
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3145

Extraction of Symbolic Rules from Artificial Neural
Networks

S. M. Kamruzzaman, and Md. Monirul Islam

Abstract—Although backpropagation ANNs generally predict
better than decision trees do for pattern classification problems, they
are often regarded as black boxes, i.e., their predictions cannot be
explained as those of decision trees. In many applications, it is
desirable to extract knowledge from trained ANNs for the users to
gain a better understanding of how the networks solve the problems.
A new rule extraction algorithm, called rule extraction from artificial
neural networks (REANN) is proposed and implemented to extract
symbolic rules from ANNs. A standard three-layer feedforward ANN
is the basis of the algorithm. A four-phase training algorithm is
proposed for backpropagation learning. Explicitness of the extracted
rules is supported by comparing them to the symbolic rules generated
by other methods. Extracted rules are comparable with other methods
in terms of number of rules, average number of conditions for a rule,
and predictive accuracy. Extensive experimental studies on several
benchmarks classification problems, such as breast cancer, iris,
diabetes, and season classification problems, demonstrate the
effectiveness of the proposed approach with good generalization
ability.

Keywords—Backpropagation, clustering algorithm, constructive
algorithm, continuous activation function, pruning algorithm, rule
extraction algorithm, symbolic rules.

I. INTRODUCTION
HE last two decades have seen a growing number of
researchers and practitioners applying ANNs for

classification in a variety of real world applications. In some
of these applications, it may be desirable to have a set of rules
that explains the classification process of a trained network
[11]. The classification concept represented as rules is
certainly more comprehensible to a human user than a
collection of ANNs weights [10].

While the predictive accuracy obtained by ANNs is often
higher than that of other methods or human experts, it is
generally difficult to understand how the network arrives at a
particular conclusion due to the complexity of the ANNs
architectures [7]. It is often said that an ANN is practically a
“black box”. Even for a network with only a single hidden
layer, it is generally impossible to explain why a certain
pattern is classified as a member of one class and another
pattern as a member of another class [9].
Lack of explanation capability is one of the most important
reasons why ANNs do not get the necessary interest in the
industry. It is therefore necessary that an ANN should be able
to explain itself. This can be done in several ways: extracting
if-then rules, converting ANNs to decision trees are some of
them.

S. M. Kamruzzaman is with the Department of Computer Science and
Engineering, Manarat International University, Bangladesh (e-mail:
smzaman@gmail.com, smk.cse@manarat.ac.bd).

Md. Monirul Islam is with the Department of Computer Science and
Engineering, Bangladesh University of Engineering and Technology (BUET),
Bangladesh.

Extracting if-then rules is usually accepted as the best way

of extracting the knowledge represented in the ANN. Not
because it is an easy job, but because the rules created at the
end are more understandable for humans than any other
representation [6].

This paper proposes a new rule extraction algorithm, called
rule extraction from artificial neural networks (REANN) to
extract symbolic rules from ANNs. A standard three-layer
feedforward ANN is the basis of the algorithm. A four-phase
training algorithm is proposed for backpropagation learning.
In the first phase, the number of hidden nodes of the network
is determined automatically in a constructive fashion by
adding nodes one after another based on the performance of
the network on training data. In the second phase, the ANN is
pruned such that irrelevant connections and input nodes are
removed while its predictive accuracy is still maintained. In
the third phase, the continuous activation values of the hidden
nodes are discretized by using an efficient heuristic clustering
algorithm. And finally in the fourth phase, rules are extracted
by examining the discretized activation values of the hidden
nodes using a rule extraction algorithm, REx.

II. RELATED WORKS
There is quite a lot of literature on algorithms that extracts

rules from trained ANNs [1] [2]. Several approaches have
been developed for extracting rules from a trained ANN. Saito
and Nakano [3] proposed a medical diagnosis expert system
based on a multiplayer ANN. They treated the network as
black box and used it only to observe the effects on the
network output caused by change the inputs.

