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Abstract—In this paper an analysis of blackouts in electric power 

transmission systems is implemented using a model and studied in 
simple networks with a regular topology. The proposed model 
describes load demand and network improvements evolving on a 
slow timescale as well as the fast dynamics of cascading overloads 
and outages.     
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I. INTRODUCTION 
LECTRICAL power transmission systems are complex 
engineering systems with many static or dynamic 

components. Their complete dynamical description involves 
detailed knowledge of each component and its coupling to the 
rest of the system. The power system can be modeled using 
two possible approaches. The most commonly used approach 
is a deterministic calculation that models all the components 
in detail. Because all of the components and the physical laws 
that govern their interactions are known, it is possible to 
develop software that simulates particular blackouts. These 
codes may be complicated and time-consuming, but they are 
feasible. This approach has proven to be effective in helping 
to manage the power system. However, a different perspective 
can be taken.  

Nowadays the phenomena of Blackouts in power systems 
happen quite frequently. The causes which provoke these 
blackouts are varies such as equipment failure, weather 
conditions, vandalism, and human error [1]. It is very difficult 
to written equations of a software code due to blackouts 
causes triggering state. Therefore, if we want to understand 
the global dynamics of power system blackouts, we need to 
emphasize the random character of the events that trigger 
them and the overall response of the system to such events. 
This is the approach taken in this paper. The two approaches 
are necessary and complement each other. They may converge 
in the future when the second approach is further developed. 
In following the second approach, it is sensible to start from a 
global, top-down methology with simple models that capture 
the main effects only. A recent analysis of blackouts [2, 3] has 
shown that measures of such blackouts such as megawatt 
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hours unserved or number of customers affected show the 
existence of long-range dependencies. Furthermore, the 
probability distribution function (PDF) of the size of the 
blackouts has a power law scaling. This behavior of the power 
transmission system is suggestive of a dynamical system close 
to a critical point. One possible governing principle for its 
dynamics is self-organized criticality [6]. We have considered 
a sequence of models that may reflect the dynamical 
properties of a self organized critical system. The simplest 
model was employed in reference [3]. In [3] we used a sand-
pile model [7] as a black box to generate a 2 self-organized 
critical time series that could be compared to the time series of 
historical data for power grid blackouts. The sandpile was not 
a model for the dynamics of the power grid, but merely a 
means of testing the self-organized critical properties of the 
data. The next step was taken by constructing a power 
transmission model [4] based on a cellular automaton similar 
to the sandpile model. This model allowed studying properties 
of network power transmission, but it did not solve the 
network power flow equations. The interesting result is that 
these two models produce PDFs of blackout sizes that are 
quite similar and are also similar to the PDF determined from 
the historical data for power grid blackouts. Here we describe 
the implementation and results of a model [5] that takes it a 
step further by solving the network power flow equations. 
This model still remains simple, and in this paper we consider 
the power networks of homogeneous structure. In this way, 
we can vary a minimum number of parameters to explore the 
dynamics. However, extensions of the model are possible and 
easy to implement. These extensions will allow us to consider 
more realistic power system networks, incorporate the 
reliability of each component, and to vary the methods of 
responding to increasing power demand and improving the 
system.  

This paper is organized as follows: Following the 
introduction, an analysis of the proposed model is described in 
section 2. Then in section 3, the formulation of the power flow 
problem is introduced. The analytical result is discussed in 
section 4. Finally, a brief conclusion is deduced. 

II. ANALYSIS OF PROPOSED MODEL 
In this section we calculated the mathematical model [5] for 

the dynamics of power transmission networks. For each 
network, we define two types of classes, the node class and 
the line class. 
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The node class represents the buses. They are either loads 
(L) or generators (G). Each node class contains the 
information on the type of bus, the instantaneous real power 
Pi (positive for generators and negative for loads), the 
maximum generator power Pimax, and the connections with 
the other existing buses.  

The line class contains the information on the nodes (i) and 
(j) that the line connects, the instantaneous power flow Fij, the 
maximum power flow Fij max, and the line impedance zij. In 
our model we assume that only one line allows connecting 
two given nodes. This assumption of the model allows the 
consideration of any interconnected network with N=G+L, 
where N is the number of network nodes, G is the number of 
generators, and L is the number of loads. The present 
implementation does not allow the network to be disconnected 
and islanding cannot be studied. As discussed in [7], the direct 
current (dc) power flow equations can be written in the 
following form: 

 
     F=Ax P   (1) 

 
Where F is a vector whose L components are the line power 

flows Fij between the nodes, P is a vector whose N–1 
components are the power injected at each node Pi, and A is a 
matrix that depends on the network structure and impedances. 
The reference generator power 0P  is not included in the 
vector P in order to avoid the singularity of A as a 
consequence of the overall power balance. 

 
The dynamic evolution of the network involves two 

timescales. There is a slow timescale of days to ears over 
which power demand changes and improvements to the 
system are made. There is also a fast timescale of minutes to 
hours over which a cascade of overloads and outages may take 
place. This cascade may lead to a blackout or back to normal 
operation. For simplicity, the daily peak load is chosen as 
representative of the loading during each day, and the events 
are computed based on that peak load. The timing of events in 
the cascade is neglected so that the cascade modeling moves 
through a possible sequence of states of the network rather 
than simulating the evolution of the cascade in time. 

III. POWER FLOW PROBLEM FORMULATION 
The dynamic of the long-term evolution of the network is 

carried out by a simple set of rules. At the beginning of day t, 
we apply the following rules: 

 
Rule 1: Increase the power electricity demand 
 

All loads are multiplied by a fixed parameterκ , which is 
the average daily rate of increase in electricity demand. On the 
basis of the past rate of growth of electricity consumption, we 

estimated the parameter to be κ = 1.00005. This value 
corresponds to a yearly growth rate of approximately 2%. 

