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Abstract—Although backpropagation ANNs generally predict 
better than decision trees do for pattern classification problems, they 
are often regarded as black boxes, i.e., their predictions cannot be 
explained as those of decision trees. In many applications, it is 
desirable to extract knowledge from trained ANNs for the users to 
gain a better understanding of how the networks solve the problems. 
A new rule extraction algorithm, called rule extraction from artificial 
neural networks (REANN) is proposed and implemented to extract 
symbolic rules from ANNs. A standard three-layer feedforward ANN 
is the basis of the algorithm. A four-phase training algorithm is 
proposed for backpropagation learning. Explicitness of the extracted 
rules is supported by comparing them to the symbolic rules generated 
by other methods. Extracted rules are comparable with other methods 
in terms of number of rules, average number of conditions for a rule, 
and predictive accuracy. Extensive experimental studies on several 
benchmarks classification problems, such as breast cancer, iris, 
diabetes, and season classification problems, demonstrate the 
effectiveness of the proposed approach with good generalization 
ability. 
 

Keywords—Backpropagation, clustering algorithm, constructive 
algorithm, continuous activation function, pruning algorithm, rule 
extraction algorithm, symbolic rules.  
 

I.  INTRODUCTION 
HE last two decades have seen a growing number of 
researchers and practitioners applying ANNs for 

classification in a variety of real world applications. In some 
of these applications, it may be desirable to have a set of rules 
that explains the classification process of a trained network 
[11]. The classification concept represented as rules is 
certainly more comprehensible to a human user than a 
collection of ANNs weights [10].  

While the predictive accuracy obtained by ANNs is often 
higher than that of other methods or human experts, it is 
generally difficult to understand how the network arrives at a 
particular conclusion due to the complexity of the ANNs 
architectures [7]. It is often said that an ANN is practically a 
“black box”. Even for a network with only a single hidden 
layer, it is generally impossible to explain why a certain 
pattern is classified as a member of one class and another 
pattern as a member of another class [9]. 
Lack of explanation capability is one of the most important 
reasons why ANNs do not get the necessary interest in the 
industry. It is therefore necessary that an ANN should be able 
to explain itself. This can be done in several ways: extracting 
if-then rules, converting ANNs to decision trees are some of 
them. 
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Extracting if-then rules is usually accepted as the best way 

of extracting the knowledge represented in the ANN. Not 
because it is an easy job, but because the rules created at the 
end are more understandable for humans than any other 
representation [6].  

This paper proposes a new rule extraction algorithm, called 
rule extraction from artificial neural networks (REANN) to 
extract symbolic rules from ANNs. A standard three-layer 
feedforward ANN is the basis of the algorithm. A four-phase 
training algorithm is proposed for backpropagation learning. 
In the first phase, the number of hidden nodes of the network 
is determined automatically in a constructive fashion by 
adding nodes one after another based on the performance of 
the network on training data. In the second phase, the ANN is 
pruned such that irrelevant connections and input nodes are 
removed while its predictive accuracy is still maintained. In 
the third phase, the continuous activation values of the hidden 
nodes are discretized by using an efficient heuristic clustering 
algorithm. And finally in the fourth phase, rules are extracted 
by examining the discretized activation values of the hidden 
nodes using a rule extraction algorithm, REx.  
 

II.  RELATED WORKS 
There is quite a lot of literature on algorithms that extracts 

rules from trained ANNs [1] [2]. Several approaches have 
been developed for extracting rules from a trained ANN. Saito 
and Nakano [3] proposed a medical diagnosis expert system 
based on a multiplayer ANN. They treated the network as 
black box and used it only to observe the effects on the 
network output caused by change the inputs.  

H. Liu and S. T. Tan [4] proposes X2R, a simple and fast 
algorithm that can applied to both numeric and discrete data, 
and generate rules from datasets. It can generate perfect rules 
in the sense that the error rate of the rules is not worse than the 
inconsistency rate found in the original data. The rules 
generated by X2R, are order sensitive, i.e, the rules should be 
fired in sequence.  

