∈ reduct(C) ∧K ∩ (X −RX@) 6= Ø}
+{K|K ∈ reduct(C)∧K∩(RX@−X@) 6= Ø}. Consequently,
RX@+{K|K ∈ RC(reduct(C)) ∧K ∩ (X − RX@) 6= Ø}⊆
X@ + {K|K ∈ reduct(C)∧K ∩ (X −RX@) 6= Ø}, namely,
RX@ ⊆ X@. So, the result holds.

(3)The upper approximationX+ = X+ ∪ {N(x)|x ∈ X −
X+} of the 5th type of model of covering;

In RC(reduct(C)), we suppose thatRX+ is the lower
approximation ofX, RN(x) is the neighborhood ofx, and
RX+ = RX+ ∪ {RN(x)|x ∈ X − RX+} is the upper
approximation.

According to proposition 4.1, we get thatX+ ⊆ RX+.
For any x ∈ U , we have thatRN(x) ⊆ N(x). Since
X − X+ = (X − RX+)+(RX+ − X+), then {N(x)|x ∈
X − X+}={N(x)|x ∈ X − RX+}+{N(x)|x ∈ RX+ −
X}. BecauseX+ ⊆ RX+, then {RN(x)|x ∈ X −
RX+}⊆{N(x)|x ∈ X − RX+}. As RX+ − X+ ⊆
{N(x)|x ∈ RX+ − X+}, then (RX+ − X+)+{RN(x)|x ∈
X − RX+}⊆{N(x)|x ∈ X − RX+}+{N(x)|x ∈ RX+ −
X+}. Consequently,RX++{RN(x)|x ∈ X − RX+}⊆X+ +
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{N(x)|x ∈ X − X+}, that is ,RX+ ⊆ X+. Therefore, we
get the result.

(4) The upper approximationX$ = {x|N(x)∩X 6= Ø} of
the 6th type of model of covering;

Let RN(x) = ∩{K|x ∈ K ∧K ∈ RC(reduct(C))} is the
neighbor ofx in RC(reduct(C)). RX$ = {x|RN(x)∩X 6=
Ø} is the upper approximation ofX in RC(reduct(C)). For
anyx ∈ U , we get thatRN(x) ⊆ N(x). If RN(x)∩X 6= Ø,
thenN(x)∩X 6= Ø. So,{x|RN(x)∩X 6= Ø} ⊆ {x|N(x)∩
X 6= Ø}, that is,RX$ ⊆ X$. Thereby, the result holds.

(5) The upper approximationX% = X% ∪ {∼
∪{Friends(y)|x ∈ X −X%, y ∈ Re.f(x)}} of the 7th type
of model of covering;RX% is the lower approximation ofX
in RC(reduct(C)). RFriend(x) andRe.f(x) are the friend
and enemy ofx in RC(reduct(C)). RX% = RX% ∪ {∼
∪{Friends(y)|x ∈ X − RX%, y ∈ Re.f(x)}} is the upper
approximation ofX in RC(reduct(C)).

From proposition 4.1, we get thatX% ⊆ RX%. Then,
X−RX% ⊆ X−X%, that is,∀x ∈ X−RX%. There surely be
thatx ∈ X−X%. On the contrary, we could not hold that. We
suppose thatRCE(Ki) = {Ti1, Ti2, . . . , Tip}. For anyx ∈
X−RX% andKi ⊆ Friends(x), if x ∈ Ti1, Ti2, . . . , Tis(1 ≤
s ≤ p), then Ti1, Ti2, . . . , Tis ⊆ RFriends(x). Assume
Ai = {Ti1, Ti2, . . . , Tis}, then∪Ai ⊆ Ki. Consequently, if
Friends(x) = ∪{K1,K2, . . . , Kj}, correspondingly, there is
RFriends(x) = ∪{A1∪A2∪ . . .∪Aj} andRFriends(x) ⊆
Friends(x). According to definition 4.1, we get thate.f(x) ⊆
Re.f(x). So,∪{Friends(y)|x ∈ X − RX%, y ∈ e.f(x)}⊆
∪{RFriends(y)|x ∈ X − RX%, y ∈ Re.f(x)}. In the
following, we get that ∼ ∪{RFriends(y)|x ∈ X −
RX%, y ∈ Re.f(x)}⊆∼ ∪{Friends(y)|x ∈ X − RX%, y ∈
e.f(x)}. For any x ∈ RX% − X%, there surely be that
x /∈ e.f(x). Thereby, x /∈ ∪{Friends(y)|x ∈ RX% −
X%, y ∈ e.f(x)}. Then x ∈ (∼ ∪{Friends(y)|x ∈
RX% − X%, y ∈ e.f(x)}). Further more,RX% − X%⊆{∼
∪{Friends(y)|x ∈ RX% − X%, y ∈ e.f(x)}}. Therefore,
(RX% − X%) + (∼ ∪{RFriends(x)|x ∈ X − RX%, y ∈
Re.f(x)})⊆(∼ ∪{Friends(y)|x ∈ X−RX%, y ∈ e.f(x)})+
(∼ ∪{Friends(y)|x ∈ RX% − X%, y ∈ e.f(x)}). Accord-
ingly, RX% + (∼ ∪{RFriends(x)|x ∈ X − RX%, y ∈
Re.f(x)})⊆ X% + (∼ ∪{Friends(y)|x ∈ X − X%, y ∈
e.f(x)}), that is,RX% ⊆ X%. So, the result holds.