H. Liu and S. T. Tan [4] proposes X2R, a simple and fast
algorithm that can applied to both numeric and discrete data,
and generate rules from datasets. It can generate perfect rules
in the sense that the error rate of the rules is not worse than the
inconsistency rate found in the original data. The rules
generated by X2R, are order sensitive, i.e, the rules should be
fired in sequence.

R. Setiono and H. Liu [5] presents a novel way to understand
an ANN. Understanding an ANN is achieved by extracting
rules with a three phase algorithm: first, a weight decay
backpropagation network is built so that important
connections are reflected by their bigger weights; second, the
network is pruned such that insignificant connections are
deleted while its predictive accuracy is still maintained; and
last, rules are extracted by recursively discretizing the hidden
node activation values.

R. Setiono [7] proposes a rule extraction algorithm for
extracting rules from pruned ANNs for breast cancer
diagnosis. The author describes how the activation values of a
hidden node can be clustered such that only a finite and
usually small number of discrete values need to be considered
while at the same time maintaining the network accuracy.

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3146

R. Setiono proposes a rule extraction algorithm named
NeuroRule [8]. This algorithm extracts symbolic classification
rule from a pruned network with a single hidden layer in two
steps. First, rules that explain the network outputs are
generated in terms of the discretized activation values of the
hidden units. Second, rules that explain the discretized hidden
unit activation values are generated in terms of the network
inputs. When two sets of rules are merged, a DNF
representation of network classification is obtained.

Ismail Taha and Joydeep Ghosh [9] propose three rule
extraction techniques for knowledge Based Neural Network
(KBNN) hybrid systems and present their implementation
results. The suitability of each technique depends on the
network type, input nature, complexity, the application nature,
and the requirement transparency level. The first proposed
approach (BIO-RE) is categorized as Black-box Rule
Extraction (BRE) technique, while the second (Partial-RE)
and third techniques (Full-RE) belong to Link Rule Extraction
(LRE) category.

R. Setiono [10] proposes a rule extraction (RX) algorithm to
extract rules from a pruned ANN. The process of extracting
rules from a trained ANN can be made much easier if the
complexity of the ANN has first been removed.

R. Setiono [11] presents MofN3, a new method for
extracting M-of-N rules from ANNs. Given a hidden node of a
trained ANN with N incoming connections, show how the
value of M can be easily computed. In order to facilitate the
process of extracting M-of-N rules, the attributes of the dataset
have binary values –1 or 1.

R. Setiono, W. K. Leow and Jack M. Zurada [12] describes a
method called rule extraction from function approximating
neural networks (REFANN) for extracting rules from trained
ANNs for nonlinear regression. It is shown that REFAANN
produces rules that are almost as accurate as the original
networks from which the rules are extracted.

III. OBJECTIVE OF THE RESEARCH
This paper proposes a hybrid approach with both

constructive and pruning components for automatic
determination of simplified ANN architectures. The objective
of the research are summarized as follows:

i) To develop an efficient algorithm for extracting
symbolic rules from ANNs for medical diagnosis
problem to explain the functionality of ANNs.

ii) To find an efficient method for clustering the outputs
of hidden nodes.

iii) To extract concise rules with high predictive
accuracy.

IV. PROPOSED ALGORITHM
 Extracting symbolic rules from trained ANN is one of the

promising areas that are commonly used to explain the
functionality of ANNs. The aim of this section is to introduce
a new algorithm to extract symbolic rules from trained ANNs.
The new algorithm is known as rule extraction from ANNs
(REANN). Detailed descriptions of REANN are presented
below.
 A. The REANN Algorithm

A standard three-layer feedforward ANN is the basis of the
proposed algorithm REANN. The major steps of REANN are
summarized in Fig. 1 which are explained further as follows:

Step 1 Create an initial ANN architecture. The initial
architecture has three layers, i.e. an input, an output,
and a hidden layer. Initially, the hidden layer
contains only one node. The number of nodes in the
hidden layer is automatically determined by using a
basic constructive algorithm. Randomly initialize all
connection weights within a certain small range.

