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Coupled dynamics in host-guest complex systems
duplicates emergent behavior in the brain
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Abstract – The ability of the brain to organize information and
generate the functional structures we use to act, think and commu-
nicate, is a common and easily observable natural phenomenon. In
object-oriented analysis, these structures are represented by objects.
Objects have been extensively studied and documented, but the
process that creates them is not understood. In this work, a new class
of discrete, deterministic, dissipative, host-guest dynamical systems
is introduced. The new systems have extraordinary self-organizing
properties. They can host information representing other physical
systems and generate the same functional structures as the brain
does. A simple mathematical model is proposed. The new systems are
easy to simulate by computer, and measurements needed to confirm
the assumptions are abundant and readily available. Experimental
results presented here confirm the findings. Applications are many,
but among the most immediate are object-oriented engineering, image
and voice recognition, search engines, and Neuroscience.

Keywords – AI, artificial intelligence, complex system, object-
oriented, OO, refactoring.

I. INTRODUCTION

In this work, the brain is considered as an implementation
of a complex dynamical system that receives some input,
processes it, and generates some output. Only the input/output
relationship is of concern. The internal process is described
by a simple, discrete mathematical model with only minimal
assumptions about the nature of the dynamics. The details of
the implementation, no matter how complicated they may be,
are irrelevant.

The dynamical system being studied is called the host. The
input information describes the behavior of another, given
physical system, known as the guest. The output generated by
the host consists of hierarchies of objects that are behaviorally
equivalent to the input information, in the sense that both the
input information and the output structures describe the same
behavior, the only difference being that the output is organized
even if the input is not. Accordingly, one can say that the
behavior of the guest is invariant under the transformations
induced by the host’s dynamics. The new systems are properly
called host-guest systems, and the problem is one of coupled
dynamics. This work is concerned with the dynamics of the
host. Restrictions placed on the guest are minimal and are
discussed below.

If feedback is present, in such a way that the structures
obtained by the host are fed back to the guest, then the
net effect is that the guest system gets better organized, its
behavior has not changed, the phase space is now much
smaller, and a phenomenon of adaptation has occurred.
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The assumptions made about the dynamics of the host
must be confirmed by comparing theory with measurement.
In this case the brain is the “experiment”, observations of the
input/output relationship of a person’s brain are the “mea-
surements”, and a computer simulation of the mathematical
model represents the theory. Figure 1 shows a schematic
representation of a brain experiment. These experiments are
carried out only on humans, involve higher brain functions,
and directly detect the behavior of the guest system. Luckily,
a very large number of measurements of this type have been
performed, and the results have been carefully documented in
multiple sources.

One of such sources, is object-oriented (OO) code. In the
course of development of OO code, a human analyst receives
a problem statement that describes some physical system, such
as a business, or a machine, or perhaps a problem of Physics
that needs to be solved, and is asked to create an object-
oriented model of that system. The model is subsequently
used to develop software and documentation. This process
amounts to a carefully controlled experiment where the given
problem is the guest system, the analyst’s brain is the host,
the problem statement serves as input, the analyst’s brain
provides the transformation dynamics, and the resulting OO
code and documentation are the output. If the code is used to
run the business, design the machine, or solve the problem,
then feedback and adaptation have occurred.

The second source of carefully documented experiments
is provided by the theories of natural science, that is, by
the theories themselves, not the measurements on which the
theories are based. A theory of science also consists of
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Fig. 1. A brain experiment. The elements indicated with solid lines are
externally observable and discussed in this paper. Brain-generated natural
objects represent experimental observations. Predicted objects calculated by
the simulation are compared with the natural objects and found to confirm the
theory. Adaptation occurs when the behavior-invariant objects are fed back to
the guest system.
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objects. In this case, the guest is the physical system being
observed, the host is the scientist’s brain, input consists of
the experimental measurements that support the theory, the
scientist’s brain provides the dynamics, and the output is the
theory. In this case, feedback happens when we learn the
theory, the theory serves us to better our own understanding
of the natural world, and we ourselves have better adapted to
our environment.

The third source of interesting brain experiments, is image
recognition. A television picture that consists of illuminated
pixels can be the input. The eye and brain of the person who
is watching the image provide the dynamics, and the output is
the recognition of the objects present in the scene. Again, by
interpreting a set of illuminated pixels as a meaningful image,
we have better adapted to our environment.

A different type of brain experiments involves the use of in-
vitro cultures of live neurons obtained from animal brains and
placed on multi-electrode arrays. The neurons spontaneously
organize in the culture, create a network, and become active.
The electrodes detect the action potentials of individual neu-
rons. These experiments seek to detect and measure the chaotic
dynamics of the host system, and they can be carried out only
with animals. They are discussed in Section VIII.

Host-guest systems should not be confused with applica-
tions where objects are predictably created, such as 2nd and
higher degree mathematical logic, OO programming, including
“object factories” where rules are used to create objects of
different classes, image or speech recognition methods, game-
playing machines, etc. In all cases, the objects or rules come
from a human, the human’s brain provides the dynamics, and
the rest of the process is entirely predictable. The new systems,
instead, use a stochastic process that prevents any predictable
connection between guest and host other than the constraints,
and the source of the objects is the ensuing emergent behavior.
The new systems should neither be confused with host-guest
composites and molecular assemblies, which have long been
studied in organic and inorganic chemistry, but have not been
extended to systems in general.

