
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1341

Abstract—This paper proposes a new of cloud computing for

individual computer users to share applications in distributed
communities, called community-based personal cloud computing
(CPCC). The paper also presents a prototype design and
implementation of CPCC. The users of CPCC are able to share their
computing applications with other users of the community. Any
member of the community is able to execute remote applications
shared by other members. The remote applications behave in the
same way as their local counterparts, allowing the user to enter input,
receive output as well as providing the access to the local data of the
user. CPCC provides a peer-to-peer (P2P) environment where each
peer provides applications which can be used by the other peers that
are connected CPCC.

Keywords—applications, cloud computing, services, software.

I. INTRODUCTION
HE users of distributed communities benefit from the
ability to communicate and share information over the
Internet [5]. An example of such a community would be a

simple instant messaging network. Each user of the network
has a group of friends whom they communicate with. Each
user of an instant messaging network is a member of multiple
communities. Friends of the user have their own independent
contact lists, each forming a users’ distributed community.
 Existing applications for distributed communities revolve
around communication and file-sharing. Networks such as
ICQ and MSN Messenger are a popular way to build
communities of users who wish to exchange conversations
with one another. The file sharing networks such as eMule
attract users who wish to share their files with others. In this
paper, we propose a new application for distributed
communities based on the cloud computing concept [1,2,9],
which we call community-based personal cloud computing
(CPCC). CPCC is a new model of cloud computing which
provides an effective way for a distributed community to use
shared their application resources. The users of CPCC would
be able to share their personal applications with others. This is
different from file-sharing since the users do not download
applications from other users. The CPCC model simply
allows users to execute shared personal applications remotely,
unlike conventional cloud computing where remote
applications run on application servers controlled by service
providers.

Weichang Du is with Faculty of Computer Science, University of New

Brunswick, Canada E3B 5A3. Phone: 506-458-7278; Fax: 506-453-3566; e-
mail: wdu@ unb.ca).

 There are two models available for building distributed
communities. Each of these models provides a way to connect
a group of computers with one another. Once connected the
computers on the network are aware of one another and are
able to share resources across the network. The distributed
community is built on top of such a network. In a distributed
community the users are concerned with communication
between one another and do not need to be aware of the
underlying workings of the network technology which they
are using.
 The first model is based on client-server architecture. In this
architecture machines on the network play different roles. One
machine is designated as a server and provides its resources to
the others which are designated as clients. In a client-server
model members of a community all connect to a central server
which facilitates the communication between them. A web
forum would be an example of a client-server based
community [8]. The web server is responsible for providing
all the services necessary for the community to function. The
users of the community do not share their own computing
resources with others. A distributed community can be built
on top of a client-server model where users would be able to
upload applications to a central server. Once the applications
are installed on the server other users of the community can
execute them remotely on the server. This is basically the
same as the conventional cloud computing model.
 The second model is based on a peer-to-peer (P2P)
architecture. By contrast in the P2P model all peers are equal,
cooperating with one another. Each machine on the P2P
network provides a service to other peers on the network. This
service can be used by any other machine on the network. An
example of such a community is a P2P based file sharing
network [6]. In this community each user serves files to other
users. In a P2P based CPCC distributed community each user
would designate which applications they wish to share with
other users. Each peer would notify other peers of which
applications it is sharing. Each user would then see the
applications shared by the other users and be able to execute
them. The applications execute remotely, on the peers where
the applications are installed. In the P2P model the users build
a community by sharing application resources of their
individual computers. P2P architecture possesses several
advantages over the client-server architecture for building
personal cloud computing communities. This is because each
user acts as a peer and is able to retain the applications which
they wish to share on their local machine. In a client-server
model the user would have to install the applications on a
community server to make them accessible to other users. So