Step 2 Remove redundant input nodes, and connections
between input nodes and hidden nodes and between
hidden nodes and output nodes by using a basic
pruning algorithm. When pruning is completed, the
ANN architecture contains only important nodes and
connections. This architecture is saved for the next
step.

Fig. 1 Flow chart of the REANN algorithm

Step 3 Discretize the outputs of hidden nodes by using an

efficient heuristic clustering algorithm. The reason
for discretization is that the outputs of hidden nodes
are continuous, thus rules are not readily extractable
from the ANN.

Step 4 Generate rules that map the inputs and outputs
relationships.

Step 5 Prune redundant rules generated in Step 4. Replace
specific rules with more general ones.

Step 6 Check the classification accuracy of the network. If
the accuracy falls below an acceptable level, i.e. rule
pruning is not successful then stop. Otherwise go to
Step 5.

The rules extracted by REANN are compact and
comprehensible, and do not involve any weight values. The
accuracy of the rules from pruned networks is high as the
accuracy of the original networks. The important features of
REANN are the rule generated by REx is recursive in nature
and is order insensitive, i.e, the rules need not be required to
fire sequentially.

B. Heuristic Clustering Algorithm
The process of grouping a set of physical or abstract objects

into classes of similar objects is called clustering. A cluster of
a data objects can be treated collectively as one group in many
applications [14]. There exist a large number of clustering
algorithms in the literature such as k-means, k-medoids [15]

Determine ANN architecture automatically

Remove redundant connections

Discretize the output values of hidden nodes

Generate rules

Prune redundant rules

Start

Successful?

No
Yes

Stop

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3147

[16]. It is found that some hidden nodes of an ANN maintain
almost constant output while other nodes change continuously
during the whole training process [17]. Fig. 2 shows a hidden
node maintains almost constant output after some training
epochs. In REANN, no clustering algorithm is used when
hidden nodes maintain almost constant output. If the outputs
of hidden nodes do not maintain constant value, a heuristic
clustering algorithm is used.

Fig. 2 Output of hidden nodes

The aim of the clustering algorithm is to discretize the
output values of hidden nodes. The algorithm places
candidates for discrete values such that the distance between
them is at least a threshold value ε. The steps of the heuristic
clustering algorithm are summarized in Fig. 3, which are
explained further as follows:
Step 1 Let ε ∈ (0, 1). D is the activation values in the hidden

node. δ1 is the activation value for the first pattern.
The first cluster, H(1) = δ1, count = 1, and sum(1) =
δ1, set D = 1.

Fig. 3 Flow chart of the heuristic clustering algorithm

Step 2 For each pattern pi i = 1, 2, 3, …..k. Checks whether

subsequent activation values can be clustered into
one of the existing clusters. The distance between an
activation value under consideration and its nearest
cluster, ()H jδ − , is computed. If this distance is

less than ε, then the activation value is clustered in
cluster j . Otherwise, this activation value forms a
new cluster. Let δ be its activation value. If there
exists an index j such that

 and

then set count(j):=count(j)+1,
sum(j):=sum(j)+ δ else D = D+1
H(D) = δ, count(D) = 1, sum (D) = δ.

Step 3 Replace H by the average of all activation values that
have been clustered into this cluster:
H(j):=sum(j)/count(j), j=1, 2, 3,…..D.

Step 4 Once the activation values of all hidden nodes have
been obtained, the accuracy of the network is
checked with the activation values at the hidden
nodes replaced by their discretized values. An
activation value δ is replaced by ()H j , where index

j is chosen such that argmin | () |jj H jδ= − . If the
accuracy of the network falls below the required
accuracy, then ε must be decreased and the clustering
algorithm is run again, otherwise stop.