(6) The upper approximation X& = X& ∪
(∪{⋂K∈Md(x) K|x ∈ X − X&}) of the 8th type of
model of covering.

Let RX+ andRMd(x) in RC(reduct(C)) are respectively
the lower approximation and minimal description.X& =
X& ∪ (∪{⋂(K∈Md(x)) K|x ∈ X − RX&}) is the upper
approximation ofX in RC(reduct(C)).

According to proposition 4.1, we get thatX& ⊆ RX&.
During the proof of (1), we get that∪Ai ⊆ Ki.
If Md(x) = {K1,K2, . . . , Kj}, correspondingly,
there is RMd(x) = {A1 ∪ A2 ∪ . . . ∪ Aj} such
that

⋂j
q=1(∪Aq) ⊆ ⋂j

q=1 Kq. So, ∪{⋂K∈RMd(x)

K|x ∈ X − RX&} ⊆ ∪{⋂K∈Md(x) K|x ∈ X − RX&}.
Moreover, X − X&=(X − RX&)+(RX& − X&). Then,
∪{⋂K∈Md(x) K|x ∈ X − X&} =∪{⋂K∈Md(x) K|x ∈
X − RX&}+∪{

⋂
K∈Md(x) K|x ∈ RX& − X&}.

Because of RX& − X& ⊆ ∪{ ⋂
K∈Md(x)

K|x ∈ RX& − X&}, then (RX& − X&)
+∪{⋂K∈RMd(x) K|x ∈ X − RX&}⊆∪{

⋂
K∈Md(X) K|x ∈

X − RX&}+∪{
⋂

K∈Md(x) K|x ∈ RX& − X&}. So,
RX& +∪{⋂RMd(x) K|x ∈ X − RX&}⊆ X& +
∪{⋂K∈Md(x) K|x ∈ X − X&}, that is, RX& ⊆ X&.
Thereby, the above result holds. Accordingly, we prove the
proposition 4.2.

For the first and third models of covering-based rough sets,
proposition does not hold. We can get it from the following
example.

Example 4.1:Let U = {a, b, c, d} be a universe,C =
{{a}, {a, b, c}, {a, b, c, d}} is a covering ofU , X = {a, b, d}
is a subset ofU . In the first and the third model of covering-
based rough sets, Please computer the upper approximation of
X on reduct(C) andRC(reduct(C)) respectively.

According to known conditions,
reduct(C)=CRC(reduct(C)) = {{a}, {a, b, c} {a, d},
{b, d}, {c, d}, {d}}, for any x ∈ U , Md(x) and
RMd(x) represent the minimal description ofx on
reduct(C) and RC(reduct(C)) respectively. Then,
Md(a) = {{a}}, Md(b) = {{a, b, c}}, Md(c) = {{a, b, c}},
Md(d) = {{a, b, c, d}}, RMd(a) = {{a}},
RMd(b) = {{a, b, c}, {b, d}}, RMd(c) = {{a, b, c}, {c, d}},
RMd(d) = {{d}}.

