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Abstract—A separation-kernel-based operating system (OS) has 

been designed for use in secure embedded systems by applying formal 
methods to the design of the separation-kernel part. The separation 
kernel is a small OS kernel that provides an abstract distributed 
environment on a single CPU. The design of the separation kernel was 
verified using two formal methods, the B method and the Spin model 
checker. A newly designed semi-formal method, the extended state 
transition method, was also applied. An OS comprising the 
separation-kernel part and additional OS services on top of the 
separation kernel was prototyped on the Intel IA-32 architecture. 
Developing and testing of a prototype embedded application, a 
point-of-sale application, on the prototype OS demonstrated that the 
proposed architecture and the use of formal methods to design its 
kernel part are effective for achieving a secure embedded system 
having a high-assurance separation kernel. 
 

Keywords—B method, embedded systems, extended state 
transition, formal methods, separation kernel, Spin.  

I. INTRODUCTION 
MBEDDED systems have become ubiquitous, and their 
functionalities are becoming richer and reaching higher 
levels. Obtaining high-assurance embedded systems is 

critical in many environments. The layered approach has been 
adopted to obtain these high-assurance systems. The lowest 
layer is an operating system (OS) kernel, which needs to have 
the highest assurance. Attaining high assurance is not easy as 
today’s OS kernels tend to be large and have rich functionality. 
A small kernel called the separation kernel, which was 
proposed by Rushby [1] [2], has attracted attention as a 
potential high-assurance kernel for embedded systems. The 
separation kernel provides an abstract distributed environment 
on a single CPU. Because the separation kernel is small, its 
secure design, including verification of its correctness, is easier 
than with traditional kernels. The Common Criteria for 
Information Technology Security Evaluation [5], which 
defines the requirements for secure systems, calls for a formal 
design at its highest evaluation assurance level (EAL 7). 

This paper reports the results obtained for the secure design 
and implementation of a separation-kernel-based OS 
(tentatively called OS-K), which is intended for use in secure 
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embedded systems. The architecture is proposed for a 
separation-kernel-based system. The separation-kernel layer 
provides an abstract distributed environment to partitions. It 
was designed using two formal methods: the B method and the 
Spin model checker. Also applied was a newly developed 
semi-formal method, the extended state transition (EST) 
method. These methods played complementary roles in the 
verification of the design. The separation-kernel layer and the 
additional OS services on top of it were prototyped on the Intel 
IA-32 architecture. The additional OS services comprised the 
partition OSs in the client partitions and the OS servers in the 
server partitions. The OS servers included the file server and 
device drivers. A sample embedded application, a POS (point 
of sale) application, was developed on the prototype OS, 
resulting in a POS system in a simulated environment. The 
development result demonstrated that the proposed architecture 
and the use of formal methods to design its kernel part are 
effective for achieving a secure embedded system having a 
high-assurance separation kernel. 

II. SEPARATION-KERNEL-BASED ARCHITECTURE 

A. Overview 
A separation-kernel abstraction was adopted for the OS 

kernel to enable achievement of a secure and reliable embedded 
system. Because an OS kernel designed using this abstraction is 
small and simple, the possibility of kernel failure is minimized. 
Moreover, proving the correctness of the kernel is easier. The 
security of the system can be further improved by dividing an 
application into multiple processes with different privileges 
and running them in the different partitions provided by the 
separation kernel.  

The overall architecture for the developed 
separation-kernel-based system is outlined in Fig. 1. The 
separation-kernel layer provides multiple partitions on top of it. 
Client-server-mode operations are used to enable the multiple 
partitions to work together. The client partitions are for the user 
processes. One user process runs in one client partition. The 
partition OS in each client partition acts as an interface for 
providing OS services to the user process. The partition OSs 
send requests to the server partitions for required services. The 
server partitions provide common OS services to the client 
partitions and to other server partitions. Such OS functions as 
the file server and device drivers, which are located in the OS 
kernel in traditional OSs (and even in microkernels for device 
drivers), run in the server partitions as server processes in user 
(non-privilege) mode, which reduces the possibility of kernel 
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Fig. 1 Architecture of separation-kernel-based system 
 

The separation-kernel layer provides several functions:  
- partition management; 
- inter-partition communication;  
- access control for inter-partition communication; 
- memory management; 
- timer management; 
- processor scheduling; 
- I/O interrupt synchronization for device driver operation;  
- interrupt-handling. 