For a sufficiently small ε, it is always possible to maintain
the accuracy of the network with continuous activation values,
although the resulting number of different discrete activations
can be impractically large.

D. Rule Extraction Algorithm (REx)
 Classification rules are sought in many areas from
automatic knowledge acquisition [18] [19] to data mining [20]
[21] and ANN rule extraction [22]. The steps of the Rule
Extraction (REx) algorithm are summarized in Fig. 4, which
are explained further as follows:
Step 1 Extract Rule:

i=0; while (data is NOT empty/marked){
generate Ri to cover the current pattern and
differentiate it from patterns in other categories;
remove/mark all patterns covered by Ri ; i++}

Fig. 4 Flow chart of the rule extraction (REx) algorithm

Step 2 Cluster Rule:

Cluster rules according to their class levels. Rules
generated in Step 1 are grouped in terms of their
class levels. In each rule cluster, redundant rules are
eliminated; specific rules are replaced by more
general rules.

Step 3 Prune Rule:
 replace specific rules with more general ones;
 remove noise rules;
 eliminate redundant rules;

{1,2,...... }
() min ()

j D
H j H j

ε
δ δ− = −)(jH−δ ε≤

Initialization.
Start with first activation value

Replace the cluster value by averaging

Accuracy falls?

Clustered into existing
clusters?

New Cluster

No

Start

Stop

Yes

No

Yes

Extract Rule

Cluster Rule

Prune Rule

Covered all
patterns?

Stop
Default Rule

Yes

No

Start

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

0 . 5

0

 A
ve

ra
ge

 h
id

de
n

no
de

 o
ut

pu
t

C o n v e r g e n c e i n e p o c h s

Constant output

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3148

Step 4 Check whether all patterns are covered by any rules.
If yes then stop, otherwise continue.

Step 5 Determine a default rule:
A default rule is chosen when no rule can be applied to a
pattern.

REx exploits the first order information in the data and finds
shortest sufficient conditions for a rule of a class that can
differentiate it from patterns of other classes. It can generate
concise and perfect rules in the sense that the error rate of the
rules is not worse than the inconsistency rate found in the
original data. The novelty of REx is that the rule generated by
it is order insensitive, i.e, the rules need not be required to fire
sequentially.

VV.. EEXXPPEERRIIMMEENNTTAALL SSTTUUDDIIEESS
This section evaluates the performance of REANN on three

well-known benchmark classification problems. These are the
breast cancer, and iris classification problems.

A. Data Set Description
The characteristics of the data sets are summarized in Table

I. The detailed descriptions of the data sets are available at
ics.uci.edu in directory /pub/machine-learning-databases [23]
[24].

TABLE I
CHARACTERISTICS OF DATA SETS

B. Experimental Setup
In all experiments, one bias node with a fixed input 1 was

used for hidden and output layers. The learning rate was set
between [0.1, 1.0] and the weights were initialized to random
values between [-1.0, 1.0]. Hyperbolic tangent function is used
as hidden node activation function and logistic sigmoid
function as output node activation function.
In this study, all data sets representing the problems are
divided into two sets. One is the training set and the other is
the testing set. The numbers of examples in the training set
and testing set are based on numbers in other works, in order
to make comparison with those works possible. The sizes of
the training and testing data sets used in this study are given as
follows:
Breast cancer data set: the first 350 examples are used for the
training set and the rest 349 for the testing set.
Iris data set: the first 75 examples are used for the training set
and the rest 75 for the testing set.
Diabetes data set: the first 384 examples are used for the
training set and the rest 384 for the testing set.

C. Experimental Results
Tables II-V show ANN architectures produced by REANN

and training epochs over 10 independent runs on three
benchmark classification problems. The initial architecture
was selected before applying the constructive algorithm,
which was used to determine the number of nodes in the
hidden layer. The intermediate architecture was the outcome

of the constructive algorithm, and the final architecture was
the outcome of pruning algorithm used in REANN.

