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Abstract—This paper considers the development of a two-point 

predictor-corrector block method for solving delay differential 
equations. The formulae are represented in divided difference form 
and the algorithm is implemented in variable stepsize variable order 
technique. The block method produces two new values at a single 
integration step. Numerical results are compared with existing 
methods and it is evident that the block method performs very well. 
Stability regions of the block method are also investigated. 

Keywords—block method, delay differential equations, 
predictor-corrector, stability region, variable stepsize variable order.  

I. INTRODUCTION 
N this paper we consider the development of a numerical 
method for solving systems of first order delay differential 

equations (DDEs) of the form: 
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where )(xφ  is the initial function and iτ , for 
,,,2,1 ni L= where n is an integer such that 1≥n is the lag 

function and ).(min
],[ ibax

xa τ−=
∈

 The lag can be constant, time 

dependent where )(xii ττ =  or state dependent, that is  
)).(,( xyxii ττ =  The expression )( ixy τ−  is the solution of 

the delay term, or simply called the delay term. The function 
f  where mmm RRbaCRbaCbaf →×× )],,([)],,([],[:  is 

continuous and satisfies a Lipschitz condition which 
guarantees the existence of a unique solution of (1). Here, 

)],,([ mRbaC  denotes the space of continuous functions 

mapping ],[ ba  into mR  for an integer .1≥m  
Most numerical methods for solving DDEs are adapted 

from that of numerical methods for ordinary differential 
equations (ODEs). For some of the earlier work, please refer 
to [1]-[6]. These methods approximate only one new solution 
at each integration step. Block methods, however, produce 
more than one approximate solution at every step. Greater 
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efficiency is achieved because the total number of steps taken 
can be reduced. Block methods are also the natural candidates 
for parallel computations because these solutions can be 
computed simultaneously at every step. Block methods for 
solving ODEs have been proposed by [7]-[10]. 

The purpose of this paper is to develop a variable stepsize 
variable order (VSVO) two-point block method for solving 
(1). The method produces two new solutions at every step and 
varies the stepsize and order while achieving the desired 
accuracy as efficiently as possible. In variable stepsize, the 
integration coefficients need to be recalculated when the 
stepsize changes. The recalculation cost can be minimize by 
representing the formulae in divided difference form because 
the coefficients are calculated using a simple recursive 
formula. The performance of the method will be compared 
with the existing methods SNDDELM in [5] and S2PBDI in 
[11]. SDDDELM is an all purpose non-block VSVO 
algorithm where the formulae are represented in modified 
divided difference form. S2PBDI is a predictor-corrector two-
point VSVO block method in divided difference form. The 
order of the corrector for S2PBDI differs from the order of the 
method developed here. 

The organization of this paper is as follows. In section II, 
we describe the development of the VSVO predictor-corrector 
block method. Absolute stability for the two-point predictor-
corrector block method is discussed in section III. Numerical 
results are presented in section IV.  Finally section V is the 
conclusion.  

II.  METHOD DEVELOPMENT 
For simplicity, we consider only single-delay scalar 

equation of (1). However, the results can easily be extended to 
systems of equations with multiple delays. 

From (1), we let 1=i  and .ττ ≡i  Consider a non-uniform 
grid given by .10 bxxxaa nn ≤<<<<=≤ + LL  We denote 
the approximation to )(xy , the solution of (1) by ).(xyh  The 
predicted value of )(xyh  is denoted as ).(xph  We also 
denote the expression )),(),(,( αhnhn yxyxf  τα −= nx  by  

.nf  Assume that )(xyh  has been computed for ].,[ nxax ∈  
The immediate task is to evaluate ),(),( 21 ++ nhnh xyxy and 
their corresponding delay terms. The formulae are 
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implemented in PECE mode where P stands for an application 
of a predictor, E stands for an evaluation of a function f , and 
C stands for an application of a corrector. 

Let nkP ,  be the interpolating polynomial of degree 1−k  

interpolating f  at points 
).,(,),,(),,( 1111 +−+−−− knknnnnn fxfxfx K  

In divided difference form, the interpolating polynomial can 
be written as  
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Integrating (1) from nx  to 2,1, =+ dx dn  and replacing f  
with nkP ,  yields the following predicted values 
simultaneously at the grid points, 
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where ξ  is an independent dummy variable and 
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The predicted values of the derivative are given by 
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Let the t-fold integral of  )(, xc in  be denoted as ).()(
,

xc t
in

−  Now 

define )(, xg ti as follows, 
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The formula for )(, xg ti  where   1,1 ≥≥ it can be obtained 
recursively by the relation 