A mathematical introduction and a motivational example
are presented in Section II. The mathematical model of
computation for the host-guest system is discussed in Section
III. The dynamics is defined in Section IV, and the physical
characterization is covered in Section V. Just as the brain
is considered as a black box with an input and an output,
any functional part of the brain can as well be considered
as a black box with an input and output. This idea gives
rise to the notion of brain analysis, discussed in Section VI.
Algorithms and a computer implementation are discussed in
Section VII. Experiments from each one of the sources of
brain measurements mentioned above have been published,
and are reviewed and discussed in Section VIII. The agreement
between theory and experiment is very good in all cases. Two
areas where host-guest simulations can outperform humans are
also discussed in Section VIII.

Terms such as self-organizing, emergent, deterministic, and
others, have precise meanings [1], and are used here with
those precise meanings. A method based on rule abstraction
has been proposed to study the brain’s emergent properties

[2]. However, complex systems are indivisible (see §V). Brain
analysis methods (§VI) should be used instead.

II. MATHEMATICAL INTRODUCTION AND MOTIVATIONAL
EXAMPLE

Two pillars support the work that is being presented. The
first pillar is a computationally observed mathematical prop-
erty. Let F be a finite set with a partial order ω, and let K
be a total order on F compatible with ω. Order K is called a
configuration. A subset ϕ ⊆ F is said to be a segment in K
if its elements are consecutive in K. Set F itself is always a
segment in any K.

Now let K = {K} be the set of all configurations. Since F
is finite, K is also finite. Set K is required to be measurable,
meaning that a systematic procedure must be given to assign
a number, say L(K), to each configuration K ∈ K. Let Lmin

be the minimum value of L(K) over K, and define:

K̃ = {K | L(K) = Lmin} (1)

Set K̃ is the set of all configurations with minimum measure.
Then, the following statement can be made: There exists a
non-trivial partition ΠF of set F , such that, for each P ∈ ΠF ,
and each K ∈ K̃, P is a segment under K. This statement
is the set partition conjecture. It has been computationally
confirmed in many cases and with several different sets and
types of measures, but it has not yet been determined if it is
new or established mathematics. The segments in the partition
give rise to objects.

A motivational example is given next. Let set F be given
by F = {fα, fβ , fγ , fδ, fε, fϕ}, or, to simplify notation and
improve readability:

F = {α, β, γ, δ, ε, ϕ} (2)

and let the partial order on F be the following:

ω = {α < δ, γ < δ, δ < ε, β < ϕ}. (3)

An order is simply a set of precedence relations among pairs
of elements of F . An easy and very visual way to represent
the propositions leading to the set partition conjecture, is to
cast them in matrix form. The result is a canonical matrix
[3]. To create the canonical matrix, a configuration is first
chosen, and the elements of F are assigned to the rows in the
order of that configuration. Then, each relation in the partial
order, say i < j, is indicated with a C on the diagonal in
position (i, i) and an A in position (j, i). Symbols A and C
are explained in the next section. The result is a square, sparse
[4], lower triangular matrix of order |F |, with a full diagonal.
An advantage of this representation is that configurations in
set K correspond to symmetric permutations of the matrix.
The C’s always remain on the diagonal, and the partial order
is satisfied as long as all the A’s remain in the lower triangle.
The canonical matrix for this example is shown in Fig. 2, and
it corresponds to the following configuration:

K = (α, β, γ, δ, ε, ϕ). (4)

Since a configuration is a total order, it can be written as an
ordered tuple.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1159

F

α β γ δ ε ϕ

α C
β C
γ C
δ A A C
ε A C
ϕ A C

Fig. 2. A 6 × 6 canonical matrix corresponding to the partial order ω for
set F given in Eq. (3) and the configuration K given in Eq. (4).

The next step is to define a measure that applies to all
configurations. The definition is arbitrary, but it must be given.
One choice that has consistently led to good results is:

L(K) = 2
∑

(j − i) (5)

where the sum extends to all A’s in the canonical matrix, and
the reason for selecting the coefficient 2 is explained in the
next section. For the configuration K of Eq. (4) and shown in
Fig. 2, L(K) = 18.

The final step is to find the set of least-measure configura-
tions K̃, and determine the partition ΠF of set F . Since K is
finite, the search can be done by enumeration. This is easy for
such a small example. Set K̃ consists of the four configurations

(α, γ, δ, ε, β, ϕ)
(β, ϕ, α, γ, δ, ε) (6)
(β, ϕ, γ, α, δ, ε)
(γ, α, δ, ε, β, ϕ)

The measure for each of these configurations is Lmin = 10.
The partition consists of subsets {β, ϕ}, {α, γ}, and {δ, ε},
each of which is a segment in each one of the four configu-
rations.

But the process is not finished yet. The set whose elements
are the three subsets {β, ϕ}, {α, γ}, and {δ, ε} meets all three
conditions required by the set partition conjecture. It is a set, it
has a partial order, consisting in this case of the single relation
{α, γ} < {δ, ε} obtained directly from Eq. (3), and a measure
can be defined for it in the same way as in Eq. (5). The reader
can easily verify that the resulting partition contains the two
subsets {β, ϕ} and {{α, γ}, {δ, ε}}.