R. Setiono and H. Liu [5] presents a novel way to understand 
an ANN. Understanding an ANN is achieved by extracting 
rules with a three phase algorithm: first, a weight decay 
backpropagation network is built so that important 
connections are reflected by their bigger weights; second, the 
network is pruned such that insignificant connections are 
deleted while its predictive accuracy is still maintained; and 
last, rules are extracted by recursively discretizing the hidden 
node activation values.   

R. Setiono [7] proposes a rule extraction algorithm for 
extracting rules from pruned ANNs for breast cancer 
diagnosis. The author describes how the activation values of a 
hidden node can be clustered such that only a finite and 
usually small number of discrete values need to be considered 
while at the same time maintaining the network accuracy.  

T 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3146

R. Setiono proposes a rule extraction algorithm named 
NeuroRule [8]. This algorithm extracts symbolic classification 
rule from a pruned network with a single hidden layer in two 
steps. First, rules that explain the network outputs are 
generated in terms of the discretized activation values of the 
hidden units. Second, rules that explain the discretized hidden 
unit activation values are generated in terms of the network 
inputs. When two sets of rules are merged, a DNF 
representation of network classification is obtained.  

Ismail Taha and Joydeep Ghosh [9] propose three rule 
extraction techniques for knowledge Based Neural Network 
(KBNN) hybrid systems and present their implementation 
results. The suitability of each technique depends on the 
network type, input nature, complexity, the application nature, 
and the requirement transparency level. The first proposed 
approach (BIO-RE) is categorized as Black-box Rule 
Extraction (BRE) technique, while the second (Partial-RE) 
and third techniques (Full-RE) belong to Link Rule Extraction 
(LRE) category.  

R. Setiono [10] proposes a rule extraction (RX) algorithm to 
extract rules from a pruned ANN. The process of extracting 
rules from a trained ANN can be made much easier if the 
complexity of the ANN has first been removed.  

R. Setiono [11] presents MofN3, a new method for 
extracting M-of-N rules from ANNs. Given a hidden node of a 
trained ANN with N incoming connections, show how the 
value of M can be easily computed. In order to facilitate the 
process of extracting M-of-N rules, the attributes of the dataset 
have binary values –1 or 1.   

R. Setiono, W. K. Leow and Jack M. Zurada [12] describes a 
method called rule extraction from function approximating 
neural networks (REFANN) for extracting rules from trained 
ANNs for nonlinear regression. It is shown that REFAANN 
produces rules that are almost as accurate as the original 
networks from which the rules are extracted.  

III.  OBJECTIVE OF THE RESEARCH 
This paper proposes a hybrid approach with both 

constructive and pruning components for automatic 
determination of simplified ANN architectures. The objective 
of the research are summarized as follows: 

i) To develop an efficient algorithm for extracting 
symbolic rules from ANNs for medical diagnosis 
problem to explain the functionality of ANNs. 

ii) To find an efficient method for clustering the outputs 
of hidden nodes. 

iii) To extract concise rules with high predictive 
accuracy. 

IV.  PROPOSED ALGORITHM 
 Extracting symbolic rules from trained ANN is one of the 

promising areas that are commonly used to explain the 
functionality of ANNs. The aim of this section is to introduce 
a new algorithm to extract symbolic rules from trained ANNs. 
The new algorithm is known as rule extraction from ANNs 
(REANN). Detailed descriptions of REANN are presented 
below. 
  A.  The REANN Algorithm 

A standard three-layer feedforward ANN is the basis of the 
proposed algorithm REANN. The major steps of REANN are 
summarized in Fig. 1 which are explained further as follows:  

Step 1 Create an initial ANN architecture. The initial 
architecture has three layers, i.e. an input, an output, 
and a hidden layer. Initially, the hidden layer 
contains only one node. The number of nodes in the 
hidden layer is automatically determined by using a 
basic constructive algorithm. Randomly initialize all 
connection weights within a certain small range.  

Step 2 Remove redundant input nodes, and connections 
between input nodes and hidden nodes and between 
hidden nodes and output nodes by using a basic 
pruning algorithm. When pruning is completed, the 
ANN architecture contains only important nodes and 
connections. This architecture is saved for the next 
step. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Flow chart of the REANN algorithm 
 
Step 3 Discretize the outputs of hidden nodes by using an 

efficient heuristic clustering algorithm. The reason 
for discretization is that the outputs of hidden nodes 
are continuous, thus rules are not readily extractable 
from the ANN.  