B. Separation-kernel calls 
The separation-kernel layer provides services to the upper 

layer via separation-kernel calls. The separation-kernel calls 
are classified into three service categories. 

- Message-passing service: The main service provided by 
the separation-kernel layer to the upper layer is 
inter-partition communication. The client-server-mode 
message-passing service is used to align the service with 
the overall architecture of the partition layer. There are 
four separation-kernel calls for this service: send, receive, 
fetch, and reply. The client side uses send, and the server 
side uses receive and reply, or receive, fetch, and reply, as a 
combination. A send is issued to transmit a message to the 
destination partition and wait for a reply message. A 
receive waits for a message that another partition is 
sending. If a message has already been sent to this 
partition, a receive returns immediately. When a receive 
returns with information that a variable-length message 
has been sent, a fetch is issued to retrieve the message. A 
reply is issued to send a reply message to the partition that 
issued a send, and the partition’s wait state is released.  

- I/O synchronization service: This service is for the device 
drivers in the server partitions. A device driver issues a 
dwait separation-kernel call after initiating an I/O 
operation and waits for an I/O completion interrupt.  

- Timer service: A partition that has issued sleep is put into 
wait state until a specified timer-interval expires. The 
gettime returns the current clock time.  

C. Inter-partition access control 
The separation kernel provides the access-control function 

for inter-partition communication, which provides the only 
linkage between otherwise separate partitions. Therefore, it is 
critical to maintaining the security of the system. For example, 
even if the control of a partition is taken over by a malicious 
program, properly set access control can minimize its effect on 
other partitions. The access-control function regulates which 
partition can communicate with which other partitions. The 
rules for access control are set by a system administrator.  

Example access-control rules for inter-partition 
communication are shown in Table I. Client A is allowed to 
communicate, i.e., to send a message and receive a reply, with 
Client B and Server B. Client B is allowed to communicate with 
Servers A and B. Server A is allowed to communicate with 
Server C. The separation kernel prohibits other combinations of 
inter-partition communication. 

Running components such as device drivers in the server 
partitions enables accesses to such components to be controlled 
by using the access-control function for inter-partition 
communication. 
 

D. Memory Protection 

Effective memory protection is critical to isolate the memory 
spaces of partitions, which is the key security feature of the 
separation kernel. There are three requirements for memory 
protection. 

- The memory space of each partition must be isolated from 
that of the other partitions; i.e., a process in one partition 
cannot access the memory space of another partition.  

- The memory area of the separation kernel must not be 
accessible by the user processes, the partition OSs in the 
client partitions, or the processes in the server partitions.  

- The memory area of a partition OS must not be accessible 
by user processes.  

In this IA-32-architecture-based implementation of the 
separation kernel and the upper-layer OS services, two 
memory-protection features of the IA-32 architecture are 
utilized. 

- The ring protection feature of the IA-32 architecture is 
used to protect the memory area of the separation kernel 
against access by the processes and the partition OSs. As 
illustrated in Fig. 2, the memory area of the separation 
kernel is assigned privilege level 0, which is the highest 
level in the system. The memory spaces for the server 
processes are assigned level 1. The memory areas for the 

TABLE I 
EXAMPLE ACCESS-CONTROL RULES FOR INTER-PARTITION COMMUNICATION 

Source 
Destination 

Client A Client B Server A Server B Server C 
Client A P A P A P 
Client B P P A A P 
Server A P P P P A 
Server B P P P P P 
Server C P P P P P 

A: Allowed, P: Prohibited 
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partition OSs are assigned level 2. The memory spaces for 
the user processes are assigned level 3.  

- Each partition is assigned a local descriptor table in which 
the partition segments are registered to isolate the partition 
memory spaces. This prevents programs in one partition 
from accessing the memory space of another partition 
although their spaces have identical privilege levels. 