Even for such a very small example, a nested hierarchy
of partitions with several levels has been obtained. It is
called an inheritance hierarchy. Inheritance hierarchies are
well known in object-oriented analysis. Here, they have been
mathematically explained.

The mathematical property reported in this Section has
an extraordinary significance. However, sets alone can not
represent physical systems. Unless they are sets of functions. A
model of computation based on sets of functions is presented
next.

III. THE MATRIX MODEL OF COMPUTATION

The second pillar is the mathematical model for the new
host-guest dynamical systems. The model is the Matrix Model

F

D I

output

(a)

(b)

p q r s t u a b c d e

α = C A
β = C A
γ = C A
δ + A A C
ε + A C A
ϕ + A C A

q u r p s t

β = C
ϕ + A C
γ = C
α = C
δ + A A C
ε + A C

Fig. 3. (a) A 6× 6 canonical matrix and a 6× 5 input matrix. The edges of
the corresponding directed graph are superposed. (b) The permuted canonical
matrix partitioned into 2 objects, one of which is in turn partitioned into 2
smaller, coupled objects.

of Computation in its canonical form (cMMC). The model was
first introduced in its imperative form (iMMC) [5], and later
in the canonical form [6]. The motivation for developing the
cMMC was the occasional appearance in the iMMC of certain
submatrices with extraordinary self-organizing properties. The
iMMC is Turing-complete, in the sense that it can host a
universal Turing machine [5]. General transformations are
available to convert an iMMC into an equivalent cMMC ([6],
§III). However, Turing completeness has not yet been proved
for the cMMC. Rigorously speaking, and at least for now, the
present work applies only to systems that can be represented
by a cMMC model. Experience indicates that many types of
systems can be written directly in cMMC format. For one
thing, computer programs, which have been used to model
virtually every known physical system, are easy to convert
directly to cMMC.

A formal definition of the cMMC is available [6]. For our
purposes here, it is better to explain the cMMC with the help of
the motivational example of Section II and the 6×6 canonical
matrix shown in Fig. 2, and repeated in Fig. 3(a). Let C be the
canonical matrix. In the cMMC, set F is a set of functions.
Let the functions be the following:

α : a → p
β : b → q
γ : c → r (7)
δ : p × r → s
ε : s × d → t
ϕ : q × e → u,

where all symbols on the right represent sets, and the functions
are defined over the union D ∪ I of the set of domains D =
{p, q, r, s, t, u) and the input set I = {a, b, c, d, e}. Symbols
A and C can now be explained: for each function, the A’s in
matrix C represent arguments, the C’s, codomains.

Matrix C only represents the functional dependencies
among the functions of set F , but not the maps themselves.
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This limited representation is sufficient for the set partition
conjecture. There are cases, however, where an explicit repre-
sentation of the maps is required. In such cases, an expanded
representation should be used ([6], §II.A.2). The expanded
representation is also sufficient for the set partition conjecture.
In an expanded representation, the matrix remains canonical,
but all functions are boolean and the matrix resembles a digital
circuit. There are also cases where the functions are standard
and have names, and it then becomes possible to keep track
of them by simply assigning that name in correspondence
with the rows of C. This is the case for the present example.
Suppose the 6 functions are:

α : p = a
β : q = b
γ : r = c (8)
δ : s = p + r
ε : t = d + s
ϕ : u = q + e,

where the symbols now represent variables, and the function
names are “=” and “+”. These names are shown in Fig. 3(a)
and (b) in correspondence with the rows of C.

Matrix C represents the host system, and the functions in
set F represent the behavior of the guest system. Let D̂ =
p × . . . × u and Î = a × . . . × e. Then, the composite map
B : Î → D̂, if it exists, is the behavior of the guest. But
configuration K is not unique. A large matrix can have a very
large set of configurations K = {K}. Since the partial order ω
of Eq. (3) is satisfied for every K ∈ K, behavior B is the same
for all K. Consequently, set K is a behavior-invariant search
space for configurations that minimize the measure of Eq. (5).
The process that searches K and finds the set of minimum-
measure configurations K̃, or a statistically significant sample
of configurations in K̃, is the dynamics of the host.

IV. DYNAMICS

Superposed on the matrices of Fig. 3(a) are the edges E
of the directed graph G = (V,E) ([4], §5.2). The vertices of
G are the diagonal elements of C. To each vertex there cor-
responds a pair (function, codomain). Edges in E correspond
to the off-diagonal elements in C, that is, to the A’s. Graph
G is a good description of the guest’s behavior B because G
is invariant under the host’s dynamics, just like B itself is.
A search in G is an operation where the vertices and edges
are visited in a certain order. The rules for the search are
as follows: (1) all input and output edges are excluded from
the search, and all vertices and included edges are considered
unvisited; (2) a vertex can be visited only when all its incoming
edges are visited, and thus, the A’s act as AND gates; (3) an
edge can be visited when its source vertex is visited; and (4)
the search ends when all vertices and included edges have
been visited. G is assumed to be connected, meaning that at
least one search exists. If vertices are visited one at a time,
then each search finds one configuration, defined by the order
in which the vertices have been visited.