Step 4 Generate rules that map the inputs and outputs 
relationships.  

Step 5  Prune redundant rules generated in Step 4. Replace 
specific rules with more general ones.  

Step 6  Check the classification accuracy of the network. If 
the accuracy falls below an acceptable level, i.e. rule 
pruning is not successful then stop. Otherwise go to 
Step 5. 

The rules extracted by REANN are compact and 
comprehensible, and do not involve any weight values. The 
accuracy of the rules from pruned networks is high as the 
accuracy of the original networks. The important features of 
REANN are the rule generated by REx is recursive in nature 
and is order insensitive, i.e, the rules need not be required to 
fire sequentially. 

B.  Heuristic Clustering Algorithm  
The process of grouping a set of physical or abstract objects 

into classes of similar objects is called clustering. A cluster of 
a data objects can be treated collectively as one group in many 
applications [14]. There exist a large number of clustering 
algorithms in the literature such as k-means, k-medoids [15] 
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[16]. It is found that some hidden nodes of an ANN maintain 
almost constant output while other nodes change continuously 
during the whole training process [17]. Fig. 2 shows a hidden 
node maintains almost constant output after some training 
epochs. In REANN, no clustering algorithm is used when 
hidden nodes maintain almost constant output. If the outputs 
of hidden nodes do not maintain constant value, a heuristic 
clustering algorithm is used.  
 

 
 
 
 
 

 
 
 
 

Fig. 2 Output of hidden nodes 
 

The aim of the clustering algorithm is to discretize the 
output values of hidden nodes. The algorithm places 
candidates for discrete values such that the distance between 
them is at least a threshold value ε. The steps of the heuristic 
clustering algorithm are summarized in Fig. 3, which are 
explained further as follows:  
Step 1 Let ε ∈ (0, 1). D is the activation values in the hidden 

node. δ1 is the activation value for the first pattern. 
The first cluster, H(1) = δ1, count = 1, and sum(1) = 
δ1, set D = 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Flow chart of the heuristic clustering algorithm 

 
Step 2 For each pattern pi i = 1, 2, 3, …..k.  Checks whether 

subsequent activation values can be clustered into 
one of the existing clusters. The distance between an 
activation value under consideration and its nearest 
cluster, ( )H jδ − , is computed. If this distance is 

less than ε, then the activation value is clustered in 
cluster j . Otherwise, this activation value forms a 
new cluster. Let δ be its activation value. If there 
exists an index j  such that    

                                                        and  
                   

then set count( j ):=count( j )+1,  
sum( j  ):=sum( j  )+ δ else D = D+1 
H(D) = δ, count(D) = 1, sum (D) = δ.  

Step 3 Replace H by the average of all activation values that 
have been clustered into this cluster: 
H(j):=sum(j)/count(j), j=1, 2, 3,…..D.  

Step 4 Once the activation values of all hidden nodes have 
been obtained, the accuracy of the network is 
checked with the activation values at the hidden 
nodes replaced by their discretized values. An 
activation value δ is replaced by ( )H j , where index 

j is chosen such that argmin | ( ) |jj H jδ= − .  If the 
accuracy of the network falls below the required 
accuracy, then ε must be decreased and the clustering 
algorithm is run again, otherwise stop. 

For a sufficiently small ε, it is always possible to maintain 
the accuracy of the network with continuous activation values, 
although the resulting number of different discrete activations 
can be impractically large.  

D.  Rule Extraction Algorithm (REx) 
 Classification rules are sought in many areas from 
automatic knowledge acquisition [18] [19] to data mining [20] 
[21] and ANN rule extraction [22]. The steps of the Rule 
Extraction (REx) algorithm are summarized in Fig. 4, which 
are explained further as follows:  
Step 1 Extract Rule: 

i=0; while (data is NOT empty/marked){ 
generate Ri to cover the current pattern and 
differentiate it from patterns in other categories; 
remove/mark all patterns covered by Ri ; i++} 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Flow chart of the rule extraction (REx) algorithm 
 
Step 2 Cluster Rule: 

Cluster rules according to their class levels. Rules 
generated in Step 1 are grouped in terms of their 
class levels. In each rule cluster, redundant rules are 
eliminated; specific rules are replaced by more 
general rules. 

