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Note to the global GMRES for solving the matrix
equation AXB = F

Fatemeh Panjeh Ali Beik

Abstract—In the present work, we propose a new projection
method for solving the matrix equation AXB = F . For implement-
ing our new method, generalized forms of block Krylov subspace
and global Arnoldi process are presented. The new method can be
considered as an extended form of the well-known global generalized
minimum residual (Gl-GMRES) method for solving multiple linear
systems and it will be called as the extended Gl-GMRES (EGl-
GMRES). Some new theoretical results have been established for
proposed method by employing Schur complement. Finally, some
numerical results are given to illustrate the efficiency of our new
method.
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block Krylov subspace method, global generalized minimum residual
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I. INTRODUCTION

CONSIDER the multiple linear system

AX = C,

where A ∈ R
n×n is a large and spars nonsingular matrix, C

and X are n× s rectangular real matrices.
For nonsymmetric problems, recently, some block Krylov

subspace methods have been developed; see [2, 4, 6, 8-10,
13, 14] and the references therein. The generalized minimum
residual method and its weighted version, for solving the
multiple linear system AX = C, are projection methods on
the block Krylov subspace

Km(A, V ) = span{V,AV,A2V, ..., Am−1V },

where V ∈ R
n×s is given.

In this paper, we are interested to solve the following matrix
equation

AXB = F, (1)

where A ∈ R
p×n, is a full column-rank matrix and B ∈ R

s×q

is a full row-rank matrix.
Recently, there has been an increased interest in solving

matrix equations; for more details see [3,5] and references
therein . In [3], Ding et al. proposed an iterative method for
solving the matrix equation (1) by extending the well-known
Jacobi and Gauss-Seidel methods. The proof of the following
lemma and theorem were given in [3].
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Lemma I.1. If A is a full column-rank matrix and B is a full
row-rank matrix (p ≥ n, s ≤ q), then in the sense of least-
squares, (1) has the unique solution

X = (ATA)−1ATFBT (BBT )−1.

Theorem I.2. If the conditions of Lemma I.1 hold, the gradient
based iterative algorithm of (1),

X(k) = X(k − 1) + μAT [F −AX(k − 1)B]BT ,

0 < μ <
2

λmax[AAT ]λmax[BBT ]
or μ ≤

2

‖A‖
2
‖B‖

2
,

yields X(k) → X.

It is obvious that finding a proper μ by the conditions
described in Theorem I.2, is too expensive. It can be easily
investigated by numerical examples that the value of μ ap-
proximated by Theorem I.2 may become too small which in
application algorithm may become divergent.

It is known that the global generalized minimum residual
(Gl-GMRES) method is suitable for solving multiple linear
systems with large coefficient matrix. Hence, we are inter-
ested to present a new projection method, by extending (Gl-
GMRES) method, for solving the matrix equation (1). To this
end, we need to generalize the definition of the block Krylov
subspace. On the other hand, it is obvious that each system of
the form (1) can be reformed as (ATA)X(BBT ) = ATFBT .

Hence, without loss of generality, we will consider the follow-
ing matrix equation

AXB = F, (2)

where A ∈ R
n×n, B ∈ R

s×s are nonsingular matrices and
X,F ∈ R

n×s.

Notation: The vector vex(X) denotes the vector of R
ns

obtained by stacking the columns of the n × s matrix X ,
det(Z) is the determinant of the square matrix Z and tr(Z)
denotes the trace of Z .

For any matrices X and Y of dimensions n × p and q × l

respectively, the Kronecker product X⊗Y is the nq×pl matrix
defined by X⊗Y = [Xi,jY ]. The inner product < ., . >F for
the matrices X and Y is defined as < X, Y >= tr(XTY ) and
the corresponding matrix norm is the well-known Frobenius
norm.

Definition I.3. (R. Bouyouli et al.[1] ). Let A =
[A1, A2, ..., Ap] and B = [B1, B2, ..., B�] be matrices of di-
mensions n×ps and n×�s, respectively, where Ai and Bj are
n× s matrices. Then the p× � matrix AT♦B = [(AT♦B)ij ]
is defined by (AT♦B)ij =< Ai, Bj >F .



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:8, 2011

1304

Definition I.4. Let M be a matrix partitioned into four blocks

M =

[
A B

C D

]
,

where the submatrix D is assumed to be square and nonsingu-
lar. The Schur complement of D in M , denoted by (M/D),
is defined by

(M/D) = A−BD−1C.

Generalization and properties of the Schur complements are
found in [1].

Proposition I.5. Assuming that the matrix D is nonsingular
and E is a matrix such that the product EA is well defined,
then ([

EA EB

C D

]/
D

)
= E

([
A B

C D

]/
D

)
.

Proof: See[2].

