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Uniformly persistence of a predator-prey model
with Holling III type functional response

Yanling Zhu

Abstract—In this paper, a predator-prey model with Holling III
type functional response⎧⎪⎪⎨

⎪⎪⎩
ẋ(t) = x(t)(r1(t) − b1(t)x(t)) − c1(t)x

2(t)

kx2(t) + 1
ym(t)

ẏ(t) = y(t)(−r2(t) − b2(t)y(t)) +
c2(t)x

2(t)

kx2(t) + 1
ym(t)

is studied. It is interesting that the system is always uniformly
persistent, which yields the existence of at least one positive periodic
solutions for the corresponding periodic system. The result improves
the corresponding ones in [11]. Moreover, an example is illustrated
to verify the results by simulation.

Keywords—Predator-prey model, Uniformly persistence, Compar-
ison theorem, Holling III type functional response.

I. INTRODUCTION

THE first differential equation of predator-prey model was
introduced by A.J. Lotka (1925) and V. Volterra (1926),

respectively. After that many more complicated but realistic
predator-prey model have been formulated by ecologists and
mathematicians. The dynamic relationship between predators
and their preys has long been and will continue to be one of
the dominant themes in both ecology and mathematical ecol-
ogy due to its universal existence and importance. Recently
predator-prey models with the mutual interference between the
predators and preys have been extensively studied(see [1-7]),
which was introduced by Hassell in 1971. From the obser-
vation Hassell introduced the concept of mutual interference
constant m(0 < m ≤ 1) and established a Volterra model with
mutual interference as follows (see [8-10]){

ẋ = xg(x) − ϕ(x)ym,

ẏ = y
(−d + kϕ(x)ym−1 − q(y)

)
.

In [11] the authors discussed a Lotka-Volterra model with
mutual interference and Holling III type functional response
as follows⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ(t) = x(t)(r1(t) − b1(t)x(t)) − c1(t)x2(t)

x2(t) + k2
ym(t),

ẏ(t) = y(t)(−r2(t) − b2(t)y(t)) +
c2(t)x2(t)
x2(t) + k2

ym(t),

(1)
where x is the size of the prey population, and y is the size of
the predator population; k > 0 is a constant; r1, b1, r2, b2, c1

and c2 are positive functions. In [11] some sufficient conditions
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are obtained for the existence, uniqueness and global attractiv-
ity of positive periodic solution of the model. But the authors
do not discuss the uniformly persistence of the model. As far
as we know, the existence of periodic solution is the special
persistence. So the discussion of the uniformly persistence of
the model is very important and significative.

Motivated by the above reason, in this paper by using
some new analysis techniques and comparison theorem we
investigate the permanence of system (2) as follows⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ(t) = x(t)(r1(t) − b1(t)x(t)) − c1(t)x2(t)

kx2(t) + 1
ym(t),

ẏ(t) = y(t)(−r2(t) − b2(t)y(t)) +
c2(t)x2(t)
kx2(t) + 1

ym(t).

(2)
Obviously, the models in [1-3] are the special cases of (2)

with m = 1, i.e., there is no mutual interference between the
predator and prey. Here, we only investigate system (2) in the
case of 0 < m < 1. It is interesting that the system is always
uniformly persistent.

II. DEFINITION AND LEMMAS

Definition 2.1 System (2) is said to be uniformly persistent
if there exist positive constants mi, Mi, i = 1, 2 and T > 0
such that

m1 ≤ x(t) ≤ M1; m2 ≤ y(t) ≤ M2, for t ≥ T,

for any positive solution (x(t), y(t)) of system (2).

Lemma 2.1 (See [12]) If a > 0, b > 0, and

z′(t) ≥ (≤)b − a z(t), z(0) > 0,

then

z(t) ≥ (≤)
b

a
[1 + (

az(0)
b

− 1)e−at],∀t ≥ 0.

Lemma 2.2 If a > 0, b > 0, and

z′(t) ≥ (≤)z(t) (b − a z(t)), z(0) > 0,

then

z(t) ≥ (≤)
b

a
[1 + (

b

az(0)
− 1)e−bt]−1,∀t ≥ 0.

Proof. From
z′(t) ≥ z(t) (b − a z(t)),
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we can easily obtain

d(z−1)
dt

≤ a − b z−1.

By Lemma 2.1 we have

z−1(t) ≤ a

b
[1 + (

bz−1(0)
a

− 1)e−bt],∀t ≥ 0,

i.e.,

z(t) ≥ b

a
[1 + (

b

az(0)
− 1)e−bt]−1,∀t ≥ 0.

Similarly, we can prove if

z′(t) ≤ z(t) (b − a z(t)),

then

z(t) ≤ b

a
[1 + (

b

az(0)
− 1)e−bt]−1,∀t ≥ 0.

Lemma 2.3 If a > 0, b > 0, and

z′(t) ≥ (≤)zm(t) (b − a z1−m(t)), z(0) > 0,

then

z(t) ≥ (≤)[
b

a
+ (z1−m(0) − b

a
)e−a(1−m)t]

1
1−m ,∀t ≥ 0.

Proof. From

z′(t) ≥ zm(t) (b − a z1−m(t)),

we can easily obtain

d(z1−m)
dt

≥ (1 − m)(b − a z1−m).