It is seen that REANN can automatically determine
compact ANN architectures. For example, for the breast
cancer data, REANN produces more compact architecture.
The average number of nodes and connections were 6.8 and
5.8 respectively; in most of the 10 runs 5 to 6 input nodes
were pruned.

Fig. 5 shows the smallest of the pruned networks over 10
runs for breast cancer problem. The accuracy of this network
on the training data and testing data were 96.275% and
93.429% respectively. In this example only three input
attributes A1, A6 and A9 were important and only three
discrete values of hidden node activation’s were needed to
maintain the accuracy of the network.

Fig. 5 A pruned network for breast cancer problem

The discrete values found by the heuristic clustering
algorithm were 0.987, -0.986 and 0.004. Of the 350 training
data, 238 patters have the first value, 106 have the second
value and rest 6 patterns have third value. The weight of the
connection from the hidden node to the first output node was
3.0354 and to the second output node was –3.0354.

Fig. 6 Training time error for breast cancer problem

Figs. 6 shows the training time error for breast cancer

problem. It was observed that the training error decreased and
maintained almost constant for a long time after some training
epochs and then fluctuates. The fluctuation was made due to
the pruning process. As the network was retrained after
completing the pruning process thus the training error again
maintained almost constant value.

Data Sets No. of
Examples

Input Attributes Output
Classes

Breast Cancer 699 9 2
Iris 150 4 3

Diabetes 768 8 2
Season 11 3 4

Active Weight

Pruned Weight

Active Node

Pruned Node

 O1 O2 W1 = -21.992
W6 = -13.802
W9 = -13.802
V1 = 3.0353
V2 = -3.0353

A1 A2 A3 A4 A5 A6 A7 A8 A9

Input Layer

Hidden

Output Layer

Wi = Input to Hidden Weight
Vi = Hidden to Output Weight
Ai = Attribute of Input Signal
Oi = Output Signal

1
Bias node

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

Epochs

M
ea

n
Sq

ua
re

 E
rr

or

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3149

C.1 Extracted Rules
The number of rules extracted by REANN and the accuracy

of the rules in training and testing data sets were described in
Table VI. But the visualization of the rules in terms of the
original attributes ware not discussed. The following
subsections discussed the rules extracted by REANN in terms
of the original attributes. The number of conditions per rule
and the number of rules extracted were also visualized here.

C.1.1 Breast Cancer Data
 Rule 1: If Clump thickness (A1) <= 0.6 and Bare nuclei

(A6) <= 0.5 and Mitosis (A9) <= 0.3, then benign
 Default Rule: malignant.

C.1.2 Iris Data
 Rule 1: If Petal-length (A3) <= 1.9 then Iris setosa
 Rule 2: If Petal-length (A3) <= 4.9 and Petal-width (A4)

<= 1.6 then Iris versicolor
 Default Rule: Iris virginica.

C.1.3 Diabetes Data
 Rule 1: If Plasma glucose concentration (A2)
 <= 0.64 and Age (A8) <= 0.69
 then tested negative
 Default Rule: tested positive.

C.1.4 Season Data
 Rule 1: If Tree (A2) = yellow then autumn
 Rule 2: If Tree (A2) = leafless then autumn

Rule 3: If Temperature (A3) = low then winter
 Rule 4: If Temperature (A3) = high then summer
 Default Rule: spring.