The length 	e(K) of an edge e ∈ E is defined as the number
of cells in C that e traverses. The length depends on the

configuration K because the positions of the A’s depend on K.
The total length is the sum of the lengths of all edges visited
by the search, that is, excluding input and output edges. Since
edges correspond to the A’s in C, the total length is, precisely,
L(K), as given by Eq. (5). The reason for the coefficient 2 in
that equation has now been explained.

The dynamics of the host consists of multiple searches of
G with random path selection. The distribution of probability
slightly favors shorter paths. If edge selection during each
search depends on the current length of each edge, then
successive searches will find progressively shorter and shorter
paths, and the searches will never return to configurations
with long paths. This mechanism represents dissipation, where
measure L is the quantity being dissipated. The dissipation
mechanism is entirely controlled by the constraints, that is,
by the A’s, because 	e is determined by the position of the
corresponding A. The effect of selecting configurations with
shorter paths is to bring the A’s closer to the diagonal.

After a long time, the dynamics will find only configurations
with the least value of L, that is, members of set K̃. These
configurations are the attractors of the host’s dynamics, and
contain the segments that represent the hierarchy of objects
in the guest system. By definition, an object is any submatrix
of matrix C that remains invariant under the dynamics except
for symmetric permutations of its internal rows and columns.
Since any submatrix of C encapsulates a set of functions and
their corresponding codomains, it can be figuratively said that
an object knows how to calculate the codomains. It can also
be said that the definition of object closely corresponds to the
traditional definition used in OO analysis, where an object is
defined as encapsulated behavior and attributes.

Since nothing has been done to cause the objects to form
in the attractors, and their formation can not be justified by
the guest’s physics alone, the formation of objects should be
considered as emergent behavior. The dissipative dynamics
decodes the objects encoded in the constraints.

If edges represent actual connections in a physical system
where information flows, then graph G describes the flow of
information, the edges describe flux lines, and L(K) is an
indicator of the resources used by the system when it is in
configuration K. This is strongly reminiscent of the neurons
in the brain that are known to migrate and reconnect while
trying to save resources by shortening their synaptic connec-
tions (Hebbian learning), and helps to explain why and how
the brain creates objects. It also suggests that mathematical
objects correspond to physical objects in the brain, the kind
observed by functional MRI techniques, perhaps neural clique
assemblies [7]. This suggestion may explain memory.

As mentioned above, the selection of measure L(K) is
arbitrary, provided it depends on K and has a minimum. The
one-dimensional measure defined in Eq. (5) is the simplest
choice, but if applied to the neurons, it would result in a
one-dimensional brain. For a more realistic approach, a three-
dimensional measure should be used in this case, such as the
distance in Euclidean space. All the remaining considerations
remain the same, except that the search in space K becomes
more difficult.

Dynamics and behavior are two independent processes, and
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they can run simultaneously without interfering with each
other. This is clearly the case with the brain, and is also the
case with host-guest dynamical systems.

The configuration shown in Fig. 3(a) is the same one given
in Eq. (4), and it has L = 18. The dynamical process finds
the four attractors listed in Eq. (6), all with L = 10, and the
same objects and 3-level inheritance hierarchy as before. The
hierarchy is shown in Fig. 3(b) for one of the configurations.
The reader can verify that all sets define invariant submatrices,
and that each submatrix is present in each one of the four
configurations.

The strong dependence on initial conditions can be easily
observed, even in such a small example. If equation t = d+ s
is changed to t = u + s, then only two configurations
(α, γ, δ, β, ε, ϕ) and (γ, α, δ, β, ε, ϕ) are found, both with
Lmin = 16, there are only 2 levels in the hierarchy, and the
objects are {α, γ}, {β, δ}, and {ε, ϕ} in the top level and the
6 functions in the bottom level. A small change in input has
resulted in a completely different output. This effect is very
well known to chaos researchers, as well as to code developers
working in refactoring.

V. PHYSICAL CHARACTERIZATION

It is now necessary to characterize the physical systems that
exhibit or are likely to exhibit host-guest emergent behavior
of the type described in the preceding Section. The character-
ization is obtained by close examination of the properties of
the processes involved.

As explained above, the new host-guest systems are discrete,
finite, self-organizing, dissipative, and deterministic. They also
exhibit a very strong sensitivity to initial conditions. Since
the systems are finite, the least-cost configurations can always
be found by simple enumeration in a finite number of steps.
However, when the matrix is very large, it is more convenient
to use random techniques to find the attractor configurations.
The measure function is very irregular in the space of config-
urations. It has many local minima that can trap any search
algorithm. Random path-finding methods that can escape the
traps have been tried and have performed consistently better
than predictable techniques, such as, for example, steepest
descent, even in problems of an order as small as 20 or 30.
For all practical cases of interest, it can be ascertained that
predictable techniques are not appropriate, and that random,
unpredictable techniques are the best choice. Therefore, host-
guest systems of interest should be considered as deterministic,
but unpredictable. Since, in addition, host-guest systems are
very sensitive to initial conditions, and even though they are
not governed by a differential equation, they are also chaotic.

Another possibility, would be to treat very large systems
as continuous, in the same way that a continuous model is
used to treat a discrete fluid made of molecules, but this is
not considered in the present paper.