 
User processes

Partition OSs

Server processes

Separation kernel

0

3
2

1

 
 

Fig. 2 Assignment of privilege levels in ring protection 

III. FORMAL DESIGN WITH B METHOD 
As mentioned above, one of the requirements defined by the 

Common Criteria for Information Technology Security 
Evaluation [5] for secure systems is formal design at the highest 
evaluation assurance level, EAL 7. The kernel part that runs in 
kernel (privileged) mode and controls the whole system needs 
to have the highest assurance level.  

 Several formal methods were considered for designing the 
separation kernel, including Z language [9], the B method [10], 
[11], and the Spin model checker [14], [15]. The B method is 
particularly attractive because the abstract description of the 
specifications can be refined to a more concrete description, 
i.e., the description of the IMPLEMENTATION in B 
terminology, and the correctness of the refinement can be 
verified using the tool associated with the B method. Therefore, 
the B method was selected for designing the overall structure of 
the separation kernel.  

A. Modeling 
The specifications of the separation kernel in the proposed 

architecture are described in B. The main components in the 
description and their relationships are outlined in Fig. 3. The 
components are called abstract machines and are described as 
MODELs. The  memorymanager MODEL describes the main 
function of memory management. The memorymanager 
operations internally call operations in the msegaccess 
MODEL. The skinterface MODEL describes the main 
functions of message passing, scheduler, the timer, I/O 
synchronization, and the interrupt handler. Because MODEL 
description in B does not allow sequential processing, the 
skinterface MODEL is necessarily a large component with a 
nondeterministic description. It was thus refined into the 
skinterface_i IMPLEMENTATION in which the operations 
internally call operations in the midmanager, mdata_mgr, 
pidmanager, sktimer, pscheduler, and msgpass MODELs.  
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Fig. 3 Main components of separation kernel in B description 
 

An example MODEL description, that of memalc operation 
in the memorymanager MODEL, is shown in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Example MODEL description in B: memalc operation 
 

B. Verification of Abstract Machines 
The correctness, i.e., consistency, of the descriptions was 

verified using B4free [12]. B4free is a tool for the B method 
that supports the generation of proof obligations and their 
proofs. It verifies the proof obligations automatically as much 
as possible; any that it cannot verify are left for verification by 
hand. In automatic verification, the tool verifies whether the 
invariant conditions described in the INVARIANT clause of 
the operation description hold after the operation has been 
executed as well as at initialization. It has an interactive 
verification mode that supports verification by hand.  

ridx <-- memalc(isize) =
   PRE  isize : NAT1 & isize mod 4 = 0 
   THEN 
      CHOICE 
         ANY 
            idx 
         WHERE  
            idx : MLIDX & mstate(idx)=m_free & msize(idx) >= 
isize  
         THEN 
            IF msize(idx) = isize 
            THEN 
               update_state(idx, m_allocd) 
            ELSE 
               divide_mseg(idx, isize) 
            END || 
            ridx := idx 
         END 
      OR 
         ridx := max_segs 
      END 
   END 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1258

 

As shown in Table II, all the proof obligations generated by 
the tool, except 1 for memorymanager and 125 for msegaccess, 
were verified automatically by B4free. The 126 others were 
verified interactively or manually. The reason for the large 
number of msegaccess ones requiring interactive or manual 
verification may be that the conditions described in its 
INVARIANT clause were stricter compared with the  
descriptions of the other components. 

C. Description Refinement 

The abstract descriptions of the specifications were refined 
to the IMPLEMENTATION descriptions by converting the 
nondeterministic sections to sequential processing. An example 
refined description is shown in Fig. 5. It is for the memalloc 
operation and corresponds to the abstract description in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Refined description in B: memalc operation 
 

D. Verification of Refinement 
The consistency of the refined descriptions was verified 

using B4free. Both the consistency of the description itself and 
the consistency between the abstract description and the refined 
description were verified.  