Step 3 Prune Rule: 
 replace specific rules with more general ones; 
 remove noise rules; 
 eliminate redundant rules;  

{1,2,...... }
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Step 4 Check whether all patterns are covered by any rules. 
If yes then stop, otherwise continue. 

Step 5 Determine a default rule: 
A default rule is chosen when no rule can be applied to a 
pattern.  

REx exploits the first order information in the data and finds 
shortest sufficient conditions for a rule of a class that can 
differentiate it from patterns of other classes. It can generate 
concise and perfect rules in the sense that the error rate of the 
rules is not worse than the inconsistency rate found in the 
original data. The novelty of REx is that the rule generated by 
it is order insensitive, i.e, the rules need not be required to fire 
sequentially. 

VV..    EEXXPPEERRIIMMEENNTTAALL  SSTTUUDDIIEESS  
This section evaluates the performance of REANN on three 

well-known benchmark classification problems. These are the 
breast cancer, and iris  classification problems.  

A.  Data Set Description 
The characteristics of the data sets are summarized in Table 

I. The detailed descriptions of the data sets are available at 
ics.uci.edu in directory /pub/machine-learning-databases [23] 
[24].  

TABLE I  
CHARACTERISTICS OF DATA SETS 

B.  Experimental Setup 
In all experiments, one bias node with a fixed input 1 was 

used for hidden and output layers. The learning rate was set 
between [0.1, 1.0] and the weights were initialized to random 
values between [-1.0, 1.0]. Hyperbolic tangent function is used 
as hidden node activation function and logistic sigmoid 
function as output node activation function.  
In this study, all data sets representing the problems are 
divided into two sets. One is the training set and the other is 
the testing set. The numbers of examples in the training set 
and testing set are based on numbers in other works, in order 
to make comparison with those works possible. The sizes of 
the training and testing data sets used in this study are given as 
follows: 
Breast cancer data set: the first 350 examples are used for the 
training set and the rest 349 for the testing set. 
Iris data set: the first 75 examples are used for the training set 
and the rest 75 for the testing set. 
Diabetes data set: the first 384 examples are used for the 
training set and the rest 384 for the testing set. 

C.  Experimental Results 
Tables II-V show ANN architectures produced by REANN 

and training epochs over 10 independent runs on three 
benchmark classification problems. The initial architecture 
was selected before applying the constructive algorithm, 
which was used to determine the number of nodes in the 
hidden layer. The intermediate architecture was the outcome 

of the constructive algorithm, and the final architecture was 
the outcome of pruning algorithm used in REANN.  

It is seen that REANN can automatically determine 
compact ANN architectures. For example, for the breast 
cancer data, REANN produces more compact architecture. 
The average number of nodes and connections were 6.8 and 
5.8 respectively; in most of the 10 runs 5 to 6 input nodes 
were pruned.  

Fig. 5 shows the smallest of the pruned networks over 10 
runs for breast cancer problem. The accuracy of this network 
on the training data and testing data were 96.275% and 
93.429% respectively. In this example only three input 
attributes A1, A6 and A9 were important and only three 
discrete values of hidden node activation’s were needed to 
maintain the accuracy of the network. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Fig. 5 A pruned network for breast cancer problem 
 

The discrete values found by the heuristic clustering 
algorithm were 0.987, -0.986 and 0.004. Of the 350 training 
data, 238 patters have the first value, 106 have the second 
value and rest 6 patterns have third value. The weight of the 
connection from the hidden node to the first output node was 
3.0354 and to the second output node was –3.0354. 
 