(1) In the first model:
The upper approximation ofX on reduct(C) is:
X∗ = X∗

⋃
(
⋃{⋃ Md(x)|x ∈ X − X∗}) =

{a, b}⋃{a, b, c} = {a, b, c};
The upper approximation ofX on RC(reduct(C)) is:
X∗ = X∗

⋃
(
⋃{⋃ RMd(x)|x ∈ X −X∗}) = {a, b}⋃

(
⋃

{{a, b, c} ⋃{c, d}}) = {a, b, c, d};
(2) In the third model:
The upper approximation ofX on reduct(C) is: X# =⋃{⋃ Md(x)|x ∈ X} =

⋃{{a}, {a, b, c}} = {a, b, c}
The upper approximation of X on

RC(reduct(C))is: X# =
⋃{⋃ RMd(x)|x ∈ X}

= {a, b}⋃
(
⋃{{a, b, c}⋃{c, d}}) = {a, b, c, d}

From the above example we find that the upper approxima-
tion of X on reduct(C) is larger than it onRC(reduct(C)),
that is, proposition 4.2 is not hold in the first and the third
model.

Next, we will illustrate and validate proposition 4.2 by
another example.

Example 4.2:Let U = {a, b, c, d, e, f, g} be a uni-
verse, C = {{a, b}, {b, c, e}, {c, d, f}, {b, c, e, f, g},
{a, b, c, e, f, g}} is a covering ofU , X = {a, b, d, e} is a
subset ofU . Please computer and compare the lower and upper
approximations ofX on reduct(C) and RC(reduct(C)) in
eight models.

According to definition 2.5, we know that
reduct(C) = {{a, b}, {b, c, e}, {c, d, f}, {b, c, e, f, g}}.
Then with definition 3.6 shows thatRC(reduct(C)) =
{{a}, {a, b}, {b, c, e}, {c, d}, {d}, {d, f}, {b, g}, {c, g},
{e, g}, {f, g}, {g}}.

(1) The lower approximation ofX on reduct(C) and
RC(reduct(C)).
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According to definition 4.2, we know that the upper approx-
imation of X on reduct(C) in eight models are:

X∗ = X = X# = X@ = X+ = X% = X& =
⋃{K|K ∈

C ∧K ⊆ X} = {a, b};
X$ = {x|N(x) ⊆ X} = {a, b};
The lower approximation ofX on RC(reduct(C)) in eight

models are:
X∗ = X = X# = X@ = X+ = X% = X& =

⋃{K|K ∈
C ∧K ⊆ X} = {a, b, d};

X$ = {x|N(x) ⊆ X} = {a, b, d, e}.
Thus, the lower approximation ofX on RC(reduct(C)) is

larger than it onreduct(C) in eight models.
(2) The upper approximation ofX on reduct(C) and

RC(reduct(C)).
According to definition 4.2, we know that the upper approx-

imation of X on reduct(C) in eight models are:
X∗ = X∗

⋃{Md(x)|x ∈ X −X∗} = {a, b, c, d, e, f};
X =

⋃{K|K ∈ C ∧K
⋂

X 6= Ø} = {a, b, c, d, e, f, g};
X# =

⋃{Md(x)|x ∈ X} = {a, b, c, d, e, f};
X@ = X@

⋃{K|K ∈ C ∧ K
⋂

(X − X@) 6= Ø} =
{a, b, c, d, e, f, g};

X+ = X+

⋃{N(x)|x ∈ X −X+} = {a, b, c, d, e, f};
X$ = {x|N(x)

⋂
X 6= Ø} = {a, b, c, d, e, f, g};

X% = X%

⋃
(∼ ⋃{Friends(y)|x ∈ X − X%, y ∈

e.f(x)}) = {a, b, c, d, e, f, g};
X& = X&

⋃
(
⋃{ ⋂

K∈Md(x)

K|x ∈ X − X&}) =

{a, b, c, d, e, f};
The upper approximation ofX on RC(reduct(C)) in eight

models are:
X∗ = X∗

⋃{RMd(x)|x ∈ X −X∗} = {a, b, c, d, e, g};
X =

⋃{K|K ∈ C ∧K
⋂

X 6= Ø} = {a, b, c, d, e, f, g};
X# =

⋃{RMd(x)|x ∈ X} = {a, b, c, d, e, g};
X@ = X@

⋃{K|K ∈ C ∧ K
⋂

(X − X@) 6= Ø} =
{a, b, c, d, e, g};