Toward Community-Based
Personal Cloud Computing

Weichang Du

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1342

in a scenario where a user is a member of multiple
communities he or she would be forced to provide a separate
copy of the application for each of the community servers. By
contrast in a P2P model the user would simply share his or her
locally installed application with the communities which he or
she is a part of.
 Conventionally, when an application is installed on a
computer, the application is only available to the users of that
computer. The purpose of distributed communities is to allow
users to communicate and share resources. In a distributed
environment groups of users participate in increasingly
complex interactions. Therefore it is desirable to be able to
share complex resources easily. A common task in a
community environment is for users to share their documents
with one another [4]. When a user chooses to share a
document with the community, others need a way to view this
document. In order to be able to view documents created with
a specific application everybody must have access to that
application. This means that all the members of the
community must have the same application available to them.
When members of a community are not able to share
applications, each user would have to have a copy of that
application. That however is not always possible for a number
of reasons. One reason may be that the users have different
computing environments, and the applications may not be
available for every system. Another problem could be that the
users may not own the required applications. These factors
hinder the ability of the members of a community to share
documents.
 Applications are not among those resources which can be
shared in existing distributed communities [10]. Ideally the
members of a community would have a common software
desktop available to all the users, not matter what types of
personal computers they use. This desktop would contain a
collection of applications shared by the members of the
community. Each member would have an option of making
their local applications available to others. Once a user makes
their applications available, other users of the community
desktop would see those applications on their desktop and be
able to use them.
 Existing cloud computing technologies provide support for
certain aspects of the concept of a community desktop,
however these technologies are not designed to provide a
community desktop. This is because these technologies have
different goals or they are too low level. Technologies such as
grid computing [9] and application, software, platform and
infrastructure as services [3] have a different purpose from the
CPCC model. These technologies are not concerned with
building a community application sharing desktop. In Grid
computing the concern is with distributing computation
between multiple computers in order to speed up computation,
while application services are concerned with remote
application management. Technologies such as remote
execution do not provide an end user solution. Instead they
provide foundation for more sophisticated solutions. Remote
execution technology, only allows remote execution of
applications. This technology does not provide an application
or user level solution for a distributed community desktop.

 The objective of this paper is to investigate distributed
personal application sharing for distributed communities. In
essence personal application sharing is the ability for members
of a community to make their applications usable by other
members of their community. What this means is that if a user
installs an application locally he or she can then make this
application available for other users to use. The users
executing remote applications do not need to install the shared
applications locally on their machines. This is similar to users
sharing files on the network. Shared personal applications
should behave in the same manner; when a user shares an
applications other users would see it on their desktops and be
able to execute it as if it was a local application.

The rest of the paper is structured as follows. Section 2
describes the functional requirements of CPCC. Section 3
describes the architecture of CPCC and the various
components of the system. The implementation of our
prototype CPCC system is discussed in Section 3. Section 4
evaluates the prototype implementation and discusses the
testing results. Section 5 gives concluding remarks.

II. COMMUNITY-BASED PERSONAL CLOUD COMPUTING MODEL
 In CPCC, the P2P component is to provide the functionality
necessary to maintain a P2P network. The peers must be able
to register and resign with a CPCC community. The registered
peers must be able to sign on and off from the community.
This functionality is provided by the CPCC network. The
CPCC community is built on top of the CPCC network. The
CPCC network consists of a group of registered peers. The
member of each peer in the CPCC community provides
applications for the other peers.
 To join the CPCC community, the administrator of a peer
must register it to become a member of the underlying CPCC
network. Conversely the administrator can withdraw the peer
membership from the CPCC network, hence the CPCC
community. After a peer has become a registered member of a
CPCC network, it will automatically join the network as an
active member when it is online. When the peer goes offline it
will automatically leave the network. The members of the
CPCC network can be in two states, which are active and
inactive. An active peer is a peer which is a member of the
network which is online. An inactive member is one which is
a member of the network but is not currently online. When a
new peer joins the CPCC network or an existing member
leaves the network, the rest of the peers must update the list of
active members to reflect that change.
 The members of the CPCC community have two roles. The
first role is as an application provider that provides
applications to be shared by the other members. The second
role is as an application user. The application users make use
of the applications provided by the other members.
 An application provider must have control over how its
applications are shared. The provider controls how many
instances of a shared application can be running at one time.
 The users of a CPCC community must be able to see shared
applications provided by other members and request that the
peers run shared applications.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1343

 In order to share its applications, the application provider
must be able to advertise which applications it is sharing along
with the usage policy on these applications. Once an
application user requests an application the application
provider must be able to execute the application on the
provider’s machine, send the application output to the user’s
machine and receive the user input and send it to the
application. The application running on the provider’s
machine must also be able to access the files local to the
user’s machine during its execution.
 When the application is running, the I/O must be setup
between the application and the user, such that the user is able
to receive the application output, and the application receives
the user input. The application can be terminated in two ways.
The standard way is for the application user to finish using the
application and terminate it.
 When the user terminates the application, the I/O channel
must be closed and the application terminated by its provider.
In the second scenario, the application provider chooses to
terminate the application. In this case the application user
must be informed that the application will become unavailable
and given a chance to save their data before the application
terminates. The number of running instances of the
application is updated and peers are notified that the
application becomes available for use by other members of the
community.
 When multiple copies of an application are shared by
multiple members, the application user needs to be able to
choose the appropriate peer to run the application. A load
balancing mechanism is needed in order to choose on which
peer the application should be run. This decision is affected by
the latency of the connection of a peer and the system load of
the peer. These factors must be taken into account when
choosing a peer to run the application.

