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The Differential Transform Method for
Advection-Diffusion Problems

M. F. Patrı́cio, P. M. Rosa

Abstract—In this paper a class of numerical methods to solve
linear and nonlinear PDEs and also systems of PDEs is developed.
The Differential Transform method associated with the Method of
Lines (MoL) is used. The theory for linear problems is extended to the
nonlinear case, and a recurrence relation is established. This method
can achieve an arbitrary high-order accuracy in time. A variable step-
size algorithm and some numerical results are also presented.

Keywords—Method of Lines, Differential Transform Method.

I. INTRODUCTION

PRoblems involving diffusion-advection equations arise in
many domains of Science. There are several methods for

solving these equations.
The differential transform (DT) method has been used in

different situations such as eigenvalue problems ([1]) and
initial value problems ([3]). The technique concept was firstly
introduced by J. Zhou ([6]) for electrical circuits. More re-
cently, A. Kurnaz et al. used TD methods for approximating
the solution of a system of ODEs, with good results for smooth
profile solutions.

Using the method of lines (MoL), the DT method can be
extended for solving systems of PDEs. For linear problems,
this method is quite efficient, but for non linear equations with
sharp gradient solutions, the results are not that good.

In section 2 the MoL approach for solving a PDE is
presented, and the eigenvalues which depend on the parameters
that appear in the PDE are studied. This is important for the
stability analysis. Section 3 will be dedicated to the TD method
and its application to both linear and nonlinear problems: a
recurrence relation that allows to approximate the solution is
established, and a variable step-size algorithm is presented. To
end, in section 4 some numerical results that show the behavior
of the method are obtained. One of these problems concerns
a predator-prey model often used in Ecology.

II. THE MOL APPROACH

Consider the one-dimensional diffusion-advection equation

∂u

∂t
= α

∂2u

∂x2
− β

∂u

∂x
+ s(x), (1)

with α, β > 0, 0 < x < X, t > 0, and initial and boundary
conditions given by
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u(x, 0) = i(x), 0 ≤ x ≤ X, (2)

and
u(0, t) = v(t), u(X, t) = g(t), t > 0, (3)

respectively. Assume a rectangular grid with step-sizes Δx =
X
m (in space) and Δt = T

n (in time).
Replacing the spatial derivatives in (1) by the central-

difference approximations

∂2u

∂x2
≈ 1

Δx2
[u(x − Δx, t) − 2u(x, t) + u(x + Δx, t)]

and
∂u

∂x
≈ 1

2Δx
[u(x + Δx, t) − u(x − Δx, t)]

and applying (2) and (3) for t = 0 and at the boundaries, the
first-order ordinary linear system is obtained.

dU

dt
(t) = AU(t) + b(t), t > 0, (4)

where U(t) = [u1(t) . . . um−1(t)]
t. Since u0(t) = v(t)

and um(t) = g(t), it is easy to establish that A is the
tridiagonal matrix 1

A =
1

Δx2
Tridiag

(
α +

βΔx

2
,−2α, α − βΔx

2

)
.

and

b(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
α + βΔx

2

)
v(t)
Δx2 + s(x1)

s(x2)
...

s(xm−2)(
α − βΔx

2

)
g(t)
Δx2 + s(xm−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to solve (4), it is useful to know the eigenvalues
of matrix A. As it is known, these are given by

λj =
2

Δx2

(
−α +

√
ψ cos

jπ

m

)
, j = 1, 2, . . . ,m−1, (5)

where ψ = α2 − β2Δx2

4 .
From (5) it follows that
i. if 0 < βΔx ≤ 2α, then the eigenvalues are real numbers

satisfying

− 2
Δx2

(α +
√

ψ) ≤ λj ≤ 2
Δx2

(−α +
√

ψ).

1Tridiag (a, b, c) = [Tij ] represents a tridiagonal matrix such that Tii = b,
Ti+1,i = a and Ti,i+1 = c.
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ii. if 0 < 2α < βΔx, then the eigenvalues are complex
numbers, λj = − 2α

Δx2 + iγj , where

− 2
Δx2

√
−ψ ≤ γj ≤ 2

Δx2

√
−ψ.

In the next section the linear and nonlinear cases are studied
separately.

III. THE DIFFERENTIAL TRANSFORM METHOD

Following the approach presented in [4], if we define the
k-th order DT of a function Ui(t), at t = tj , by

Yi(k) =
1
k!

U
(k)
i (tj),

then the inverse DT of Yi(k) is

Ui(t) =
+∞∑
k=0

Yi(k)(t − tj)k =
+∞∑
k=0

1
k!

U
(k)
i (tj)(t − tj)k. (6)

A. Linear Problem

In order to illustrate the DT method, consider again the
linear system (4) of m − 1 unknowns, for t ∈ [0, tn],
with initial data u0(x) =

[
u0

1 . . . u0
m−1

]t. Let Y (k) =
[Y1(k) . . . Ym−1(k)]t. Applying DT to (4) the recurrence
relation

(k + 1)Y (k + 1) = AY (k) +
1
k!