 
 
 
 
 
 
 
 

 
Fig. 6 Training time error for breast cancer problem 

 
Figs. 6 shows the training time error for breast cancer 

problem. It was observed that the training error decreased and 
maintained almost constant for a long time after some training 
epochs and then fluctuates. The fluctuation was made due to 
the pruning process. As the network was retrained after 
completing the pruning process thus the training error again 
maintained almost constant value. 
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Breast Cancer 699 9 2 
Iris 150 4 3 

Diabetes 768 8 2 
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C.1 Extracted Rules 
The number of rules extracted by REANN and the accuracy 

of the rules in training and testing data sets were described in 
Table VI. But the visualization of the rules in terms of the 
original attributes ware not discussed. The following 
subsections discussed the rules extracted by REANN in terms 
of the original attributes. The number of conditions per rule 
and the number of rules extracted were also visualized here.  

C.1.1 Breast Cancer Data 
 Rule 1: If Clump thickness (A1) <= 0.6 and Bare nuclei 

(A6) <= 0.5 and Mitosis (A9) <= 0.3, then benign 
 Default Rule: malignant. 

C.1.2  Iris Data 
 Rule 1: If Petal-length (A3) <= 1.9 then Iris setosa 
 Rule 2: If Petal-length (A3) <= 4.9 and Petal-width (A4) 

<= 1.6 then Iris versicolor 
 Default Rule: Iris virginica. 

 

 

 

 

 

 

 

 

 

 

 

C.1.3 Diabetes Data 
 Rule 1: If Plasma glucose concentration (A2)  
   <= 0.64 and Age (A8) <= 0.69  
   then tested negative  
  Default Rule: tested positive. 

C.1.4  Season Data 
 Rule 1: If Tree (A2) = yellow then autumn 
 Rule 2: If Tree (A2) = leafless then autumn  

Rule 3: If Temperature (A3) = low then winter 
 Rule 4: If Temperature (A3) = high then summer 
 Default Rule: spring. 

TABLE VI 
NUMBER OF EXTRACTED RULES AND RULES ACCURACIES 

 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 

 Initial Architecture Intermediate Architecture Final Architecture 
 No. of Node No. of Connection No. of Node No. of Connection No. of Node No. of Connection No. of Epoch 

Mean 12 (9-1-2) 11 12.7 18.1 6.8 5.8 233.2 
Min 12 (9-1-2) 11 12 11 5 5 222 
Max 12 (9-1-2) 11 14 33 10 9 245 

 Initial Architecture Intermediate Architecture Final Architecture 
 No. of Node No. of Connection No. of Node No. of Connection No. of Node No. of Connection No. of Epoch 

Mean 8 (4-1-3) 7 9 14 8.8 10.2 196.7 
Min 8 (4-1-3) 7 8 7 8 7 183 
Max 8 (4-1-3) 7 10 21 10 14 217 

 Initial Architecture Intermediate Architecture Final Architecture 
 No. of Node No. of Connection No. of Node No. of Connection No. of Node No. of Connection No. of Epoch 

Mean 11 (8-1-2) 10 13.2 30 12.5 19.4 302.6 
Min 11 (8-1-2) 10 12 20 12 14 279 
Max 11 (8-1-2) 10 14 40 13 24 326 

 Initial Architecture Intermediate Architecture Final Architecture 
 No. of Node No. of Connection No. of Node No. of Connection No. of Node No. of Connection No. of Epoch 

Mean 8 (3-1-4) 7 8.9 13.3 8.7 11.2 88.2 
Min 8 (3-1-4) 7 8 7 8 9 73 
Max 8 (3-1-4) 7 10 14 10 16 101 

Data Set Feature REANN NN RULES DT RULES C4.5 NN-C4.5 OC1 CART 
No. of Rules 2 4 7 - - - - 
Avg. No. of 
Conditions 3 3 1.75 - - - - 

 
Breast 
Cancer 

Accuracy % 96.28 96 95.5 95.3 96.1 94.99 94.71 

Data Set Feature REANN NN RULES DT RULES BIO RE Partial RE Full RE 
No. of Rules 3 3 4 4 6 3 
Avg. No. of 
Conditions 

1 1 1 3 3 2 
 

Iris 
 

Accuracy % 98.67 97.33 94.67 78.67 78.67 97.33 

Data Sets No. of 
Extracte
d Rules 

Rules Accuracy on 
Training Set 

Rules 
Accuracy on 
Testing Set 

Breast Cancer 2 93.43 % 96.28 % 
Iris 3 98.67 % 97.33 % 

Diabetes 2 72.14 % 76.56 % 
Season  4 100 % 100 % 

TABLE II  
ANN ARCHITECTURES AND TRAINING EPOCHS FOR BREAST CANCER DATA. THE RESULTS WERE AVERAGED OVER 10 INDEPENDENT RUNS 