III. COMMUNITY-BASED PERSONAL CLOUD COMPUTING
ARCHITECTURE

The CPCC architecture consists of three major subsystems.
These sub-systems are shown in Figure 1. The DAS
(Distributed Application Sharing) subsystem is responsible for
handling the application sharing functionality. It handles the
display and management of remote applications, provides
local applications for remote peers, and manages the status of
the shared applications. The P2P subsystem is used by the
administrator to manage the community memberships. The
Messaging subsystem is used for sending messages to other
members of the community as well as forwarding the
messages from other members to the appropriate components.

A. Messaging Subsystem
 The messaging subsystem of the CPCC architecture is
responsible for processing incoming and outgoing messages
for each peer. The messages are used by the peers to
communicate with other members of the community. The
messaging subsystem consists of the Message Handler and the
Peer Notifier components. The Message Handler is
responsible for processing the incoming messages from the
other peers on the network. These messages are forwarded to

the other subsystems of the peer based on their types. The
Peer Notifier is responsible for forwarding the outgoing
messages, generated by the other subsystems of the peer, to
the other peers on the network.

Fig. 1. CPCC architecture

B. P2P Subsystem
 The P2P subsystem of the CPCC architecture is responsible
for maintaining a consistent network of interconnected peers.
This subsystem contains three components, the P2P UI, the
Peer Controller and the Peer List.
 The P2P UI allows the administrator of the peer to join and
leave the DAS network. The administrator is also able to view
the status of the network members using the P2P UI.
 The Peer List keeps a list of the peers which are members
of the DAS network. Each member can be either active or
inactive. This is used to indicate if the peer is currently
connected to the network.
 The Peer Controller is the core of the P2P subsystem. It is
responsible for processing the member registration and
resignation, as well as monitoring the synchronization
information. When individual peers become available or
unavailable the Peer Controller must process the notifications
sent by those peers and update their status in the Peer List
accordingly. When this peer signs off the P2P Controller
sends a notification to the rest of the peers. When a new
member joins the network, the P2P Controller is responsible
for synchronizing the Peer List. Finally the Peer Controller
synchronizes with the Application List Controller in the DAS
subsystem to notify it which peers are active, or inactive.

C. DAS Subsystem
 The DAS subsystem of the CPCC architecture controls and
manages the CPCC related activities. These activities include

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1344

installing, running, listing and sharing the applications on the
CPCC network. The DAS subsystem consists of the
Application User, Application Server, Application Provider
and the Application Manager components.
 The Application User component provides the interface as
well as the functionality necessary for accessing remote
applications shared in the CPCC community. The Application
User consists of the Client UI, the Client Controller and the
Client IO subcomponents.
 The Client UI provides the user interface for the application
user of a peer. It lists the shared applications currently
available in the CPCC community and allows the user to
execute those applications.
 During the execution of an application the Client IO links
up with the Server IO of the peer providing the application. It
is used to provide a method for the remote applications to
display the output and receive the user input and data.
 The Client Controller is responsible for processing the user
requests forwarded by the Client UI. It also establishes and
manages the client side of the remote application execution.
 The Client Controller retrieves the application information
from the Application List Controller and sets up the Client IO
for use by the remote applications. During the execution of the
application the Client Controller monitors the execution and
termination of the application by either the local user or the
remote peer. When the user or the remote peer closes a remote
application the Client Controller destroys the Client IO
channel for that application.
 The Application Server component provides the
applications for the other members of the community. The
Application Server consists of the Server IO and the Server
Controller sub-components.
 The Server IO provides the IO channel which is used by the
application to send the data to the client. This channel links up
with the client IO channel of the client peer.
 The Server Controller processes the requests from the
remote client peers to execute the local applications. The
Server Controller creates the server IO and initiates the
control and monitoring of the execution and termination of the
local application. It processes the client termination requests
and synchronizes the status of the application with the
Application List Controller component.
 The Application Provider component provides for the
administrator to install and uninstall shared applications. The
Application Provider consists of the Installer UI and the
Install Controller sub-components.
 The Install UI provides the interface necessary for the
administrator to install and manage the applications provided
by the peer.
 The Install Controller controls the installation and un-
installation of applications on the local peer which are to be
shared with other peers. It notifies the Application List
Controller that a new application has become available when
the administrator installs an application, and that an
application is no longer available when an application is
uninstalled.
 The Application Manager component is responsible for
storing and managing the list of applications which are
available on the DAS network as well as managing the list of