U
(k)
i (tj)

can be obtained, and therefore it is easy to establish that

Y (k + 1) =
1

(k + 1)!

[
Ak+1Y (0) +

k∑
r=0

Arb(k−r)(tj)

]
, (7)

with Y (0) = U(0) =
[
u0

1 . . . u0
m−1

]t.
Take the first p+1 terms of the inverse DT, an approximation

to Ui(t), 1 ≤ i ≤ m − 1, can be obtained.
An algorithm for solving problem (4) is, therefore, straight-

forward:
1) Consider a time discretization tj = tj−1 + Δt, creating

subintervals Ij = [tj−1, tj ], j = 1, . . . , n.
2) For j = 0, 1, . . . , n − 1,

a) Compute Y (k) (k = 0, 1, . . . p) as in (7), using
t = tj ;

b) Consider

U(tj+1) ≈
p∑

k=0

Y (k)Δtk.

Important remarks:
1) It is not necessary to impose a fixed time-step. In

fact, we can change step one of the algorithm, for
example, as follows: In the interval Ij+1 = [tj , tj+1]
start by approximating U(tj+1) using time-step Δt, and
denote such approximation by Ũ . Next, compute the
approximation for the same value using time-step Δt

2 ,
and denote it by Ū .

• If ||Ũ − Ū || < ε (ε =tolerance), then accept Δt
and proceed with this time-step in the next interval
([tj+1, tj+2]);

• else compare the approximation for U
(
tj+ 1

2

)
ob-

tained with step-sizes Δt
2 and Δt

4 . This process
should be repeated until the approximation obtained
with time-step Δt

2k is acceptable for some k ≥ 1.
It should be noticed that if, after some iterations, the
same value of Δt is considered to be acceptable, then
it may be reasonable to try to increase the time-step.
However, it must always be tested if the solution ob-
tained with a larger time-step is acceptable, and therefore
constant monitoring (just like it has been done above)
is advised.

2) As far as stability is concerned, it is easy to show that
this method is stable provided |λΔt| < 1, where λ are
the eigenvalues of matrix A (see equation (4)).

3) Note that different values of p can be used in different
time-intervals Ij , depending on the accuracy we want
to achieve. Obviously, higher-order methods are more
expensive.

B. Nonlinear Problem

Consider now the well-known Burger’s Equation

∂u

∂t
+ u

∂u

∂x
= λ

∂2u

∂x2
, λ > 0, 0 < x < 1, t > 0, (8)

with initial and boundary conditions given by

u(x, 0) =
[
1 + exp

( x

2λ

)]−1

and

v(t) := u(0, t) =
[
1 + exp

(
− t

4λ

)]−1

,

g(t) := u(1, t) =
[
1 + exp

(
1
2λ

− t

4λ

)]−1

,

respectively.
It is easy to show that the exact solution of this problem,

for λ �= 0, is given by

u(x, t) =
[
1 + exp

(
x

2λ
− t

4λ

)]−1

.

Discretizing equation (8) using centered differences for the
spatial derivatives, the (non-linear) differential system of m−1
unknowns is obtained:

dU

dt
(t) = AU(t) + b(t) + F (t, U), (9)

where A = λ
Δx2 Tridiag (1,−2, 1),

bi(t) =

⎧⎨
⎩

λ
Δx2 v(t) , if i = 1

0 , if 2 ≤ i ≤ m − 2
λ

Δx2 g(t) , if i = m − 1
,

and F (t, U) contains the non-linear part of the system:
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Fig. 1. Exact solution of problem (8).

Fi(t, U) =

{ 1
2Δx

U1(t)(v(t) − U2(t)) , if i = 1
1

2Δx
Ui(t)(Ui−1(t) − Ui+1(t)) , if 2 ≤ i ≤ m − 2

1
2Δx

Um−1(t)(Um−2(t) − g(t)) , if i = m − 1

.

Applying the differential transform method presented be-
fore, we get the recurrence relation

(k + 1)Y (k + 1) = AY (k) +
1
k!

b(k)(tj) + G(k), (10)

where Y (0) = U(0) = [u(x1, 0) . . . u(xm−1, 0)]t and
G(k) is the differential transform of F (t, U):

Gi(k) =

⎧⎨
⎩

1
2Δx

[
Y1(k) ⊗

(
1
k! v(k)(tj) − Y2(k)

)]
, if i = 1

1
2Δx

[
Yi(k) ⊗

(
Yi−1(k) − Yi+1(k)

)]
, if 2 ≤ i ≤ m − 2

1
2Δx

[
Ym−1(k) ⊗

(
Ym−2(k) − 1

k! g(k)(tj)
)]

, if i = m − 1

.

In the previous expression, operator ⊗ is defined by

R(k) ⊗ S(k) :=
k∑

r=0

R(r)S(k − r).