Host-guest systems are also integrated, and therefore indi-
visible. Dividing a host-guest system into parts contradicts the
fundamental assumption that configurations are selected by
a random process, constrained by, and only by, the required
invariance of the guest’s behavior. Dividing the system, for

any reason, would introduce an additional, artificial constraint,
the effect of which would be to split the search space K
into disconnected subspaces, leading to incorrect results. The
integration of host-guest systems is confirmed by functional
MRI, where it is well known that processes in the brain are not
localized, but require the activation of many areas distributed
over the entire brain. It is, however, permissible, to unify two
or more host-guest systems, trained on different subjects, and
obtain a larger integrated system, by allowing each of the
original systems to train the large system, followed by a step
of random integration for the large system to create its own
objects. Training has been discussed in detail ([6], §IV).

There is one more important feature of the dynamics being
examined that must be clearly identified. The A’s in the lower
triangle of matrix C play a triple role. For the guest system,
they represent the arguments in the functions that describe its
behavior. For the host system, they represent the constraints
imposed on the host’s dynamics by the required invariance
of the guest’s behavior. For the host-guest relationship, they
represent the only communication signals. But the functions
are the ones that represent the behavior, not the A’s. The
A’s represent functional dependencies among the functions,
that is, the structure of the behavior. The function of the
A’s is to encode the structure, transmit it to the host, and
serve as constraints for the host’s dynamics. When the host’s
otherwise random dynamics is constrained by the A’s, that is,
by the existing though still invisible structure, the structure
is decoded and revealed as emergent behavior. The complete
process can be viewed as one where structure encoded in
invariance constraints is decoded and revealed by the random
dynamics of the host.

The connection between constraints and structure has been
repeatedly observed by many authors in the area of Complex
Systems, such as [8]. But this is the first time that the connec-
tion has been put so precisely in perspective and discussed in
such detail. The notion that structure is encoded in constraints
and that a random dynamical process decodes it, and therefore
the resulting structures depend on, and are determined by, the
constraints, appears to be a very general principle in nature.

With the principle of structural encoding just identified pro-
viding an axiomatic foundation, the cMMC as a mathematical
model (§III), the set partition conjecture (§II), the introduction
and physical characterization of the new class of host-guest
dynamical systems, the application of the new systems to the
mathematical analysis of information processing in the brain
(§VI), the prediction that chaos exists in all brains and is
essential for all brain processes (§IX), the core implementation
that allows for practical calculations of objects to be made
(§VII), and the experimental verification (§VIII), this work
can be proposed as a theory to explain a natural phenomenon
that we constantly observe, the emergence of objects in the
brain. The theory is the Matrix Theory of Objects, which
was anticipated in a previous publication ([6], §II.F.5), and
discussed at a workshop level [9, 10].

The physical characterization just made in this Section
provides a powerful tool to search and recognize other natural
systems that may have a similar dynamics. One example
of such systems is provided by biological systems, where
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chemical and physiological behavior must remain invariant,
as objects, in this case organs or individuals of a species, are
formed. The discipline of host-guest chemistry is concerned
with the study of natural phenomena such as molecular recog-
nition and molecular self-assembly. There may also be other
natural systems that respond to the host-guest paradigm but
where the distinction between host and guest is not as clearly
defined as in the brain. Such research is beyond my scope, but
authors who have observed the connection between constraints
and structure are invited to examine the issue.

VI. BRAIN ANALYSIS

As explained at the beginning of the Introduction, the brain
can be considered as a “black box” with an input and an
output. In the same way, any functional part of the brain can
also be considered as a black box with an input and output,
where only the relationship between the input and output is
of interest. This notion establishes the techniques discussed in
this paper as an analytical tool for the mathematical analysis
of information processing in the brain.

The notion of analysis implies that synthesis should also
be possible. As discussed in Section V, host-guest systems
are indivisible. If a system is analyzed into parts, it would
not be correct to simply merge the parts together in order
to synthesize the original system. Instead, the process of
unification also mentioned in the same Section should be
applied. Together, the two processes, analysis and synthesis,
define an application of the “divide and conquer” technique to
the study of host-guest systems.

Questions begin to arise right away. How small can those
functional units be? An individual neuron? A neural clique
[7]? An entire brain region? How can mathematical brain
analysis be combined with experimental techniques, such as
functional MRI? Can a sensory organ, such as the eye, which
is not traditionally considered as part of the brain, still be
analyzed in the same manner? Answers to these and many
other questions are not discussed in this paper. However, some
insight can be gained from consideration of the experiments
of Section VIII.

All three experiments of Section VIII indicate that the
notion of brain analysis is not just convenient, but necessary.
The brain receives input in the form of bursts of synchronized
action potentials transmitted to it by sensory nerves or afferent
neurons. The observable output consists of objects that we can
use to make decisions and take actions. However, the input
for experiment 1 consists of a set of equations, the input for
experiment 2 is a table representing points on a plane, and
the input for experiment 3 is a computer program. If that kind
of input is presented to a human analyst, the analyst’s senses
would convert the equations, the table, or the program into
action potentials, and a great deal of processing would have
to happen in the analyst’s brain before the action potentials
are again interpreted as equations, a table, or a program. This
processing is excluded from the experiments.