).()()()( 1,1,11, xtgxgxxxg titiinti +−−+− −−=  
The predicted values at the grid points are given by 
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We now describe the corrector for the first point. Consider 
the interpolating polynomial 1,1 ++ nkP  of degree k  that 

interpolates f at points  

),,(,),,(),,(),,( 111111 +−+−−−++ knknnnnn
P

nn fxfxfxfx K  
where 

 )).(),(,( 1111 τ−= ++++ nhnhn
p

n xpxpxff   

Clearly the interpolating polynomial  1,1 ++ nkP  can be written 
as  

].,,,,[)()()( 111,,1,1 +−−+++ += knnnn
p

knnknk xxxxfxcxPxP K  
The notation ],,,,[ 111 +−−+ knnnn

p xxxxf K  is referred to the 

divided difference that uses p
nf 1+  for the points described 

above. Replacing f in (1) with the polynomial 1,1 ++ nkP  and 

integrating from nx  to ,1+nx  the first point corrector formula 
is obtained as, 
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p

nknhnh xxxxfxgxpxy K  
The corrected value of the derivative is given by 

].,,,,[)()()( 11110,11 +−−++++ +′=′ knnnn
p
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For the second point corrector, consider the interpolating 

polynomial 2,2 ++ nkP of degree 1+k  that interpolates f  at 
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where 
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and  
)).(),(,( 2222 τ−= ++++ nhnhn

p
n xpxpxff  

The interpolating polynomial 2,2 ++ nkP  can be written as  
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The notation ],,,[ 11,2 +−++ knnnn
p xxxxf K   is referred to the 

divided difference with the interpolations points p
nf 1+  and 

.2
p

nf +  Replacing f in (1) with the polynomial 2,2 ++ nkP  and 

integrating from nx  to ,2+nx the formulae for the second 
point corrector are obtained as 
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For computational purposes, we let 2,1, =ded  be defined as  
).()( dnhdnhd xpxye ++ ′−′=  

Thus 
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Therefore, the corrector formulae for the first point can be 
written as 
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The corrector formulae for the second point can be written as  
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Approximation formulae for the delay terms  )( 1 τ−+nh xy  
and )( 2 τ−+nh xy  are derived following the earlier discussions 
for formulae at grid points. For ,2,1=d  let τα −= +dnd x  be 
the delay argument. If ad ≤α , the predictor and the corrector 
are evaluated by using the initial function, that is, 

).()()( ddhdh yp αφαα ==  If  ,nd xa ≤< α we determine 
the exact location of  dα  by finding the value of j such that 

.1+≤< jdj xx α  The predictor is given by  
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If ,1+≤< ndn xx α the predictor is given by  
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and the corrector is given by 
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Local errors at the grid points are estimated by comparing 
the formulae of different orders. The error magnitude of the 
first point is presumably higher than that of the second point 
because the approximation at the first point is one order less 
than the approximation at the second point. By controlling the 
error at the first point, the method produces better result. We 
simply refer to the estimated local error at the first point as the 
local error. From [11], the local error when applying the 

formulae of order k , denoted by kE  is given by  
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 We also calculate local errors for formulae of orders ,2−k  
,1−k  and 1+k  because these errors will facilitate in the 

stepsize and order changing strategy. Local errors of adjacent 
orders ,2−kE ,1−kE  and 1+kE  can be calculated directly from 
(2) by exchanging k  with ,2−k  ,1−k  and 1+k  
respectively. 

This VSVO algorithm is self-starting. A method of order 
one with a suitable initial stepsize starts the integration. The 
algorithm varies the order while taking the most optimal 
stepsize to achieve the desired accuracy as efficiently as 
possible.  A step is accepted if 

))((TOL 1+×+×< nhk xpBAE  
where TOL is the user specified tolerance and the values of A 
and B are either 1 or 0 depending upon whether we use  
relative, absolute or mixed error test. Whenever a step fails, 
the new stepsize is reduced by half. New order is selected 
before the integration step is repeated. When a step is 
accepted, we select a new order newk  based on the following 
strategy. The order is reduced by one, that is, 1new −= kk  if 
we encounter the following criteria, 

• for 2>k , ( ) ,,max 21 kkk EEE ≤−−  

• for ,5.0,2 1 kk EEk ≤= −  

• if 1+kE is available, 1>k  and 

( ).,min 11 +− ≤ kkk EEE  

We consider raising the order by one only after 1+k  
successful steps at constant stepsize. The new order 
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• for ,5.0,1 1 kk EEk <= +  

• for ( ).,max,1 211 −−+ <<> kkkk EEEEk  

If none of the above criteria is satisfied, .new kk =  
 Once the new order is selected, it is renamed  k  and the 

corresponding kE  is used in selecting the new stepsize. For a 
successful step, the new stepsize is given by 
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We multiply R with a safety factor of 0.8 in order to give a 
more conservative estimate for the new stepsize. This practice 
reduces the number of steps being rejected. 