Proposition I.6. Let A ∈ R
n×s, B ∈ R

n×ks, C ∈ R
k×p, G ∈

R
k×kand E ∈ R

n×s. If the matrix G is nonsingular matrix
then

ET♦

((
A B

C ⊗ Is G⊗ Is

)/
G⊗ Is

)

=

(
ET♦A ET♦B

C G

)/
G.

Proof: See[2].

Proposition I.7. If the matrices M and D are square and
nonsingular, then

M−1 =[
(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 +D−1C(M/D)−1BD−1

]
.

Proof: See[15].
The outline of this paper is organized as follows. In Section

2, the generalized block Krylov subspace and global Arnoldi
process are presented which are needed for implementing our
new method. A new method, called by the extended Gl-GMRES
(EGl-GMRES) method, is proposed in Section 3. Furthermore,
we establish some convergent results for EGl-GMRES. In
Section 4, we give some numerical experiments to demonstrate
the efficiency of our new method. Finally, the paper is ended
with a brief conclusion in Section 5.

II. GENERALIZED GLOBAL ARNOLDI PROCESS

We can easily see that the matrix equation (2) is equivalent
to the following linear system of equations

(BT
⊗A)vec(X) = vec(F ).

However, the size of the linear equations (BT ⊗A)vec(X) =
vec(F ) is too large and the block Krylov subspace methods
consume more computer time and memory once the size of
the system is large. To overcome these complications and
drawbacks, by extending the global generalized minimum
residual (Gl-GMRES) method, we propose an extended global
(EGl-GMRES) for solving the matrix equation (2). To this

end, we need to generalize the definition of the block Krylov
subspace in the following.

Definition II.1. Suppose that A ∈ R
n×n, B ∈ R

s×s, and
V ∈ R

n×s, we define the generalized block Krylov subspace
as follows

GKm ≡ GKm(A, V, B) ≡

span{V,AV B,A2V B2, ..., Am−1V Bm−1
}. (3)

Now, we present a generalized form of global Arnoldi
process which constructs a F−orthonormal basis for the
GKm.

Algorithm II.2. (Generalized global Arnoldi process)
1. Choose an n× s matrix V. Set β = ‖V ‖F ,V1 = V/β

2. For j = 1, 2, ...,m Do:
3. W = AVj

4. W = WB

5. For i = 1, 2, ..., j Do:
6. hij =< W,Vi >F

7. W = W − hijVi

8. EndDo
9. hj+1,j = ‖W‖F . If hj+1,j = 0 Stop
10. Vj+1 = W/hj+1,j

11. EndDo.

Denote by Vm, the n × ms matrix with columns
V1, V2, ..., Vm, Hm, the (m+1)×m Hessenberg matrix whose
nonzero entries hij , i = 1, 2, ...,m + 1, j = 1, ...,m, are
defined by Algorithm II.2, and by Hm, the matrix obtained
from Hm by deleting its last row.
It is obvious that, the generalized global Arnoldi process
constructs an F -orthonormal basis V1, V2, ..., Vm of the matrix
block Krylov GKm(A, V,B), i.e.,
the matrices V1, V2, ..., Vm satisfy in the following conditions

tr(V T
i Vj) = 0, tr(V T

i Vi) = 1, for i 
= j, i, j = 1, 2, ...,m.

(4)

Theorem II.3. Let Vm, Hm, and Hm defined as before. Then
the following relations hold

AVm(Im ⊗B) =

Vm(Hm ⊗ Is) + [0n×s, ..., 0n×s, hm+1,mVm+1], (5)

AVm(Im ⊗B) = Vm(Hm ⊗ Is) + hm+1,mVm+1(e
T
m ⊗ Is)

= Vm+1(Hm ⊗ Is), (6)

where eTm =
[
0, ..., 0, 1

]
1×m

.

Proof: The relation (5) follows from fact that

AVm(Im ⊗B) = [AV1B,AV2B,..., AVmB] ,

and lines 3, 4 and 7 of Algorithm II.2, The relation (6) is
reformulation of (5).
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III. EXTENDED GLOBAL GMRES EGL-GMRES METHOD

In this section, we present our new method, EGl-GMRES for
solving the matrix equation (2).

Given an initial guess X0, with the corresponding residual
R0 = F − AX0B, the EGl-GMRES constructs the new
approximate solution Xm to the solution of (2) such that

Xm ∈ X0 + GKm(A,R0, B), (7)

and

Rm = F −AXmB ⊥FA GKm(A,R0, B) (Im ⊗B). (8)

Consider the F-orthonormal basis Vm, constructed with gener-
alized global Arnoldi process. From the relation (7), we deduce
that

Xm = X0 + Vm(ym ⊗ Is), (9)

where the vector ym ∈ R
m is obtained by imposing the

orthogonality condition (8). By substituting (9) in Rm, we
get

Rm = F −AXmB = F −A(X0 + Vm(ym ⊗ Im))B
= R0 −AVm(Im ⊗B)(ym ⊗ Is).

where the vector ym ∈ R
m is obtained by imposing the

condition (8). On the other hand, it is easy to see that ym
is the solution of following least-square problem too

min
y∈Rm

‖R0 −AVm(y ⊗ Is)B‖
F
= min

y∈Rm
‖R0 −AVm(Im ⊗B)y‖

F
.