By Lemma 2.1 we have

z1−m(t) ≥ b

a
+ (z1−m(0) − b

a
)e−a(1−m)t],∀t ≥ 0,

i.e.,

z(t) ≥ [
b

a
+ (z1−m(0) − b

a
)e−a(1−m)t]

1
1−m ,∀t ≥ 0.

Similarly, we can prove the other part of this Lemma.

Before the main results we give some useful notations as
follows, for any continuous bounded function f defined on
[0,+∞),

fL := inf
t∈[0,+∞)

{f(t)}, fU := sup
t∈[0,+∞)

{f(t)}

and

K1 :=
rU
1

bL
1

+ ε, K2 :=
cU
2

2krL
2

+ ε,

where ε is a positive constant.

III. MAIN RESULTS

Theorem 3.1 System (2) is uniformly persistent.

Proof. The first equation in system (2) leads to that

x′(t) ≤ x(t)
[
rU
1 − bL

1 x(t)
]
,∀t ≥ 0,

which together with Lemma 2.2 yields that

x(t) ≤ rU
1

bL
1

[1 + (
rU
1

bL
1 x(0)

− 1)e−rU
1 t]−1,∀t ≥ 0. (3)

Thus, ∀ε > 0,∃T1 > 0, such that

x(t) ≤ rU
1

bL
1

+ ε =: K1, for t ≥ T1. (4)

On the other hand, the second equation in system (2) implies

y′(t) ≤ y(t)
[
−rL

2 +
cU
2

2k
ym−1(t)

]

≤ ym(t)
[
cU
2

2k
− rL

2 y1−m(t)
]

,∀t ≥ 0,

which together with Lemma 2.3 yields that ∀t ≥ 0,

y(t) ≤
[

cU
2

2krL
2

+
(

y1−m(0) − cU
2

2krL
2

)
e−rL

2 (1−m)t

] 1
1−m

.

(5)
Therefore, for above ε > 0,∃T2 > 0, such that

y(t) ≤ cU
2

2krL
2

+ ε =: K2, for t ≥ T2. (6)

Furthermore, from the first equation in system (2) we get

x′(t) ≥ x(t)
[
rL
1 − bU

1 x(t) − c1(t)x(t)ym(t)
]

≥ x(t)
[
rL
1 − (bU

1 + cU
1 Km

2 )x(t)
]
.

It follows from Lemma 2.2 that there exists a constant T3 ∈
R+ such that

x(t) ≥ rL
1

bU
1 + cU

1 Km
2

− ε, for t ≥ T3.

Noticing that ε is an arbitrary small constant, we can let ε be
so small that

ε <
rL
1

2bU
1 + 2cU

1 Km
2

.

So we get

x(t) ≥ rL
1

2bU
1 + 2cU

1 Km
2

=: K3, for t ≥ T3. (7)

Similarly, the second equation in system (2) yields

y′(t) ≥ y(t)
(
−rU

2 − bU
2 K2 +

cL
2 K3

kK2
1 + 1

ym−1(t)
]

= ym(t)
(

cL
2 K3

kK2
1 + 1

− (rU
2 + bU

2 K2)y1−m(t)
]

.

it follows from Lemma 2.3 that for the above ε there exists
T4 > 0 such that

y1−m(t) ≥ cL
2 K3

(kK2
1 + 1)(rU

2 + bU
2 K2)

− ε, for t ≥ T4.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1156

Let ε be so small that

ε <
cL
2 K3

2(kK2
1 + 1)(rU

2 + bU
2 K2)

,

so we get

y(t) ≥
[

cL
2 K3

2(kK2
1 + 1)(rU

2 + bU
2 K2)

] 1
1−m

=: K4, for t ≥ T4.

(8)
Let T0 = max{T1, T2, T3, T4}, by formula (4), (6), (7) and

(8) we get

K3 ≤ x(t) ≤ K1 and K4 ≤ y(t) ≤ K2, for t > T0.

Now we complete the proof of Theorem 3.1.

Remark If system (2) is a periodic system, then by Brouwer
fixed point theorem we know System (2) is uniformly persis-
tent, which implies that system (2) has at least one positive
T-periodic solution. Thus the result of the existence of positive
periodic solutions is improved, which is weaker than the ones
in [11].

IV. STIMULATION

As an application, we consider the following system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = x(t)(r1(t) − b1(t)x(t)) − c1(t)x2(t)
kx2(t) + 1

ym(t),

ẏ(t) = y(t)(−r2(t) − b2(t)y(t)) +
c2(t)x2(t)
kx2(t) + 1

ym(t),

(9)
where

r1(t) = 5−0.3 sin t, b1(t) = 4+0.5 cos t, c1(t) = 1+0.6 sin t,

r2(t) = 3+0.4 sin t, b2(t) = 4+0.7 sin t, c2(t) = 5+0.8 cos t,

k = 0.5 and m = 2/3.

We easily obtain system (9) is uniformly persistent.
Noticing that this system is a periodic system, system (9)

has at least one positive 2π-periodic solution. In order to verify
our conclusions further, we take the initial values by

(x(0), y(0)) = (0.3, 0.3), (x(0), y(0)) = (0.6, 0.7)

and

(x(0), y(0)) = (1.8, 0.8), (x(0), y(0)) = (2, 0.2),

respectively.
From the following figure, one can easily see that the

positive solutions of system (9) are eventually tend to a
periodic orbits, which yields that the predator and prey are
uniformly persistent.
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Fig. Evolution of the solutions of system (9).
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