Derivative discontinuities in the solutions of DDEs can be 
detected whenever the magnitude of the local error is too big 
as compared with a given tolerance. The algorithm reduces the 
stepsize and order of the method accordingly in order to 
reduce the magnitude of local error. The process is repeated 
until the discontinuity point is included in the grid. 

III. ABSOLUTE STABILITY 
It is of practical importance to study the behavior of the 

global error where the numerical solution is expected to 
behave as the exact solution does when the independent 
variable x  approaches infinity. Many authors including [12]-
[15] studied various concepts of stability based on test 
equations with known stability regions. Common test 
equations are 
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where λ and μ are complex numbers. 
We refer to [14] for the definitions of P- and Q-stability 

regions. Let h  be a fixed stepsize such that nhxxn += 0  and 

., +∈= Immh τ  Let λhH =1 and .2 μhH =  
Definition 1: For a fixed stepsize h and R∈μλ,  in (4), the 

region PR  in the 21 HH −  plane is called the P-stability 
region if for any ( ) ,, 21 PRHH ∈  the numerical solution of (3) 
vanishes as .∞→nx  

Definition 2: For a fixed stepsize h , C∈μ  in (4), the 
region QR

 
in the complex 2H -plane is called the Q-stability 

region if for any ,2 QRH ∈  the numerical solution of (4) 

vanishes as .∞→nx  
For notational purposes, let .2Nn = We define the matrices 
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For simplicity, we denote the predicted value of )( knh xy +  
by p

kny +  and the corrected value by .c
kny +  The  predictor-

corrector formulae for the two-point block method are given 
by 
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Here, C, D, S and T are )2()2( +×+ kk  square matrices given 
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where kkI ÷  is the kk ×  identity matrix and ijd  and ijt are the 

integration coefficients. The application of (5) to (3) yields 
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Consequently, the P-stability polynomial of the two-point 
predictor-corrector block method, );,( 21,2 ςπ HHmPECE  is 
given by 
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and the Q-stability polynomial, );( 2,2 ςψ HmPECE  is given by 

],)(det[ 2
22

212 TDHTCSDHSCI mmm −+−−+ ςςς  
where det[.] is the determinant of a square matrix. 

The P- and Q-stability regions are obtained by using 
boundary locus technique. Inside the regions of absolute 
stability, the magnitudes of all the roots of the P- and Q-
stability polynomials are less than one. As an illustration, the 
P- and Q-stability regions for 1=k  are shown in Fig. 1 and 
Fig. 2 respectively. The Q-stability regions are symmetric 
about the real axis and Fig.2 represents the regions in the 
plane where .0)( 2 >ℑ H  
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Fig. 2 Q-stability regions for the predictor-corrector block method, 
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IV. NUMERICAL RESULTS 
We test the performance of the block method on various 

examples from [1]. The performance of the block method is 
compared with the methods S2PBDI from [11] and 
SNDDELM from [5]. The examples used are as follows, 

Example1: 
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The exact solution is ).cos()( and )sin()( 21 xxyxxy ==  
 

 
 
Example 4: 
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The exact solution is .0),ln()( >= xxxy  
The error ierr  at the grid point for each component is 

defined as  
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where ty)(  is the t-th component of y and  )( ixy is the exact 
solution at .ix  A and B may take the values of either 1 or 0 
depending upon the kind of error test chosen. In this case, we 
used mixed error test where 1=A  and 1=B  as opposed to 
absolute error test ( 1=A  and 0=B ) and relative error test 
( 0=A  and 1=B ). The maximum error is defined as follows, 
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where  N is the number of equations in the system and SSTEP 
is the total number of successful steps. The experiment was 
executed on Sun Fire V1280 by using one processor. The 
machine is located at the Institute for Mathematical Research 
(INSPEM), Universiti Putra Malaysia. 

The numerical results are given in Table I – Table IV. The 
following abbreviations are used to describe the numerical 
solutions: 

TOL     the chosen tolerance, 
MTD    method employed, 
STP        total number of steps, 
FS     total number of failed steps, 
MAXE    maximum error, 
TIME    time taken in microseconds, 
S2PBTI   the algorithm described in the paper, 
S2PBDI   the algorithm in [11], 
SNDDELM  the algorithm in [5], 
2.47518E-02  is equivalent to .1047518.2 2−×  

TABLE I 
NUMERICAL RESULTS FOR EXAMPLE 1 

TOL MTD STP FS MAXE TIME 
 S2PBTI 55 7 4.86496E-01 1725 
10-2 S2PBDI 62 4 2.54222E-02 2858 
 SNDDELM 81 3 2.44098E-03 9026 
 S2PBTI 76 5 1.77338E-04 2374 
10-4 S2PBDI 88 3 1.81656E-04 4017 
 SNDDELM 120 6 3.10620E-05 14811 
 S2PBTI 125 6 5.15951E-07 4346 
10-6 S2PBDI 126 5 1.48025E-06 5588 
 SNDDELM 136 3 5.12003E-06 16118 
 S2PBTI 179 13 1.73155E-08 7137 
10-8 S2PBDI 148 0 1.04934E-09 8185 
 SNDDELM 180 2 5.01504E-08 21591 
 S2PBTI 171 1 1.08162E-11 9841 
10-10 S2PBDI 214 7 5.99198E-11 10923 
 SNDDELM 282 7 6.55478E-09 35516 
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TABLE II 

