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Abstract—In the literature of information theory, there is 

necessity for comparing the different measures of fuzzy entropy and 
this consequently, gives rise to the need for normalizing measures of 
fuzzy entropy. In this paper, we have discussed this need and hence 
developed some normalized measures of fuzzy entropy. It is also 
desirable to maximize entropy and to minimize directed divergence 
or distance. Keeping in mind this idea, we have explained the method 
of optimizing different measures of fuzzy entropy. 
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I. INTRODUCTION 
NE of the most radical and fruitful of the representational 
capabilities of logic for measuring fuzzy uncertainty was 

initiated by Zadeh [17] with the publication of his paper 
“Fuzzy Sets.” Starting from the idea of gradual membership, it 
has been the basis for both logic of gradualness in properties 
and a new, particularly simple and effective, uncertainty 
calculus called “Possibility Theory” for handling the notions 
of possibility and certainty as gradual modalities. When 
proposing fuzzy sets, Zadeh’s [17] concerns were explicitly 
centered on their potential contribution in the domains of 
pattern classification, processing and communication of 
information, abstraction and summarization. Although the 
claims that fuzzy sets were relevant in these areas appeared 
unsustained at the time when they were first uttered, namely in 
the early sixties, the future development of information 
sciences and engineering proved that these intuitions were 
right, beyond all expectations. Kapur [6] has well explained 
the concept of fuzzy uncertainty with the help of examples. 

Basically, the Shannon’s [16] entropy measures the average 
uncertainty in bits associated with the prediction of outcomes 
in a random experiment whereas fuzzy entropy is the 
quantitative description of fuzziness in fuzzy sets. De Luca 
and Termini [2] introduced some requirements which capture 
our intuition for the degree of fuzziness. Fuzzy entropy is one 
of the important digital features of fuzzy sets and occupies an 
important place in system model and system design. For 
example, when generalized fuzzy entropy is used as learning 
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criterion for neural networks, efficient structure parameters 
are obtained quickly. In other words, generalized fuzzy 
entropy has better guidance function in neural network system 
design.  

The theory of fuzzy sets which was introduced by Zadeh 
[17] received a good response from different quarters and 
after its introduction, many researchers started working 
around this field. Thus, keeping in view the idea of fuzzy sets, 
De Luca and Termini [2] introduced a measure of fuzzy 
entropy corresponding to Shannon’s [16] measure. This fuzzy 
entropy is given by 
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After this development, a large number of measures of 
fuzzy entropy were discussed, characterized and generalized 
by various authors. Kapur [6] introduced the following 
measure of fuzzy entropy:  
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Parkash [10] introduced a new generalized measure of 
fuzzy entropy involving two real parameters, given by: 
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 and called it fuzzy entropy which includes some well-known 
entropies. 

Parkash, Sharma and Kumar [13] have provided the 
characterizations of fuzzy measures by using the concepts of 
concavity and recursivity. Parkash and Sharma [12] have 
extended the applications of fuzzy measures to the field of 
coding theory whereas some desirable applications of 
weighted measures of fuzzy entropy for the study of 
maximum entropy principles have been provided by Parkash, 
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Sharma and Mahajan [14,15]. Some other measures of fuzzy 
entropy and their generalizations have been studied by Zadeh 
[17], Kapur [6], Klir and Folger [7], Emptoz [3], Kandel [5], 
Hu, Yu [4], Lowen [8], Zimmermann [18], Pal and Bezdek [9] 
etc. 

In section II, we have discussed the need for normalizing 
measures of fuzzy entropy and hence developed some 
normalized measures of fuzzy entropy. In section III, we have 
explained the method of optimizing different measures of 
fuzzy entropy. 

II. NORMALIZATION OF VARIOUS MEASURES OF FUZZY 
ENTROPY 

We first of all discuss the need for normalizing measures of 
fuzzy entropy. The measure of fuzzy entropy due to De Luca 
and Termini [2] measures the degree of equality among 

1 2( ), ( ),..., ( )A A A nx x xμ μ μ the fuzzy values, that is, the 
greater the equality among, , the greater is the value of  

( )H A  and this entropy has its maximum value n log2 when 
all the fuzzy values  are equal, that is, when each 

1( )
2A ixμ = . 

Thus, we have 
              ( ) log 2H F n=                                              (4) 

where  
1 1 1, ,...,
2 2 2

F ⎧ ⎫= ⎨ ⎬
⎩ ⎭

 is the most fuzzy distribution. 