TABLE VI
NUMBER OF EXTRACTED RULES AND RULES ACCURACIES

 Initial Architecture Intermediate Architecture Final Architecture
 No. of Node No. of Connection No. of Node No. of Connection No. of Node No. of Connection No. of Epoch

Mean 12 (9-1-2) 11 12.7 18.1 6.8 5.8 233.2
Min 12 (9-1-2) 11 12 11 5 5 222
Max 12 (9-1-2) 11 14 33 10 9 245

 Initial Architecture Intermediate Architecture Final Architecture
 No. of Node No. of Connection No. of Node No. of Connection No. of Node No. of Connection No. of Epoch

Mean 8 (4-1-3) 7 9 14 8.8 10.2 196.7
Min 8 (4-1-3) 7 8 7 8 7 183
Max 8 (4-1-3) 7 10 21 10 14 217

 Initial Architecture Intermediate Architecture Final Architecture
 No. of Node No. of Connection No. of Node No. of Connection No. of Node No. of Connection No. of Epoch

Mean 11 (8-1-2) 10 13.2 30 12.5 19.4 302.6
Min 11 (8-1-2) 10 12 20 12 14 279
Max 11 (8-1-2) 10 14 40 13 24 326

 Initial Architecture Intermediate Architecture Final Architecture
 No. of Node No. of Connection No. of Node No. of Connection No. of Node No. of Connection No. of Epoch

Mean 8 (3-1-4) 7 8.9 13.3 8.7 11.2 88.2
Min 8 (3-1-4) 7 8 7 8 9 73
Max 8 (3-1-4) 7 10 14 10 16 101

Data Set Feature REANN NN RULES DT RULES C4.5 NN-C4.5 OC1 CART
No. of Rules 2 4 7 - - - -
Avg. No. of
Conditions 3 3 1.75 - - - -

Breast
Cancer

Accuracy % 96.28 96 95.5 95.3 96.1 94.99 94.71

Data Set Feature REANN NN RULES DT RULES BIO RE Partial RE Full RE
No. of Rules 3 3 4 4 6 3
Avg. No. of
Conditions

1 1 1 3 3 2

Iris

Accuracy % 98.67 97.33 94.67 78.67 78.67 97.33

Data Sets No. of
Extracte
d Rules

Rules Accuracy on
Training Set

Rules
Accuracy on
Testing Set

Breast Cancer 2 93.43 % 96.28 %
Iris 3 98.67 % 97.33 %

Diabetes 2 72.14 % 76.56 %
Season 4 100 % 100 %

TABLE II
ANN ARCHITECTURES AND TRAINING EPOCHS FOR BREAST CANCER DATA. THE RESULTS WERE AVERAGED OVER 10 INDEPENDENT RUNS

TABLE IV ANN ARCHITECTURES AND TRAINING EPOCHS FOR DIABETES DATA. THE RESULTS WERE AVERAGED OVER 10 INDEPENDENT RUNS

TABLE VII PERFORMANCE COMPARISON OF REANN WITH OTHER ALGORITHMS FOR BREAST CANCER DATA

TABLE III ANN ARCHITECTURES AND TRAINING EPOCHS FOR IRIS DATA. THE RESULTS WERE AVERAGED OVER 10 INDEPENDENT RUNS

TABLE VIII PERFORMANCE COMPARISON OF REANN WITH OTHER ALGORITHMS FOR IRIS DATA

TABLE V ANN ARCHITECTURES AND TRAINING EPOCHS FOR SEASON DATA. THE RESULTS WERE AVERAGED OVER 10 INDEPENDENT RUNS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3150

TABLE X PERFORMANCE COMPARISON OF REANN WITH OTHER
ALGORITHMS FOR SEASONS DATA

Table VI shows number of extracted rules and rules

accuracy for six benchmark problems. In most of the cases
REANN produces fewer rules with better accuracy.

It was observed that two to three rules were sufficient to
solve the problems. The accuracy was 100% for lenses data set
for having lower number of examples.

VI. COMPARISON
This section compares experimental results of REANN with

the results of other works. The primary aim of this work is not
to exhaustively compare REANN with all other works, but to
evaluate REANN in order to gain a deeper understanding of
rule extraction.

Table VII compares REANN results of breast cancer
problem with those produced by NN RULES [8], DT RULES
[8], C4.5 [19], NN-C4.5 [13], OC1 [13], and CART [25]
algorithms. REANN achieved best performance although NN
RULES was closest second. But number of rules extracted by
REANN are 2 whereas these were 4 for NN RULES.