TABLE IV ANN ARCHITECTURES AND TRAINING EPOCHS FOR DIABETES DATA. THE RESULTS WERE AVERAGED OVER 10 INDEPENDENT RUNS

TABLE VII PERFORMANCE COMPARISON OF REANN WITH OTHER ALGORITHMS FOR BREAST CANCER DATA 

TABLE III ANN ARCHITECTURES AND TRAINING EPOCHS FOR IRIS DATA. THE RESULTS WERE AVERAGED OVER 10 INDEPENDENT RUNS

TABLE VIII PERFORMANCE COMPARISON OF REANN WITH OTHER ALGORITHMS FOR IRIS DATA 

TABLE V ANN ARCHITECTURES AND TRAINING EPOCHS FOR SEASON DATA. THE RESULTS WERE AVERAGED OVER 10 INDEPENDENT RUNS
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TABLE X PERFORMANCE COMPARISON OF REANN WITH OTHER 
ALGORITHMS FOR SEASONS DATA 

 
Table VI shows number of extracted rules and rules 

accuracy for six benchmark problems. In most of the cases 
REANN produces fewer rules with better accuracy.  

It was observed that two to three rules were sufficient to 
solve the problems. The accuracy was 100% for lenses data set 
for having lower number of examples.  

VI.  COMPARISON 
This section compares experimental results of REANN with 

the results of other works. The primary aim of this work is not 
to exhaustively compare REANN with all other works, but to 
evaluate REANN in order to gain a deeper understanding of 
rule extraction.  

Table VII compares REANN results of breast cancer 
problem with those produced by NN RULES [8], DT RULES 
[8], C4.5 [19], NN-C4.5 [13], OC1 [13], and CART [25] 
algorithms. REANN achieved best performance although NN 
RULES was closest second. But number of rules extracted by 
REANN are 2 whereas these were 4 for NN RULES. 

Table VIII compares REANN results of iris data with those 
produced by NN RULES, DT RULES, BIO RE [9], Partial RE 
[9], and Full RE [9] algorithms. REANN achieved 98.67% 
accuracy although NN RULES was closest second with 
97.33% accuracy. Here number of rules extracted by REANN 
and NN RULES are equal. 

Table IX compares REANN results of diabetes data with 
those produced by NN RULES, C4.5, NN-C4.5, OC1, and 
CART algorithms. REANN achieved 76.56% accuracy 
although NN-C4.5 was closest second with 76.4% accuracy. 
Due to the high noise level, the diabetes problem is one of the 
most challenging problems in our experiments. REANN has 
outperformed all other algorithms. 

Table X compares REANN results of season data with those 
produced by RULES [26] and X2R [4]. All three algorithms 
achieved 100% accuracy. This is possible because the number 
of examples is low. Number of extracted rules by REANN are 
5 whereas these were 7 for RULES and 6 for X2R. 

VVIIII..    CCOONNCCLLUUSSIIOONNSS  
ANNs are often viewed as black boxes. While their 

predictive accuracy is high, one usually cannot understand 
why a particular outcome is predicted due to the complexity of 
the network. This work is an attempted to open up these black 
boxes by extracting symbolic rules from it through the 
proposed efficient rule extraction algorithm REANN.  

 
 
 

 
 
 
 
 

An important feature of rule extraction algorithm, REx, is its 
recursive nature. They are concise, comprehensible, order 
insensitive and do not involve any weight values. The 
accuracy of the rules from a pruned network is as high as the 
accuracy of the fully connected network.  

Extensive experiments have been carried out in this study to 
evaluate how well REANN performed on four benchmark 
classification problems in ANNs including breast cancer, iris, 
diabetes, and season in comparison with other algorithms.  In 
almost all cases, REANN outperformed the others. With the 
rules extracted by the method introduced here, ANNs should 
no longer be regarded as black boxes.  
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