X+ = X+

⋃{N(x)|x ∈ X −X+} = {a, b, c, d, e};
X$ = {x|N(x)

⋂
X 6= Ø} = {a, b, d, e};

X% = X%

⋃
(∼ ⋃{Friends(y)|x ∈ X − X%, y ∈

e.f(x)}) = {a, b, d, e};
Thus, in the eight models, all of the upper approximations

of X on RC(reduct(C)) are not larger than it onreduct(C)
except the first and the third model.

Then, on what conditions proposition 4.2 is true to the first
and the third model?

Proposition 4.3:Let U be a universe, andC is a covering
of U . X ⊆ U , for any x ∈ U , if ∪RMd(x) ⊆ ∪Md(x),
then the upper approximation ofX in reduct(C) is not less
than it is inRC(reduct(C)) to the first and third models of
covering-based rough sets.

Proof: (1) To the 1th type of model of covering-
based rough sets, the upper approximationX∗ = X∗ ∪
(∪{∪Md(x)|x ∈ X−X∗}). Because∪RMd(x) ⊆ ∪Md(x),
and∪{∪RMd(x)|x ∈ X − RX∗} ⊆ ∪{∪Md(x)|x ∈ X −
RX∗}. On the other hand,RX∗ − X∗ ⊆ ∪{∪Md(x)|x ∈
RX∗−X∗}. So,RX∗−X∗+ ∪{∪RMd(x)|x ∈ X−RX∗}⊆
∪{∪Md(x)|x ∈ RX∗ − X∗} +∪{∪Md(x)|x ∈ X − RX∗},
that is , RX∗ ∪ (∪{∪RMd(x)|x ∈ X − RX∗})⊆X∗ ∪

(∪{∪Md(x)|x ∈ X − X∗}). Thus,RX∗ ⊆ X∗. Therefore,
we get that the upper approximation ofX in reduct(C) is not
less than it is inRC(reduct(C)) to the 1th type of model of
covering-based rough sets.

(2) The upper approximationX# = ∪{∪Md(x)|x ∈ X}
of X is the 3th type of model of covering-based rough
sets. Because∪RMd(x) ⊆ ∪Md(x), then ∪{ ∪RMd(x)|
x ∈ X}⊆∪{∪Md(x)|x ∈ X}, that is ,RX# ⊆ X#. Thus,
we prove that the upper approximation ofX in reduct(C) is
not less than it is inRC(reduct(C)) to the third model of
covering-based rough sets.

Proposition 4.1, 4.2 and 4.3 based on thereduct(C) of
coveringC are discussed the lower and upper approximations
of the eight models of covering and are compared the upper
and lower approximation before the refinement and after the
refinement. The reason we do that is that: for one thing, by
reducing the coveringC, we can delete redundant information,
and thereby get a better lower and upper approximations and
increase the capacity of discernment. For another, the number
of new covering-elements to refine the reduction of covering
is more than it is directly refined this covering. The reason
is that the determinate elements maybe increase after delete
some reducible elements, which will bring to more covering
elements. This means that the capacity of discernment to this
model will enhance. If we directly discuss this problem in
covering, we still get the same result.

V. CONCLUSIONS AND FUTURE WORK

Covering-based rough sets is an important extension of
rough sets and there are more and more applications and
studies about it. In this paper, covering-based rough sets
is studied from a new point of view of the refinement of
covering-element. On the basis of refinement of covering-
elements, the lower approximations of the eight models of
covering-based rough sets are not greater than the original
lower approximations. Correspondingly, all the upper approxi-
mations of the eight models are not less than the original upper
approximations with exceptions of two models (the first and
the third models) in some special situations. The refinement
of covering-element enhances the capacity of discernment
fundamentally to each of covering-based rough sets models.
This is very meaningful to the study of rough sets theory and
application. Meanwhile, the algorithms of Zhu [32], [33] is
improved. And the algorithm of the refinement of covering-
element is proposed. In the future work, we will continue study
the properties of the refinement of covering-element. And we
will use partially ordered set and lattice to study the refinement
of covering-element.
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