The entropy (1) also measures the uniformity of A or the 
‘closeness’ of A to the most fuzzy distribution F, since 
according to Bhandari and Pal’s [1] measure, the fuzzy 
directed divergence of A from F is given by  

 
1

( )( ) log
1/ 2( , )

1 ( )(1 ( )) log
1/ 2

=

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥+ −⎢ ⎥⎣ ⎦

∑
A i

A in

i A i
A i

xx
D A F

xx

μμ

μμ
 

                 = log 2 ( )n H A−                       (5)                                                            
Thus, greater the value of entropy H (A), the nearer is A to F. 
This entropy provides a measure of equality or uniformity of 
the fuzzy values 1 2( ), ( ),..., ( )A A A nx x xμ μ μ  among 
themselves. Now, let us consider the following fuzzy 
distributions: 

     ( )( ) 0.4,0.4,0.4,0.4A ixμ =  

     ( )( ) 0.3,0.3,0.4,0.4,0.4B ixμ =  

Then, we have 

( ) 1.2734H A =  , ( ) ( )1.5825H B H A= >  

We want to check which fuzzy distribution is more uniform 
or in which distribution the fuzzy values are more equal? The 
obvious answer is that fuzzy values of A are more equal than 
the fuzzy values of B. Thus, A is more uniformly distributed 

than B but still ( ) ( )H A H B< . From the values of the two 

fuzzy entropies, it appears that B is more uniform than A. This 
is obviously wrong. The fallacy arises due to the fact that the 
fuzzy entropy depends not only on the degree of equality 
among the fuzzy values; it also depends on the value of n. So 
long as n is the same, entropy can be used to compare the 
uniformity of the fuzzy distributions. But, if the number of 
outcomes are different, then fuzzy entropy is not a satisfactory 
measure of uniformity. In this case, we try to eliminate the 
effect of n by normalizing the fuzzy entropy, that is, by 
defining a normalized measure of fuzzy entropy as 

( )H A  =  
( )

max ( )
H A

H A
                                                 (6) 

It is obvious that  

   0 H(A) 1≤ ≤                                                      (7) 
For De Luca and Termini’s [2] measure of fuzzy entropy, 

we have 
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                = 1.05754 
and 

H(B)   = 1.05149 

Obviously, H(A)  > H(B)    
Thus, A is more uniform than B. This gives the correct 

result that B is less uniform than A. Thus, to compare the 
uniformity, or equality or uncertainty of two fuzzy 
distributions, we should compare their normalized measures 
of fuzzy entropy.  

Next, we have obtained the expression of the normalized 
measure of fuzzy entropy. For this purpose, we consider 
Parkash and Sharma’s [11] parametric measure of fuzzy 
entropy of order, given by: 
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The maximum value of (8) is given by 
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Thus, the expression for Parkash and Sharma’s [11] 
normalized measure is given by 
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Proceeding on similar lines, we can obtain maximum values 
for different fuzzy entropies and consequently develop many 
other expressions of the normalized measures of fuzzy 
entropy. 

III. OPTIMUM VALUES OF VARIOUS MEASURES OF FUZZY 
ENTROPY UNDER A SET OF CONSTRAINTS 

In this section, we explain the method of optimizing 
different measures of fuzzy entropy. Firstly, we consider the 
fuzzy entropy introduced by Parkash and Sharma [11] for 
measuring its maximum value. Thus, our problem becomes to 
maximize the following measure: 

               

( )( )
( )( )

( )( )( )
( )( )( )

( ) ( )

1

( )

1

log 1
1 1 1

log 1 1

1 log 1

; 0

=

⎧ ⎫+
⎪ ⎪
⎪ ⎪+
⎪ ⎪⎪ ⎪− + + −⎨ ⎬
⎪ ⎪

+ −⎪ ⎪
⎪ ⎪

− + +⎪ ⎪⎩ ⎭
>

= ∑

A i

A i
n

a A i

i
A i

H A

a x

a x

a x
a

a x

a a

a

μ

μ

μ

μ
     (11)                                                                                                                             

under the following fuzzy constraint 
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The corresponding Lagrangian is 
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Thus, from equation (12), we have 
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where is to be determined from the following equation: 
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Now differentiating equation (15) w.r.t. 0λ , we get 
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Equation (16) shows that 0( )f λ is an increasing function 

of 0λ  . 

Now 0( ) nf
a
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2
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 Hence, we see that 0( )f λ  has a unique real root 0λ  . 

Now 0λ  < 0 if (0) 0f > , that is, if 0 2
nα <  then 

1( )
2A ixμ ≤   

         0λ > 0 if (0) 0f < , that is, if 0 2
nα >  then 

1( )
2A ixμ ≥   

Thus, we see that the maximizing ( )A ixμ are either 

1 1
2 2

or≤ ≥ . 

We, now consider the following two cases: 
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Case-I: When 
1( )
2A ixμ ≤  for each i.  

Then the maximum value of the entropy (11) is given by 
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Now, for fixed a, since 
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2A ixμ ≤  , we have 
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Thus, we notice that the maximum fuzzy entropy is an 
increasing function of ( ).A ixμ   

Also, we have  
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This shows that ( )A ixμ   increase as 0λ  increases. 
Again, we have 
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Thus, we see that the maximum fuzzy entropy is an 

increasing function of 0α and is maximum at 0 2
nα =  , that 

is, when 
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Hence, the maximum value is given by    
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Thus, we see that the maximum fuzzy entropy is an 
increasing function of 0α  and it increases from 0 to  
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Case-II: When  
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2A ixμ ≥  for each i. 

In this case, we see that for fixed a, we have 
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Thus, we notice that the maximum fuzzy entropy is a 
decreasing function of 0α  and assumes its maximum value at  

0
1
2

α = and then starts decreasing and it decreases from 
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Hence, the maximum value is given by equation (17).  
With similar arguments, we can find the maximum values 

of the other existing well known measures of fuzzy entropy. 
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