(10)
Straightforward computations show that

Rm = Vm[(βe1 −Hmym)⊗ Is].

Hence, by rewriting the equation (10), we conclude that ym
is the solution of the following least-square problem

min
y∈Rm

∥∥βe1 −Hmy
∥∥
2

(11)

Now, we propose the EGl-GMRES algorithm for solving
the matrix equation (2) as follows.

Algorithm III.1. (EGl-GMRES )
1. Choose X0, a tolerance ε, compute R0 = F −AX0B and
Set V = R0

2. For m = 1, 2, 3, ...
3. Construct the F-orthonormal basis V1, V2, ..., Vm by
Algorithm II.2
4. Find ymas the solution of

min
y∈Rm

∥∥βe1 −Hmy
∥∥
2

5. Compute the approximate solution Xm = X0+Vm(ym⊗

Is) and Rm = F −AXmB.

6. If ‖Rm‖F < ε Stop.
7. Set X0 = Xm, R0 = Rm, V = R0, and go to 2.
8. EndDo.

The EGl-GMRES algorithm requires the storage of Vm.
That is, in order to save the vector Vm we need an m

dimensional vectors space whose entries are n × s matrices.
To cure the storage problem, encountered also in Gl-GMRES,

the value of m is limited by storage constraint and by avoid-
ing rounding errors. Hence, Algorithm III.1 can be restarted
after m iterations. The corresponding algorithm is called the
restarted EGl-GMRES(m), see [12].

Let Wm = AVm(Im ⊗B), by imposing the condition (8),
we have

0 = WT
m♦Rm = WT

m♦R0 −WT
m♦(Wm(ym ⊗ Is)

= W
T
m♦R0 − (WT

m♦Wm)ym.

Hence ym is the solution of the following linear system

(WT
m♦Wm)ym = W

T
m♦R0. (12)

Now, we give some new expressions for the residual matrix
Rm by means of the Schur complement.

Straightforward computations show that

Rm = R0 −Wm[(WT
m♦Wm)−1(WT

m♦R0)⊗ Ip]

= R0 −Wm[(WT
m♦Wm)−1

⊗ Ip][(W
T
m♦R0)⊗ Ip].

Hence, from the definition of the Schur complement, we derive
Rm =([

R0 Wm

(WT
m♦R0)⊗ Ip (WT

m♦Wm)⊗ Ip

]/
(WT

m♦Wm)⊗ Ip

)
.

(13)

Theorem III.2. Assume that WT
m♦Wm is nonsingular. The

residual matrix Rm, obtained by EGl-GMRES at step m,
satisfies in the following relation

‖Rm‖
2

F =
det[V

T

m+1♦Vm+1]

det[WT
m♦Wm]

(14)

where Vm+1 = [R0,Wm].

Proof: From the orthogonality condition (8), we have

RT
m♦Rm = RT

0 ♦Rm.

By using Proposition I.6 and Eq. (13), we conclude that

RT
0 ♦Rm =

([
RT

0 ♦R0 RT
0 ♦Wm

WT
m♦R0 WT

m♦Wm

]/
WT

m♦Wm

)

= (V
T

m+1♦Vm+1/W
T
m♦Wm).

Or equivalently

RT
m♦Rm = (V

T

m+1♦Vm+1/W
T
m♦Wm), (15)

note that ‖Rm‖
2

F = RT
m♦Rm is a scalar, therefore we can

conclude the result.

Theorem III.3. At step m, assume that Rm denotes the
residual produced by EGl-GMRES methods. Then we have

‖Rm‖
2

F =

det

(
β2 βeT1 Hm

βHT
me1 H

T

mHm

)

det[H
T

mHm]
, (16)

where β = ‖R0‖F .

Proof: Invoking Eq. (6), we derive
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WT
m♦Wm = (Vm+1(Hm ⊗ Ip))

T♦(Vm+1(Hm ⊗ Ip)).