As shown in Table III, all the proof obligations generated by 
the tool for components other than memorymanager_i, 
msegaccess_i, and skinterrface_i were automatically verified.  
A small number of them for memorymanager_i and 
msegaccess_i were verified interactively or manually. The 

number of non-trivial proof obligations exceeded 1,000 for 
skinterface, which resulted in an error and could not be 
verified. 

 

IV. MODEL CHECKING WITH EXTENDED STATE TRANSITION 
METHOD 

The extended state transition (EST) method was applied in 
parallel with the B method. The EST model extends the normal 
state-transition model by incorporating variables into behavior 
descriptions. Its application to software design is described in 
[13]. A scheme was developed to describe the model of the 
specifications on the basis of the EST model, and tools were 
developed to check the validity of the model description by 
executing it. Since it does not yet have exhaustive model 
verification capability, it is a semi-formal method. 

A. Modeling 
Selected functionalities of the separation-kernel 

specifications, i.e., inter-partition communication, scheduler 
and timer are included in the model. In the model description 
(see Fig. 6), the partition entities, the scheduler, and the timer 
are modeled as extended state machines. A partition entity 
controls the operation of each partition. The upper partition is 
the non-kernel part of a partition; it uses the separation kernel 
by issuing separation-kernel calls.  

 

Separation 
kernel

Partition
entity

SchedulerTimer

Partition
entity

sk_call

Upper
partition

timer_int

Partition
entity

 
 

Fig. 6 Configuration of model description of separation kernel 
 

The partition entity model has seven major states, which do 
not include finer states represented by variables. The 

TABLE II 
GENERATED PROOF OBLIGATIONS (POS) AND VERIFICATION RESULTS 

Component POs generated POs  proved 
automatically 

POs proved 
interactively 
or manually 

memorymanager 14 13 1 
msegaccess 228 103 125 
skinterface 6 6 0 
mdata_mgr 2 2 0 
midmanager 6 6 0 
msgpass 95 95 0 
pidmanager 6 6 0 
pscheduler 62 62 0 
sktimer 180 180 0 
taskmanager 1 1 0 

 

ridx <-- memalc(isize) = 
   BEGIN 
      VAR idx IN 
         idx <-- search_fmsegbysize(isize); 
         IF idx < max_segs 
         THEN 
            IF msize(idx) = isize 
            THEN 
               update_state(idx, m_allocd) 
            ELSE 
               divide_mseg(idx, isize) 
            END; 
            ridx := idx 
         ELSE 
            ridx := max_segs 
         END 
      END 
   END 

TABLE III 
GENERATED PROOF OBLIGATIONS (POS) AND VERIFICATION RESULTS 

Component POs 
generated 

POs proved 
automatically 

POs proved 
interactively 
or manually 

memorymanager_i 214 213 1 
msegaccess_i 244 220 24 
skinterface_i* Over 1000 0 0 
mdata_mgr_i 15 15 0 
midmanager_i 20 20 0 
msgpass_i 104 104 0 
pidmanager_i 20 20 0 
pscheduler_i 56 56 0 
sktimer_i 354 354 0 

  *Verification for skinterface_i is incomplete. 
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state-transition diagram for the major states is shown in Fig. 7. 
When a partition entity receives a send kernel call, it internally 
issues an isend (internal send) request to the destination’s 
partition entity. Similarly, when a reply kernel call is received, 
an ireply (internal reply) request is internally issued. 

runoffkrunoffk

runkexitrunkexit

skcall int

[send]

[receive 
& ! msgQ]

isend
timeout

ireply
timeout

dispatch2

dispatch

[receive & msgQ]
[fetch]
[reply]

isend

isend
ifetch

[sleep]

timeout

timer int

runink

swaitswait rwaitrwait

isend

twaittwait

readyready

 
Fig. 7 State transition diagram of partition entity (for major states) 

 
The model of the specifications is described in 

extended-state-transition diagrams, i.e., by allowing the 
incorporation of variables into behavior descriptions associated 
with the state transition. To enable descriptions to be analyzed 
by programs, we formulated the XML format for 
extended-state-transition diagrams. Fig. 8 shows a part of 
description of partition entity specification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Part of description of partition entity specification 
(XML format) 