VII. IMPLEMENTATION

Two core algorithms are needed to implement a computer
simulation of a host-guest dynamical system: the Scope Con-

striction Algorithm (SCA) [11], and the Object Recognition
Algorithm (ORA), which has not been published yet.

The purpose of SCA is to search the space K of con-
figurations and to find a statistically significant sample of
configurations with the least value of the length L, as discussed
in Section IV. SCA does not actually search graph G. Instead,
it operates locally by minimizing each 	e individually. SCA
applies the notion of commutativity to the functions in set F .
Two functions, say f, f ′ ∈ F , are said to be commutative
if they do not participate in the partial order π, or non-
commutative if they do. If f and f ′ are commutative, they
may appear in a configuration in any relative order. If a
configuration, K = (f1, . . . , f, f ′, . . . , fn) is available, where
f and f ′ are adjacent, then an operation of commutation
can be applied to f and f ′, resulting in the configuration
K ′ = (f1, . . . , f

′, f, . . . , fn). Now, since L depends on the
configuration, it may well be that L(K ′) < L(K).

Based on this property, SCA applies traditional cost mini-
mization techniques. Starting from an arbitrary configuration,
SCA randomly selects a function, and examines its near-
neighbors in K. When it finds a commutation that would
result in a lower value of L, it effects that commutation. After
effecting the commutation, it either continues looking for other
commutations of the same function, or selects another one, and
continues until it can find no more L-reducing commutations.
At that point, SCA tests for a local minimum by increasing L
slightly, or may even try to find a maximum-L configuration,
and repeats the procedure until some statistical requirement is
met. Then, SCA randomly selects another arbitrary configu-
ration, and starts all over again and tries to find other least-L
configurations, and continues until it runs out of time. All
these techniques are traditional and well known. There is no
guarantee that SCA will find any least-L configurations, but
it did in all cases within my limited experience. As usual for
this type of work, a “sufficiently random” number generator
is used to implement all random procedures.

Once a sample of configurations has been found, it is
necessary to find the objects. That task is done by ORA. An
object is a submatrix represented by a subset of functions
that remains invariant under the statistics and is therefore
independent of initial conditions. There are many such subsets
and they define a partition of F , and therefore also of C.
In the past, heuristic methods had been proposed [6] to find
the objects. They work, but are difficult to program because
of the many adjustable parameters involved. The only valid
procedure to find objects is one that rigorously applies the
definition of object, and ORA implements that procedure.

For experimental purposes only, an implementation of SCA
and ORA in C++ was created, which includes several other
support algorithms, input and output, and verification pro-
cedures. It served well for many experiments, but it is not
production code.

VIII. EXPERIMENTAL VERIFICATION

In this Section, several different sets of brain measurements
are discussed and compared with theoretical predictions. The
sets have been obtained from each one of the sources described
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in the Introduction. All experiments have been previously
published, and reference is made to the corresponding pub-
lications. In the present publication, the experiments serve as
verification of the properties of the new host-guest systems.

In all cases, the same pattern is followed. The brain provides
the measurements, the simulation, the theoretical results. To
obtain the simulation, an initially untrained cMMC is trained
by supervised learning ([6], §IV) with the problem description.
The SCA algorithm, which simulates the random dissipative
dynamics and was discussed in Section VII, is applied to find
a statistically significant sample of attractors. The ORA algo-
rithm, which recognizes objects based only on their invariance
under the statistics and was also discussed in Section VII, is
applied to find the objects and hierarchies in the attractors.
Finally, the resulting objects are compared with those reported
by a human analyst who uses the same input information.

A. Experiment 1

The example of Fig. 3(a) is actually one component of a
previously published example [12], describing the motion of
a particle with mass m under the action of a constant force F
in 3D. Today, we use Newton’s laws to describe the particle’s
motion. For example, for the x-component:

x = x0 + vx0τ +
Fx

2m
τ2 (9)

vx = vx0 +
Fx

m
τ.

These equations, and the corresponding equations for the other
two components, explicitly represent the following proper-
ties: (1) the motion can be described in terms of separate
components, (2) the number of components is three, and (3)
two independent variables must be used to describe each
component, for example x and vx for the first component.
These three properties were not explicitly present in Kepler’s
laws and experimental measurements that Newton may have
used to obtain his laws. Therefore, they must be considered
as emergent behavior of Newton’s brain.

The purpose of Experiment 1, is to simulate the same
emergent behavior using an artificial host-guest system. To
prove the simulation, the system is trained with information
that describes the motion but does not contain any of the
three properties. Since the motivational example involves only
one component, that case is discussed first. In this case,
property (3) is the only property that applies. To obtain the
training information, Eq. (9) is re-written with the following
substitutions: a = vx0τ , b = vx0, c = Fxτ2/2m, d = x0,
e = Fxτ/m, t = x, and u = vx. where τ is the time. With
these substitution, Eqs. (9) become Eqs. (8), where property
(3) is not explicitly present. When the host-guest system is
trained with Eqs. (8), the random dynamics generates and
recognizes the objects shown in Fig. 3(b), where object (β, ϕ)
knows how to calculate u, and object (α, γ, δ, ε) knows how
to calculate t, that is, x and vx, respectively. The two objects
are clearly separated, indicating the presence of property (3).
Within the calculation of x, object (α, γ) knows how to
calculate the last 2 terms on the right of the x equation, and
object (δ, ε) knows how to calculate their sum.