)1()( −= tPtP ii κ for Li ∋  (2) 
 
The maximum generator power is increased at the same 

rate:  
 

)1()( maxmax −= tPtP ii κ for Gi ∋                              (3) 
 
 
Rule 2: Power transmission improvement 
 
We assume a steady improvement in the transmission 

capacity of the grid network in response to the outages and 
blackouts. This improvement is implemented through an 
increase of the maximum line flow Fij max for the lines that 
have overloaded during a blackout on the previous day. That 
is,  

 

)1()( maxmax −= tFtF ijij λ   (4) 

 
if line ij overloads during a blackout. We consider ( λ ) to be a 
constant and it is the main control parameter of the model.  

 
Rule 3: Daily power fluctuations 
 
To provide the daily fluctuations in power demand, all load 

powers are multiplied by a random number ρ , such 

that γρ
γ

≤≤
1

. 

The range of the parameter γ  is from 1 to 1.5. We also 

assign a probability 0p  for a random outage of a line. We 
represent the line outage by multiplying the line impedance by 
a large number 1θ  and dividing the line maximum flow Fij 

max by another large number 2ϑ . The values of 1θ  and 2ϑ  
are of the order 10000. After applying these three rules to the 
network parameters, we solve the power flow problem using 
linear programming.  

Using the input power demand and power transmission 
rules updated as indicated above, we solve the power flow 
equations (1). In addition we assume that all generators run at 
the same cost and that all loads have the same priority to be 
served. However, we set up a high cost for load shed by 
setting W = 1000.   

The formulation of the linear problem (LP) is the following 
with the minimization of the cost function: 

 

∑ ∑
∈ ∈

−=
Gi Lj

ji tPWtPCost )()(min    (5) 

 
Subject to constraints: 
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max0 ii PP ≤≤  for Gi ∈                                       (6)                            
 

0≤jP    for Lj ∈                                                           (7)                                                          

 

              max
ijij FF ≤                                                        (8)                                                     

              ∑
∪∈

=
LGi

iP 0                                                          (9)                                      

 
This linear programming problem is numerically solved 

using the simplex method as implemented in [8].  
In order to solve the time evolution problem, the initial 

conditions are chosen to be a feasible solution of the linear 
program (i.e., a solution satisfying the constraints). As the 
time evolution proceeds, we can reach a solution of the linear 
program that requires load shed or leads to overload of one or 
more lines. At this point, a cascade may be triggered, and the 
evolution moves to the fast timescale. Cascading overloads 
may start if one or more lines are overloaded in the solution of 
the linear program.  

We consider a line to be overloaded if the power flow 
through the line is within 1% of Fij max. Each overloaded line 
is outaged with probability 1p . Once one or more lines are 
outaged, the solution is recalculated. This process can lead to 
multiple iterations and the process goes on until a solution is 
found with no more outages. A blackout is defined as a 
cascading event in which the load shed is larger than a small 
value, typically 10-5 times the total power demand. 

IV. RESULTS 
We have considered several network structures, such as 

ring, and tree networks. For the ring and tree networks, we 
have considered different numbers of couplings between the 
nodes. We have examined the sensitivity of the results to these 
different network structures. Moreover, we assume the 
network with tree topology have five connections per node.  

A reason to consider these networks is that their simple 
structure makes it easy to generate networks of different sizes. 
These networks have allowed us to carry out detailed scaling 
studies by varying the size and number of connections. 
Varying the size of the network allows the separation of scales 
needed to study finite size systems. The scaling studies are 
important in determining algebraic falloff of the PDFs of 
cascading events. For the numerical results presented in this 
paper, the network parameters are given in the following 
table:  

TABLE I  
DIFFERENT NETWORK TOPOLOGIES 

Network 
Topology 

No of 
Nodes 

No of 
Links 

Ring 45 45 113 
Tree 99 99 248 
Tree200 200 500 

                                                                                      

   For these networks, we have arbitrarily assigned a generator 
at every tenth bus and loads at every other bus. For a fixed 

rate of average increase of the power demand (κ = 1.00005), 
the effective power served depends on the rate of 
improvements λ in the grid network.  If the improvement rate 
is lower, there are more blackouts, and on average the power 
served is lower. This result is presented in the following 
figure. 
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Fig. 1 Average ratio of power supplied to the power demand as a 

function of the rate of improvement for two different network 
topologies 

 
Once the rate of improvement λ is given, there is a self-

regulation process by which the system produces the number 
of blackouts that it needs to stimulate the response needed to 
meet demand. This is a necessary condition for the dynamical 
equilibrium of the system. The rate of increase in power 
demand for the overall system is essentially given by: 

 

LRD )1( −≈ κ                                (10) 
 

The system response is  

          
LlfR oblackoutR )1( −≈ λ

                        (11) 
 

Where blackoutf   is the frequency of blackouts and 0l  is a 

weighted average of lines overloaded in a blackout. 

V. CONCLUSION 
In this paper we have presented a model and some initial 

results of a dynamical model for blackouts in power 
transmission systems. The proposed model has the potential of 
incorporating in-homogeneities of the system and making the 
model more realistic. Due to the simplicity of the present 
model realization, the model shows very rich dynamics over 
both long and short timescales. We have focused on the main 
properties of the cascading events. The cascading events 
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involve lines limiting, line outages, and possible load shed. 
When load shedding happens, we define the cascade as a 
blackout. Blackout frequency and size depend on the rate of 
improvement of the network. The frequency and size of the 
blackouts depend weakly on the topology of the network, at 
least for the three topologies considered here. Finally the 
distribution of the blackout sizes is a weak function of the 
topology.   
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