B. Model Checking 

The EST method has a tool, the converter, that converts the 

description in XML format into a Java method. Another tool, 
the specification-execution-environment, receives an execution 
scenario as input, executes the Java methods, and outputs the 
execution results. An execution scenario is composed of the 
descriptions of the upper partitions. The results consist of log 
information, sequence diagrams generated from the log 
information, coverage information on the state transitions, and 
detailed information on the system’s state, including the values 
of the variables at the beginning and the end of the execution. 
Fig. 9 shows a part of the automatically converted Java method 
from the description in Fig. 8. Fig. 10 shows an example of a 
generated sequence diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9 Part of generated Java method for partition entity 
 

 
|| running    | ready   : waiting 

Fig. 10 Example generated sequence diagram (partial view) 
 

The model of the specifications was executed under various 
scenarios, and the validity of the results was checked. It was 
found that the EST method could be effectively used for testing 
with tentative specifications by executing the model and then 
revising it on the basis of the results. The method was 
particularly useful for finalizing the specifications for 
inter-partition communication. 

public boolean StateMachine(IOObj in) { 
        : 
      switch (in.type) { 
        case SEND: 
            : 
          Condition = sk.skmode; 
          if (Condition) { 
            switch (state) { 
              case RUNINK: 
                << Content of action here>> 
                break; 
              default: 
                systemError("Input not acceptable in this state"); 
                return false; 
            } 
            break; 
          } 
        case RECEIVE: 
            : 

<statemachine> 
     : 
   <input name = "SEND"> 
      <predicate name = "PREDICATE1"> 
             : 
      </predicate> 
      <predicate name = "PREDICATE2"> 
          Condition = sk.skmode; 
         <state name = "RUNINK"> 
            <action> 
                if (in.val == pid || ! existPID(in.val)) { 
                    ret = returnInfo(ERROR); 
                    state = RUNKEXIT; 
                    Output(SCHEDULER, SCHEDULE); 
                } else { 
                    timeout = in.val2; 
                    in.val2 = genID(); 
                    Output(in.val, ISEND, in.val, in.val2, in.str); 
                    saveSendInfo(in.val, in.val2); 
                } 
            </action> 
        </state> 
        <stategroup name = "default"> 
            <action dontcare = "true"> 
            </action> 
        </stategroup> 
      </predicate> 
   </input> 
   <input name = "RECEIVE"> 
       : 
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V. MODEL CHECKING WITH SPIN 
The Spin model checker is primarily aimed at the design of 

concurrent systems. Because a separation kernel provides an 
abstract distributed environment, the Spin model checker is 
potentially an effective tool in its design. It was thus used for 
the design described here.  

A. Modeling 
The Spin model checker was applied to the same scope of 

separation-kernel functionalities as the EST method. The 
model description had the same composition as the EST model 
outlined in Fig. 6. As a result, the Spin model could easily be 
obtained by directly translating the descriptions of an EST 
model into those in the Spin model description language, 
Promela.  

The entities in Fig. 6 are described as active proctypes in 
Promela: 

- an array of partition entities 
- an upper partition for each partition entity 
- scheduler 
- timer 
- idle partition entity. 

These entities are connected through the Promela input/output 
channels.  

The major states of a partition entity and the transitions 
among them illustrated in Fig. 7 also apply to the Spin model. 
There is no nondeterminism in the description of the separation 
kernel.  

B. Verification 
The checking of the model using Spin was done in two 

modes, simulation and verification. The model was checked in 
simulation mode with various descriptions of the upper 
partitions. Random simulations, done by incorporating 
nondeterminism into the descriptions of upper partitions, 
enabled the efficiency of the checking to be enhanced. Some 
errors in the Promela model coding were found. 

With nondeterministic descriptions in the upper layers, an 
exhaustive check of the model was performed in verification 
mode. The correctness property of successful message passings 
was verified using assertions. The safety property of the model 
was verified by checking that the upper partitions were always 
served to the completion by the separation kernel and that the 
system reached the end state. The model checking in the 
verification mode was possible for relatively small models with 
at most three partition entities, due to CPU time and memory 
space constraints in the verification run and the size of the 
model descriptions (about 1,000 lines in Promela). 