NUMERICAL RESULTS FOR EXAMPLE 2 
TOL MTD STP FS MAXE TIME 
 S2PBTI 18 0 3.33076E-02 778 
10-2 S2PBDI 21 0 3.05156E-03 1162 
 SNDDELM 22 1 3.76223E-03 1446 
 S2PBTI 25 0 1.13313E-04 1353 
10-4 S2PBDI 30 0 1.04934E-04 1694 
 SNDDELM 36 2 3.01735E-04 3788 
 S2PBTI 38 0 2.55530E-07 2092 
10-6 S2PBDI 66 5 1.95644E-06 3780 
 SNDDELM 62 4 3.98644E-06 6260 
 S2PBTI 55 1 2.89023E-09 3688 
10-8 S2PBDI 62 1 1.01360E-08 4991 
 SNDDELM 82 6 3.00713E-09 9078 
 S2PBTI 68 0 1.07294E-10 4873 
10-10 S2PBDI 63 2 3.67489E-10 7534 
 SNDDELM 120 11 9.63660E-09 16576 

 
TABLE III 

NUMERICAL RESULTS FOR EXAMPLE 3 
TOL MTD STP FS MAXE TIME 
 S2PBTI 17 0 1.40301E-03 1240 
10-2 S2PBDI 21 1 4.25522E-03 1723 
 SNDDELM 18 1 2.78831E-03 3409 
 S2PBTI 25 0 1.50308E-05 1588 
10-4 S2PBDI 28 0 1.10485E-04 1767 
 SNDDELM 35 3 2.41004E-04 7288 
 S2PBTI 35 0 3.02703E-07 2629 
10-6 S2PBDI 40 0 6.56416E-07 3397 
 SNDDELM 51 4 5.79068E-06 10458 
 S2PBTI 45 0 7.06017E-09 4102 
10-8 S2PBDI 61 0 6.23463E-09 6395 
 SNDDELM 55 1 4.93816E-09 10646 
 S2PBTI 62 0 7.63623E-11 5766 
10-10 S2PBDI 74 0 7.69796E-10 8895 
 SNDDELM 77 1 1.04197E-09 16172 

 
TABLE IV 

NUMERICAL RESULTS FOR EXAMPLE 4 
TOL MTD STP FS MAXE TIME 
 S2PBTI 25 0 3.02890E-03 2043 
10-2 S2PBDI 31 0 5.67125E-04 2933 
 SNDDELM 29 0 1.30425E-03 1420 
 S2PBTI 37 0 6.51784E-06 1522 
10-4 S2PBDI 45 0 3.65948E-05 2086 
 SNDDELM 54 0 4.58017E-05 4169 
 S2PBTI 53 0 9.51416E-07 2537 
10-6 S2PBDI 62 0 2.00824E-06 3539 
 SNDDELM 86 2 9.49873E-06 8185 
 S2PBTI 72 0 1.83465E-08 3484 
10-8 S2PBDI 85 0 6.48735E-08 5195 
 SNDDELM 128 6 1.58750E-07 18088 
 S2PBTI 97 0 8.92104E-11 6513 
10-10 S2PBDI 113 0 1.45530E-10 8735 
 SNDDELM 167 6 5.97529E-09 25699 

 
From the numerical results, it is evident that S2PBTI 

achieves the desired accuracy and performs very well when 
compared to S2PBDI and SNDDELM. Using corrector of one 
order higher than S2PBDI results in reduction number of total 
steps and time taken. The predictor-corrector formulae in 
divided difference form as opposed to the modified divided 
difference form in SNDDELM do not reduce the performance 

of the method. Overall results show that total steps taken in 
S2PBTI are reduced. The simpler formulation together with 
the reduction in total steps reduces the integration time when 
compared with S2PBDI and SNDDELM. 

V.  CONCLUSION 
We have described the development of a two-point 

predictor-corrector block method for solving DDEs. The 
formulae for the VSVO algorithm in PECE mode are 
represented in divided difference form. The corrector for the 
second point uses one extra point resulting from the prediction 
process. The P- and Q-stability polynomials of the predictor-
corrector block method are determined and the stability 
regions indicate that the method is suitable for solving nonstiff 
DDEs. From the numerical results we conclude that the two-
point block method is efficient, accurate and reliable for 
solving DDEs. 
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