When all 3 components are included, as in the published
example [12], Program P1 is the training information for the
host-guest system. Program P1 does not contain any of the
three properties. However, after application of the random
dynamics, and as Fig. 3(b) in that publication indicates, all
three properties are explicitly present. The system has been
separated into 6 objects of 2 different classes. Two objects, one
of each class, correspond to each one of the 3 components of
motion. The two classes correspond to the two independent
variables. There is full agreement between the theoretical
predictions obtained by the host-guest simulation, and the
experiment, that is, Newton’s brain.

Today, anyone with a knowledge of elementary algebra can
perform the same transformation in a few minutes. But that’s
not the point. The point is that the transformations can be
performed by a purely random process without any knowledge
of algebra or classical mechanics.

Following publication of [12], but without a citation, an
algorithm appeared that discovers conservation laws from
motion data by randomly searching a space of functions and
minimizing some error metrics [13]. This work is heuristic,
because no attempt is made to explain the underlining theory.
It is also hybrid, because no clear distinction is made between
the authors’ brain emergent behavior and that of the simulator.
It would be very interesting to know, for example, how
the proposed key insight into identifying conservation laws
computationally, can be identified computationally. It is a
good example of the challenges that await those who want
to automate science, but it should not be confused with the
present work.

B. Experiment 2

Experiment 2 is based on a published example [11]. A set
of points is given in a space. The number of points or the
number of dimensions of the space are irrelevant. The points
differ only by their positions, but the example would work
the same if they differed by their color, shade, texture, or any
combination thereof. In this case there are 167 points in a 2D
space. If a plot is made, the eye can immediately recognize
3 well differentiated areas, and some more detailed structure
within the areas. The number 3, the differentiation between the
areas, and the more detailed structure, are emergent behavior
in the observer’s brain.

Four superposed grids of cells are used in order to simulate
the continuity of the space. The original canonical matrix is of
order 1433 and has L = 2, 803, 702. The attractors have L =
51, 517. The 3 distinct areas are readily found in the attractors,
at the top level, while deeper levels discern the details of the
image. Again, there is full agreement, in this case with the
human eye and brain.

This experiment is about image recognition. The points
may represent the retina, the simulation may represent the
first step of a recognition process in the brain, and the
same domain-independent procedure used for all experiments
applies. By contrast, predictable procedures used for artificial
image recognition are highly domain-specific and have serious
limitations, even after years of considerable efforts.
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It is important to note that a person can not interpret the
image if provided with the same information that was provided
to the artificial host-guest system, that is, with a table of (x, y)
coordinates of the 167 points. It would be necessary for that
person to first plot the points on a graph, and then look at the
plot. This is one area where artificial host-guest systems are
clearly superior to the brain-eye combination.

C. Experiment 3

This experiment is in the area of OO software. The source
code is a publicly available program in Java used for teaching
at many European universities [14]. The analysis of the
problem was also published ([6], §V). The analysis follows
approximately the same steps as in the two previous examples.
The classes and objects in the original Java code are considered
as a measurement of the emergent behavior in the brains of
the developers that developed the code. But the host-guest
simulator has no knowledge of the Java code. Instead, the
code is subject to a series of transformations, the purpose
of which is to completely eliminate the emergent behavior,
while keeping the basic functions that describe the behavior
of the given system. First, the code was manually converted
from Java to C in order to destroy all the original classes
and objects. Then, the resulting C code was automatically
converted to teacher’s instructions, resulting in a set of 33
instructions. Finally, the instructions were randomly scrambled
in order to destroy any remnants of the original partial order
or of the original emergent behavior. These final instructions
were used to train the simulator.

The resulting canonical matrix is of order 33 and has L =
426. The SCA algorithm found a sample of 596 attractors,
all with Lmin = 314, and the ORA algorithm partitioned the
sample into 19 objects at the top level, all of them belonging to
just 4 classes. The classes and objects were finally compared
with the classes and objects in the original Java code. The
agreement is excellent, but they are not identical. The reason
for them not being identical, is that the rules for writing OO
code are empirical, and the solution is not unique. Different
developers presented with the same problem will usually write
somewhat different code.

Experiment 3 is about refactoring [15], the single most
frequently used transformation in code development. It is
also the riskiest, because of its empirical rules and high
potential for human error, and has proved to be very difficult
to automate. The present work offers a theoretical framework
that can alleviate all these problems and allow the automation
of refactoring.

A team of developers and an analyst working from the
C code can create an object model and write code in Java
probably in a few days of work, plus some more time for
testing. The host-guest simulator can create the object model
in minutes. Automatic conversion from cMMC object-oriented
models to Java has not been developed yet, but once it is, the
whole process from original C code to Java will take minutes,
and testing will not be required because code generation
is automatic. This is clearly another area where host-guest
simulators can outperform humans.