Fig. 11 shows an example nondeterministic description of an 
upper partition. Inline constructs were used to code the 
separation-kernel calls. 

Because the model checking with Spin was carried out after 
that with the EST method, no feedback was obtained for the 
specifications of the separation kernel.  Better confidence in the 
validity of the specifications, however, was gained.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Example nondeterministic description of upper partition 
 

VI. PROTOTYPING 
The separation kernel and other OS components were 

implemented on an IA-32-architecture [16] processor after the 
application of the B and EST methods to the design of the 
separation kernel.  

A. Separation-kernel Layer 
The separation kernel was implemented on an 

IA-32-architecture processor starting with a boot program. The 
IMPLEMENTATIONs of the separation kernel in B were 
converted into C programs on an almost one-to-one basis. The 
program implemented for the separation kernel had about 3,000 
lines of C code and about 1,000 lines of assembler code.  

B. Partition OSs 
The partition OSs that provide system calls to user processes 

to access the following services were prototyped. 
- File-management service: This service has five system 

calls commonly found in file systems: open, read, write, 
seek, and close.  

- Standard I/O service: This service has two system calls: 
prints and scans. A prints is issued to display an output 
string. A scans is issued to retrieve an input string from the 
keyboard.  

- Inter-client-partition communication: This service has 
three system calls: put_request, get_request, and 
done_request. A put_request is issued to send a message to 
another client partition. A get_request is issued to receive a 
message from a client partition. A done_request is issued 
to reply to a message sent to the client partition.  

The partition OSs call the server partitions to fulfill the 
file-management and standard I/O services. 

C. OS Server Layer 
Three server partitions (the disk driver, the terminal driver, 

and the file server) were implemented.  
(1) Disk driver 

active proctype UP1()  
provided (! skmode && current == _pid - PENUM) 

{ 
  :  
  : 

  do 
  :: count1 > 0 -> 
     if 
     :: sendf(dest, 10, val1, result, from, msgid, val2) 
     :: receivef(20, result, source, msgid, val2) 
        val1 = val2 + 1 
     :: replyf(source, msgid, val1, result) 
     :: yieldf() 
     fi; 
     count1-- 
  :: count1 == 0 -> break 
  od; 
  exitf() 
} 
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The disk driver provides two functions to the file server, 
disk_read and disk_write. A disk_read is issued to read data on 
the disk. A disk_write is issued to write data to the disk. The ten 
I/O ports required for the disk driver to work were made 
available. 
(2) Terminal driver 

The terminal driver provides standard I/O service to the other 
partitions. The service is called by the standard I/O service in 
the partition OSs. The two I/O ports required for the terminal 
driver to work were made available. 
(3) File server  

The file server provides a file-management service to the 
other partitions. This server is called by the file-management 
service in the partition OSs. The format of the file in the file 
server is FAT16. The file server calls the disk driver to read 
data from and write data to the disk.  

D. Access Control 
Access-control services were implemented in the upper 

layer. These services are independent of the inter-partition 
access control in the separation-kernel layer and are intended to 
provide the finer access control needed for building secure and 
reliable embedded systems. 
(1) I/O port access 

The I/O ports available to the partitions must be controlled to 
minimize the effect if a partition is attacked. I/O-port-access 
privileges were assigned to the components in accordance with 
the privilege levels of the IA-32 architecture, as summarized in 
Table IV. I/O-port-access privileges are not granted to user 
processes and partition OSs. Instead, privileges are granted to 
server partitions on the basis of their type. The separation 
kernel can access all I/O ports. 

 
(2) File access 

An access-control function in the file server was 
implemented using the Bell-LaPadula model [17] as the 
access-control model for controlling client partitions that can 
communicate with the file server and access files. Client 
partitions and files are assigned confidential levels. Information 
at a higher level is thus prevented from leaking to lower ones. 

E. Sample Application 
A POS application was prototyped on the prototyped OS. As 

illustrated in Fig. 12, a POS register receives a merchandise 
code, a customer code and received money amount as input. 
The POS register manages payment, merchandise, sales, and 
customer services. It also manages customer personal data, 
customer’s reward point data, merchandise data, and sales 

history data.  