As Vm+1 is an orthonormal basis for EKm, we deduce that
VT
m+1♦Vm+1 = I . Therefore,

W
T
m♦Wm = H

T

m(VT
m+1♦Vm+1)Hm = H

T

mH
.

m (17)

Using Eq. (5), we get

RT
0 ♦Wm = RT

0 ♦[Vm(Hm⊗Ip)+hm+1,mVm+1(e
T
m⊗Ip)]

= (RT
0 ♦Vm)Hm + hm+1,m(RT

0 ♦Vm+1)e
T
m. (18)

It is known that RT
0 = βV1, and V T

1 ♦Vi = 0 for i 
= 1. Hence,
we can rewrite (18) as follows

RT
0 ♦Wm = (RT

0 ♦Vm)Hm = βeT1 Hm. (19)

On the other hand,

V
T

m+1♦Vm+1 =

[
RT

0 ♦R0 RT
0 ♦Wm

WT
m♦R0 WT

m♦Wm

]
. (20)

By substituting Eqs. (17) and (19) in the above relation, the
result follows from Theorem III.2 immediately.

Theorem III.4. Let Vm+1 = [R0,Wm]. Assume that
V
T

m+1♦Vm+1 and WT
m♦Wm are nonsingular matrices, then

residual Rm satisfies the following relation:

‖Rm‖
2

F = 1/(eT1 (V
T

m+1♦Vm+1)
−1e1)

Proof: Since the matrices V
T

m+1♦Vm+1 and
WT

m♦Wm are nonsingular, the Schur complement
(V

T

m+1♦Vm+1/W
T
m♦Wm) is nonzero. Therefore, by

Proposition 1.10, we get

eT1 (V
T

m+1♦Vm+1)
−1e1 = ((V

T

m+1♦Vm+1/W
T
m♦Wm))−1.

Now, the result can be concluded from Theorem 3.3.

Theorem III.5. The residual Rm satisfies the following rela-
tion

4χ(Vm+1)

(1 + χ(Vm+1))2
≤

‖Rm‖
2

F

‖R0‖
2

F

≤ 1,

where χ(Vm+1) is the condition number of the matrix Vm+1.

Proof: It is not difficult to see that (WT
m♦Wm)−1 is a

positive definite matrix. Evidently,
‖Rm‖

2

F = (V
T

m+1♦Vm+1/W
T
m♦Wm)

= RT
0 ♦R0−[RT

0 ♦Wm](WT
m♦Wm)−1[RT

0 ♦Wm]T ≤ RT
0 ♦R0.

Using Theorem III.4, Kantorovich inequality and the fact
that

RT
0 ♦R0 = eT1 (V

T

m+1♦Vm+1)e1,

we have
RT

0 ♦R0 ≥ 1

eT
1
(V

T

m+1♦Vm+1)
−1e

1

≥
4χ(V

T

m+1♦Vm+1)

(1 + χ(V
T

m+1♦Vm+1))
2

RT
0 ♦R0.

Hence the result is fulfilled.

Remark III.6. Theorem III.5 shows that EGl-GMRES is not
convergent as long as the matrix Vm is well conditioned.

IV. NUMERICAL EXPERIMENTS

In this section, we give some numerical experiments to
illustrate the efficiency of our new method. All numerical
procedures were computed in Mathematica 6 and run on an
Intel Pentium IV processor. Also, we will compare our new
method with the method given in [3]. For simplicity we called
the method, proposed in [3], as Ding’s Method.

In all of the numerical results, the matrix F in (1) is
generated such that X is the solution of the matrix equation
AXB = F , where nonzero elements of X are Xii = 1 for
i = 1, 2, ...,min(n, s). The initial guess X0 was chosen such
that X0 = 0 and the tests were stopped as soon as

‖Rm‖F = ‖F −AXmB‖F ≤ 0.5× 10−6.

Example IV.1. Consider the matrix equation AXB = F

where the matrices A and B both taken from Harwell-Boeing
collocation. In fact, we have chosen NOS6 (675 × 675) and
NOS5 (468× 468) from the set Lanpro 1.
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Fig. 1. The matrices A and B are NOS6 and NOS5,
respectively.

The results of performing of EGl-GMRES and Ding’s method
are illustrated in Figures 1 and 2. As seen, the EGl-GMRES
outperforms Ding’s method.

V. CONCLUSION

We introduced a generalized forms for the block Krylov
subspace and global Arnoldi process. Then, an extended global
GMRES (EGl-GMRES) method was presented for solving
the matrix equation AXB = F . In a similar way discussed
in [10], we can propose weighted version of EGl-GMRES
method which can converge faster than EGl-GMRES method.
Extended Gl-FOM for solving the matrix equation AXB = F

has been presented in [11]. In order to accelerate the speed
of convergence, the weighted versions of both EGl-FOM and

1http://math.nist.gov/MatrixMarket/data/Harwell-
Boeing/lanpro/lanpro.html
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EGl-GMRES can be utilized for solving the matrix equation
AXB = F .
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Fig. 2. The matrices A and B are NOS5 and NOS5,
respectively.
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