Table VIII compares REANN results of iris data with those
produced by NN RULES, DT RULES, BIO RE [9], Partial RE
[9], and Full RE [9] algorithms. REANN achieved 98.67%
accuracy although NN RULES was closest second with
97.33% accuracy. Here number of rules extracted by REANN
and NN RULES are equal.

Table IX compares REANN results of diabetes data with
those produced by NN RULES, C4.5, NN-C4.5, OC1, and
CART algorithms. REANN achieved 76.56% accuracy
although NN-C4.5 was closest second with 76.4% accuracy.
Due to the high noise level, the diabetes problem is one of the
most challenging problems in our experiments. REANN has
outperformed all other algorithms.

Table X compares REANN results of season data with those
produced by RULES [26] and X2R [4]. All three algorithms
achieved 100% accuracy. This is possible because the number
of examples is low. Number of extracted rules by REANN are
5 whereas these were 7 for RULES and 6 for X2R.

VVIIII.. CCOONNCCLLUUSSIIOONNSS
ANNs are often viewed as black boxes. While their

predictive accuracy is high, one usually cannot understand
why a particular outcome is predicted due to the complexity of
the network. This work is an attempted to open up these black
boxes by extracting symbolic rules from it through the
proposed efficient rule extraction algorithm REANN.

An important feature of rule extraction algorithm, REx, is its
recursive nature. They are concise, comprehensible, order
insensitive and do not involve any weight values. The
accuracy of the rules from a pruned network is as high as the
accuracy of the fully connected network.

Extensive experiments have been carried out in this study to
evaluate how well REANN performed on four benchmark
classification problems in ANNs including breast cancer, iris,
diabetes, and season in comparison with other algorithms. In
almost all cases, REANN outperformed the others. With the
rules extracted by the method introduced here, ANNs should
no longer be regarded as black boxes.

REFERENCES

[1] R. Andrews, J. Diederich and A. B., Tickle, “Survey and critique of
techniques for extracting rules from trained artificial neural
networks,” Knowledge Based System, vol. 8, 1995, pp. 373-389.

[2] Ashish Darbari, “Rule Extraction from Trained ANN: A Survey,”
Technical Report, Department of Computer Science, Dresden
University of Technology, Dresden, Germany, 2000.

[3] K. Saito and R. Nakano, “Medical diagnosis expert system based on
PDP model,” Proceedings of IEEE International Conference on
Neutal Networks, IEEE Press, 1988, pp. 1255-1262.

[4] H. Liu and S. T. Tan, “X2R: A fast rule generator,” Proceedings of
IEEE International Conference on Systems, Man and Cybernetics,
Vancouver, CA, 1995.

[5] R. Setiono and Huan Liu, “Understanding neural networks via rule
extraction,” Proceedings of the 14th International Joint Conference on
Artificial Intelligence, 1995, pp. 480-485.

[6] Olcay Boz, “Knowledge integration and rule extraction in neural
networks,” EECS Department, Lehigh University, 1995.

[7] R. Setiono, “Extracting rules from pruned neural networks for breast
cancer diagnosis,” Artificial Intelligence in Medicine, vol. 8,
February 1996, pp. 37-51.

[8] R. Setiono and H. Liu, “Symbolic presentation of neural networks,”
IEEE Computer, March 1996, pp. 71-77.

[9] I. Taha and J. Ghosh, “Three techniques for extracting rules from
feedforward networks,” Intelligent Engineering Systems Through
Artificial Neural Networks, vol. 6, pp. 23-28, ASME Press, St. Louis,
1996.

[10] R. Setiono, “Extracting rules from neural networks by pruning and
hidden-unit node splitting,” Neural Computation, vol. 9, 1997, pp.
205-225.

[11] R. Setiono, “Extracting M-of-N rules from trained neural networks,”
IEEE Transactions of Neural Networks, vol. 11, pp. 512-519, 2000.