POS register

Customer 
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Customer 
code

Merchandise 
code

(JAN code)

① Payment manager
② Merchandise manager
③ Sales manager
④ Customer services manager

Customer 
card

Merchandise

Money amount

Cash

Reward point 
data

Merchandise 
data

Sales history 
data  

 
Fig. 12 Overview of sample application 

 
The services for users are divided into ten client partitions: 

function selecting, payment, customer-information reference, 
etc.  

The access-control rules for inter-partition communication 
are listed in Table I: Clients A and B correspond to function 
selecting and the other client partitions; Servers A, B, and C 
correspond to the file server, the terminal driver, and the disk 
driver, respectively. Function selecting is allowed to 
communicate with the other client partitions corresponding to 
functions required by the user and with the terminal driver to 
receive input data from the keyboard and to output messages to 
the user. The other client partitions are allowed to communicate 
with the file server and the terminal driver. The file server is 
allowed to communicate with the disk driver. The separation 
kernel prohibits other combinations of inter-partition 
communication. 

The confidential levels are assigned to client partitions and 
files for the access control provided by the file server. 
Customer-information reference is assigned the highest level 
among the partitions, and customer personal data is assigned 
the highest level among the files. 

VII. DISCUSSION 

A. Separation-kernel-based architecture 
The advantages of the proposed separation-kernel-based 

architecture for secure embedded systems were verified and 
demonstrated through the design and development of the kernel 
and an application in a sample embedded-system environment.  

Four advantages in particular contribute to achieving secure 
embedded systems.  

- The separation kernel can be kept small, minimizing the 
security-critical kernel-mode program. Such OS services 
as a file server and device drivers can be implemented as 
non-kernel-mode programs. Even if a file server or device 
driver is taken over and controlled by a malicious program, 
it cannot control the kernel.  

- A small kernel makes it easy for the correctness of its 
design to be formally verified.   

- A separation kernel provides an isolated environment for 

TABLE  IV 
DEVICE  I/O PRIVILEGES 

Privilege level I/O port privileges 

3 None 
2 None 
1 Granted on basis of server type 
0 All 
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multiple components of an embedded application, 
enabling a malfunction in or a security attack against some 
component to be localized in that component, thereby 
minimizing its effect on other components. The 
segregation of partition memory spaces and of the 
separation kernel and partition memory areas can be 
effectively achieved in the IA-32-hardware environment 
by making use of ring-protection and segment 
mechanisms. 

- The access-control function for inter-partition 
communication controls the communication channels 
between partitions and prevents unwanted flows of 
information between partitions. 

Because the separation kernel is small and its functionality is 
limited, it alone cannot provide all the OS services needed by 
embedded applications. The remaining services need to be 
provided as upper-layer OS services. The design and 
development of such upper-layer OS services reported here 
have demonstrated that they can be designed to be secure by 
taking advantage of the separated partitions provided by the 
separation kernel and that appropriate security functions need 
to be provided by them to complement the security functions 
provided by the separation kernel. The upper-layer OS services 
offer advantages and additional functionalities. 

- Additional OS services are implemented as distributed 
services. Each service is in its own partition, isolated from 
other services, which improves the security and reliability 
of the system. Additionally, access control to such services 
is established by making use of the access-control function 
for inter-partition communication provided by the 
separation kernel. A service can be provided to 
applications and other services on the basis of the 
least-privilege policy.  

- Additional access-control functions are implemented in the 
upper-layer OS services. The file-access-control function  
is implemented in the file server. The prototype application 
makes use of this, restricting access to confidential 
information such as customer data to limited applications 
on the basis of the least-privilege policy. Access control to 
I/O ports is implemented in the device drivers.  

B. Application of formal methods to kernel development 
The B method was used in designing and implementing the 

separation-kernel part of the proposed architecture. Experience 
has shown that the effectiveness of its application to secure 
kernel design depends on the components.  