D. In-vitro experiments

The dynamical process in all host-guest systems, including
the brain, was theoretically predicted ([6] §II.F.5, and [10])
to be deterministic, dissipative, convergent to attractors with
objects, and unpredictable. Chaos in the brain has long been
considered by neuroscientists as critical for consciousness
and memory [16], but has only recently been experimentally
detected in neuronal networks [17] by means of experiments
with in vitro cultures of live neurons and multi-electrode
arrays designed to observe and measure spontaneous chaos
in the networks. This experimental result is an important
confirmation of the theoretical prediction.

While the existence of chaos itself is now confirmed, the
classical nonlinear techniques used by nearly all researchers
to measure it and interpret the results, are inadequate. These
techniques were drawn from the theory of deterministic chaos,
and apply to complex systems that obey nonlinear differen-
tial equations, but can not represent in sufficient detail the
constraints created by the interactions among the individuals
in the complex system. Since structure is encoded in the
constraints, as proposed in this paper, the techniques can
not adequately describe the structures, tell apart the various
orthogonal processes that occur simultaneously in the brain, or
answer the fundamental question why or how stable structures
and a smooth behavior can emerge from the chaos. The
application of differential equations to networks also requires
the use of global information to decide local issues, something
very unlikely to happen in real biological systems. An example
is the application of network stability considerations based on
the calculation of a Jacobian [8] to decide the admission or
expulsion of an individual from the network. The extended use
of nonlinear techniques may have led to the popular belief that
brain function is “complicated”, while in fact, it is actually
quite simple.

By contrast, host-guest systems represent the constraints in
full detail, clearly explain the decoding mechanism, identify
the communications between host and guest, propose an
answer to the fundamental question of smoothness, explain
adaptation, and use only local information associated with each
individual to make local decisions.

E. The physical characterization as an experiment

As a result of a conference on “Understanding Complex
Systems”, held in May 2007 at the University of Illinois
at Urbana-Champaign, a general understanding of complex
system dynamics was developed. The source for the un-
derstanding are multiple studies conducted in disciplines as
diverse as physics, biology, sociology, ecology, economics, and
others. The results, reported in [1], are of a general nature and
not detailed, but represent an important experiment carried out
by many researchers over many years of study, observation,
and discussion.

The Urbana-Champaign Understanding can be directly com-
pared with the physical characterization of host-guest sys-
tems discussed in Section V, which resulted from years of
theoretical work by the author and considerable input from
the field. Striking similarities arise when the comparison is
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made. Complex systems cannot be modeled with traditional
mathematical techniques. They are open, as reported in ([6],
§IV). Interactions are non-trivial, and result in constraints.
Constraints give rise to coordinated global behavior. Since
there are no explicit rules or central director, the coordination
is self-organization. Structures appear and new behaviors
emerge at a larger scale than originally. The systems display
adaptation and evolve. A hierarchy arises because the cycle
repeats itself at progressively larger and larger scales. The
agreement is excellent, but they missed indivisibility.

IX. CONCLUSIONS AND OUTLOOK

This work has introduced a new class of host-guest complex
dynamical systems with extraordinary self-organizing proper-
ties. The new systems are physically characterized as being
discrete, dissipative, deterministic, indivisible, very sensitive
to initial conditions, and unpredictable.

A mathematical model has been proposed to explain the
new systems. Careful analysis of the mathematics confirms
the accepted point of view that emergent properties are not
properties of individuals in a system, or sums of properties of
individuals. Instead, when individuals come in proximity, they
interact. The interactions determine their collective behavior
and give rise to the emergence of structure as a response
to interactions. Structure originates in, and is encoded in,
the relationships among individuals, not in the individuals
themselves, and can be decoded from there by a random
dissipative process that leaves the collective behavior invariant.
This structural encoding has been observed by many authors
in many different systems, and is proposed in this paper as
a general principle of nature, and also as the mechanism for
neural encoding. Based on the principle, the prediction has
been made that chaos exists in all brains, and is essential for
all brain functions, including intelligence.

Theories of Physics originate from mathematical properties
that remain invariant under certain transformations. In this
work, the guest system’s collective behavior is the property
that remains invariant, the transformations are induced by the
host dynamics, and the theory is the Matrix Theory of Objects.
The foundation for the theory is the principle of structural
encoding, and the model is the mathematical model proposed
here. Objects calculated by the theory duplicate those created
by the brain. Experimental verification has been discussed,
and several large repositories of carefully documented brain
experiments have been identified and proposed for further
experimentation.

This work proposes a technique for brain analysis, where
the brain, or any functional part of it, is considered as a black
box with input and output. The black box is simulated by
an artificial host-guest dynamical system, and the input/output
function of the simulator is compared with that of the brain
or the functional part.

Applications are many, but tools need to be developed
before undertaking any. The property of indivisibility pos-
sessed by all host-guest systems and discussed in Section
V, establishes them as a tool for the unification of systems
in general. The cMMC model was previously proposed as a

unifying tool for systems ([11], [6]). Software engineering
and maintenance are areas that could benefit greatly from
unification. Wikipedia could also benefit from unification [12].
Applications to Internet search engines are easy to imag-
ine. Host-guest-based Internet search engines will be able to
match objects, not just words. Image and voice recognition
algorithms will be able to match natural objects, just as the
brain does. Two areas where artificial host-guest simulators
can outperform humans have been identified in this paper.
An influence of the present work on several disciplines such
as Physics, Neuroscience, Computer Science, and Artificial
Intelligence is also to be expected.
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