[12] R. Setiono, W. K. Leow and Jack M. Zurada, “Extraction of Rules
from Artificial Neural Networks for Nonlinear regression,” IEEE
Trans. of Neural Networks, vol. 13, 2002, pp. 564-577.

[13] R. Setiono, “Techniques for extracting rules from artificial neural
networks,” Plenary lecture presented at the 5th International
Conference on Soft Computing and Information Systems, Iizuka,
Japan, October 1998.

[14] R. Reed, “Pruning algorithms-A survey,” IEEE Transactions on
Neural Networks, vol. 4, pp. 740-747, 1993.

[15] Han Jiawei, Micheline Kamber, “Data Mining: Concepts and
Techniques,” Morgan Kaufmann Publisher: CA, 2001.

[16] L. Kaufman, P. J. Rousseeuw, “Finding Groups in Data: An
Introduction to Cluster Analysis,” John Wiley & Sons, 1990.

[17] T. Ng. Raymond, Jiawei Han, “Efficient and effective clustering
methods for spatial data mining,” VLDB Conference, Santiago, Chile,
1994.

Data Set Feature REANN NN RULES C4.5 NN-C4.5 OC1 CART
No. of Rules 2 4 - - - -
Avg. No. of
Conditions

2 3 - - - -

Diabetes

Accuracy % 76.56 76.32 70.9 76.4 72.4 72.4

Data set Feature REANN RULES X2R
No. of Rules 5 7 6

Avg. No. of Conditions 1 2 1

Season
Accuracy % 100.0 100.0 100.

0

TABLE IX PERFORMANCE COMPARISON OF REANN WITH OTHER ALGORITHMS FOR DIABETES DATA

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3151

[18] M. Monirul Islam and K. Murase, “A new algorithm to design
compact two hidden-layer artificial neural networks”, Neural
Networks, vol. 4, 2001, pp. 1265–1278.

[19] J. R. Quinlan, “C4.5: Programs for Machine Learning,” Morgan
Kaufmann, San Mateo, CA, 1993.

[20] S. Russel and P. Norvig, “Artificial Intelligence: A Modern
Approach,” Prentice Hall, 1995.

[21] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: A
performance perspective,” IEEE Transactions on Knowledge and
Data Engineering, vol. 5, pp. 914-925, 1993.

[22] S-J Yen and A. L. P. Chen, “An efficient algorithm for deriving
compact rules from databases,” Proceedings of the Fourth

International Conference on Database Systems for Advanced
Applications, 1995.

[23] Prechelt, “Proben1-A Set of Neural Network Benchmark Problems
and Benchmarking Rules”, University of Karlsruhe, Germany, 1994.

[24] C. Blake, E. Keogh, and C. J. Merz, “UCI repository of of machine
learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.htm],” Department of
Information and Computer Science, University of California, Irvine,
CA, 1998.

[25] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and
Regression Trees,” Wadsworth and Brooks, Monterey, CA, 1984.

[26] D. T. Pham and M. S. Aksoy, “Rules: A simple rule extraction
system,” Expert Systems with Applications, vol. 8, 1995.

S. M. Kamruzzaman received the B. Sc. Engineering degree in Electrical and Electronic Engineering from Bangladesh Institute of
Technology (BIT), Dkaka, Bangladesh, in 1997, the M. Sc. Engineering degree in Computer Science and Engineering from Bangladesh
University of Engineering and Technology (BUET), Dhaka, Bangladesh, in 2005. From 1998 to 2004, he was a Lecturer and Assistant
Professor with the Department of Computer Science and Engineering, International Islamic University Chittagong (IIUC), Chittagong,
Bangladesh. In 2005, he moved to Manarat International University, Dhaka, Bangladesh as an Assistant Professor in the Department of
Computer Science and Engineering. His research interests include neural networks, data mining, bangla language processing and pattern
recognition.