- The B method is effective for such components as those for 
memory management, where verification of the static 
properties of the model is a key part of the design process. 
Memory addresses can be represented mathematically as a 
set, and memory properties can be precisely described. 

- Its effectiveness is limited for such components as those 
for inter-partition communication, the scheduler, and the 
timer, where sequential, i.e., dynamic, properties are 
important. This is because an abstract machine cannot 
verify dynamic properties. For inter-partition 
communication and the timer, much of the static properties 

description was nondeterministic, so complete verification 
was not possible. For the scheduler, there was not much 
description of the static properties.  

The EST method, which is based on the extended 
state-transition model, was used to check the model.  

- It was used to check inter-partition communication, the 
scheduler, and the timer. It revealed several design flaws 
that had a sequential nature, indicating that the EST 
method is effective for checking the dynamic properties of 
the model.  

- Since it does not work well for mathematical descriptions 
of the properties of variables, is not effective for checking 
static properties. Since memory management has 
properties that are mostly static, it was excluded from the 
checking. 

- The functionality of this method is limited compared with 
Spin; e.g., it lacks an exhaustive verification feature. It is 
effective for building a well-structured model based on the 
EST model.  

Spin was applied after the model was checked with the EST 
method. 

- Spin was effective for verifying the dynamic properties of 
the model. In simulation mode, it provided the same level 
of model checking as the EST method. Further, its 
nondeterministic capability was effective in improving the 
efficiency of the checking. 

- Spin has a powerful verification feature, so model 
checking in verification mode resulted in better confidence 
in the validity of the separation-kernel specifications. Due 
to CPU time and memory space constraints, it was applied 
to relatively small models. 

Following application of the B and EST methods to the 
design, the actual coding of the separation kernel was 
undertaken. Very few bugs (less than ten) have since been 
found in the separation-kernel code. 

VIII. RELATED WORK 
Secure OSs, such as SELinux and LIDS for Linux, have 

enhanced security features such as access control with fine 
granularity. SELinux has been applied to embedded systems 
[6]. Although stringent access control was provided to 
applications, OS-server programs, such as file systems and 
device drivers, were not the target of control. Therefore, if their 
control is taken over by a malicious program, its effect can 
spread throughout the entire kernel. 

The Least Privilege Separation Kernel (LPSK) [3] provides 
access control with finer granularity than that with the 
traditional separation kernel. In the traditional separation 
kernel, the subject of access control is in the partition. 
However, the partition in LPSK consists of one or more 
subjects and resources. The access-control policy is defined in 
subjects and resources. LPSK more stringently provides the 
principle of least privilege with this approach. 

The specifications of a separation kernel were described with 
TAME (Timed Automata Modeling Environment) and verified 
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with a prover called the Prototype Verification System [4]. 
Application of Z notation to kernel development has been 

reported in [7] and [8], including the verification of a separation 
kernel [8]. Although Z has advantages due to description and 
verification at the top level, verification of the correctness of  a 
refinement is not easy.  

Application of Spin to process scheduling in a distributed 
operating system has been reported in [15].  

IX. CONCLUSION 
A separation-kernel-based OS has been designed for use in 

secure embedded systems by applying formal methods to the 
separation-kernel part. The architecture was proposed for a 
separation-kernel-based system. The design of the 
separation-kernel part was verified using two formal methods, 
the B method and the Spin model checker. A newly developed 
semi-formal method, the extended state transition (EST) 
method, was also applied. The effectiveness of these three 
methods for kernel design was complementary, and applying 
them was effective in attaining a well designed separation 
kernel.  

The separation-kernel part and additional OS services on top 
of the separation kernel were prototyped on the Intel IA-32 
architecture. The additional OS services were designed on the 
basis of the client-server model and comprised partition OSs in 
the client partitions and OS servers in the server partitions. A 
sample embedded application, a POS application, was also 
developed on the prototype OS, resulting in a POS system in a 
simulated environment. This application took advantage of the 
abstract distributed environment provided by the prototype OS.  

The results of this work demonstrate the feasibility of the 
proposed architecture for designing secure embedded systems. 
They also show that design using formal methods can be used 
to effectively create a secure and reliable kernel.  
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