An algorithm for approximating U(tj+1) is now straight-
forward, just like what has been done in the linear case.

Note that the procedure described for Burger’s Equation can
be extended to other nonlinear problems.

IV. NUMERICAL RESULTS

In this section some numerical results that illustrate the
behavior of the method presented in section 3 are obtained. A
linear and nonlinear single PDE, as well as a system of PDEs
frequently used in Ecology, are studied.

A. Problem 1: Diffusion Equation

Consider the diffusion equation

∂u

∂t
=

∂2u

∂x2
, (11)

with initial conditions

u(x, 0) = sinπx, 0 ≤ x ≤ 1,

and boundary conditions

u(0, t) = u(1, t) = 0, t > 0.

It can be easily verified that the exact solution for this
problem is u(x, t) = e−π2t sin(πx) (see figure 2).

Fig. 2. Exact solutions for the diffusion equation.

Table I contains the EMAX 2 errors for different values of
t obtained by using the TD method with p = 1 and p = 3.

TABLE I
EMAX ERRORS WITH Δx = 10−1 AND Δt = 0.5 × 10−2 .

t p = 1 p = 3
0.1 0.61635 × 10−2 0.302586 × 10−2

0.3 0.25263 × 10−2 0.127124 × 10−2

0.5 0.575319 × 10−3 0.296718 × 10−3

B. Problem 2: Burger’s Equation

As it was presented before, the TD method can be applied to
non-linear PDEs. Figure 3 contains some plots of the results
(exact and approximate solutions) obtained by this method
with order p = 1, Δx = 10−2 and Δt = 10−4 for equation
(8).

The corresponding error values are shown in table II.

TABLE II
EMAX ERRORS FOR PROBLEM (8) WITH Δx = 10−2 AND Δt = 10−4 .

t EMAX error
0.2 0.522059 × 10−1

0.4 0.547426 × 10−1

0.6 0.548488 × 10−1

0.8 0.548533 × 10−1

1.0 0.548534 × 10−1

C. Problem 3: A Predator-Prey Ecological Model

The following system of PDEs models the interaction of a
certain species of predator (v) and preys (u). For simplicity, a
one-dimensional spatial domain is considered.

2EMAX represents the maximum error: EMAX(t) = maxj |u(xj , t) −
U(xj , t)|.

 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

431

Fig. 3. Numerical (dashed line) and exact solution (solid line) of problem
(8) with λ = 0.005 for t = 0.5 (top), and t = 1.0 (bottom).

{
∂u
∂t = Du

∂2u
∂x2 + au − B(u, v)

∂v
∂t = Dv

∂2v
∂x2 − cv + kB(u, v)

. (12)

In this system, au is the growth rate of u, cv is the death
rate of v, k > 0, and B(u, v) is the interaction between u and
v. The quantities Du and Dv are the diffusion coefficients
of u and v respectively. Typically, the Dirichlet boundary
conditions (hostile exterior) are considered:

u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0.

Letting B(u, v) = d(u + v), it is possible to obtain a
system of linear PDEs that can easily be solved using the
algorithm presented in section 2. In fact, discretizing the
spatial derivatives using central differences, and after some
manipulation, the semi-discrete system (which is a particular
case of system (4)) can be obtained.

dW

dt
= AW (t).

In the previous equation, W (t) is given by

W (t) = [u1(t) . . . um−1(t) v1(t) vm−1(t)]
t ∈ IR2m−2,

and A is the (2m − 2) × (2m − 2) block matrix

A =
[

A11 A12

A21 A22

]
,

where

A11 = Tridiag
(

Du

Δx2
, a − d − 2

Du

Δx2
,

Du

Δx2

)
,

A12 = Diag(−d),

A21 = Diag(kd)

and

A22 = Tridiag
(

Dv

Δx2
, kd − c − 2

Dv

Δx2
,

Dv

Δx2

)
.

In the previous expressions, Diag(γ) represents a diagonal
matrix with diagonal elements equal to γ.

The presented algorithm can therefore be applied in a
straightforward way. We used the initial conditions u(x, 0) =
sin(πx) and v(x, 0) = 1

2 sin(πx). As for the values of the
parameters present in (12), the choices were Du = Dv = a =
c = 0.1 and d = k = 1. Figure 4 contains the results of the TD
method when applied to system (12), with order p = 3. For this
choice of the parameters, the predator species increases which
makes the number of preys to decrease (t = 0.6). However,
when the preys vanish (see figure 4 at t = 1.5), this makes the
number of predators to decrease (eventually to extinction).

Final Remarks:
• The TD method is particularly simple to program, has

a rather low computational cost, and an arbitrarily high
order in time.

• The authors have a fully automated Mathematica c© code
for solving all the problems presented in this paper.
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Fig. 4. Preys (solid line) and predators (dashed line) at t = 0 (top), t = 0.6
(center) and t = 1.5 (bottom).

 

 