locally shared applications. This component consists of the
Application List and the Application List Controller sub-
components.
 The Application List is a container which keeps a list of
available applications as well as their status. It also stores the
list of locally shared applications.
 The Application List Controller is responsible for ensuring
that the Application List is up to date when applications
become available and unavailable as well as when
applications are installed or uninstalled.

IV. PROTOTYPE IMPLEMENTATION OF COMMUNITY-BASED
PERSONAL CLOUD COMPUTING ARCHITECTURE

 A prototype of the CPCC architecture has been
implemented. The CPCC prototype is implemented in the
Linux environment. Linux was chosen due to its network
oriented nature. Linux is designed to be a multi-user system,
meaning that multiple users are able to connect to and run
applications on a Linux workstation either locally or remotely.
The X Window system is designed to be used in a network
centric environment. An X application can be executed
remotely or locally. The network file-system provides the
means for applications to access remote files. This means that
a user running a remote X-Window application is able to use
that application to manipulate local data.

Fig. 2 CPCC prototype implementation

 The combination of these technologies provide the
foundation needed for remote execution of applications, it
therefore makes sense to build the CPCC on top of the Linux
platform. The prototype CPCC system can be deployed on any
Unix system which provides the X Window and the NFS
services.
 The prototype CPCC system is built as a standalone
application which can be launched by the user. The CPCC
application consists of the core Peer and the shell interface
which allows the user to access the peer functions.
 The implementation of the core Peer is broken down into
three components. The remote execution component which
uses the X Window system, the remote data provider
component which is built on top of NFS, and the custom P2P
network component used to connect the CPCC peers. Figure 2
shows the implemented architecture. The remote execution
component spawns applications and sets up their IO so that
the applications are able to communicate with the remote X
Server. The execution of the applications is monitored by the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1345

execution component and the application status is updated
when it starts and exits.
 The NFS component is invoked by the execution
component in order to allow the remote application access to
the local user files. Since there is no readily available P2P
platform designed to allow remote application sharing, the
P2P component of the CPCC implementation has been
implemented to address that need.

 A. Load Balancing

 When copies of the same application are provided by
multiple application providers, it becomes necessary for the
client peer to have a method for selecting the peer which will
execute it. Ideally the application should be run by the peer
which will provide the best possible performance.
 The performance of the application is governed by the load
of the peer which will be executing the application and the
quality of the network connection between it and the client
peer. When a server is under heavy load the user will
experience a slowdown in the application performance.
Conversely if the quality of the network connection is
inadequate then the application is unable to update its remote
display in real-time.
 The quality of the network connection is in turn governed
by the available bandwidth and the latency. The bandwidth
dictates how quickly the data can be sent between the peers,
while the latency represents the delay between the time that
the data is sent and the time it is received. The client peer must
attempt to select the best possible combination of the peer
load, bandwidth, and latency when choosing which peer will
execute the application. This process is called load balancing.
The client component of a CPCC peer provides load balancing
by attempting to choose the server peers which have the
optimal combination of load and latency, when requesting
applications. When a server peer has too many clients then it
will result in undesirable performance for all the clients which
are connected to that peer. On the other hand, if the
connection between the client peer and the server peer has too
much latency then it is a poor choice since it would be
unresponsive.
 Figure 3 shows how load and latency information is
processed in the CPCC implementation. Each peer runs a
thread which checks its load at specified intervals and collects
load information about other peers. When the thread sends an
update request to another peer the time is recorded. The
responding peer returns that time and its load. The time is then
subtracted from the current time to get the roundtrip time. The
average of the round trip time and the load is stored as the
rating of that peer. When the user chooses to run an
application, the peer selects all the peers which are sharing the
application from its list of known peers. The peer with the best
rating is then selected as the application provider.

Fig. 3 CPCC load balancing mechanism

V. EXPERIMENTS OF COMMUNITY-BASED PERSONAL CLOUD
COMPUTING PROTOTYPE IMPLEMENTATION

 We conducted several experiments for the CPCC prototype
implementation. The experiments were chosen to provide an
overview of both functional requirements such as creation of a
P2P network and propagation of applications as well as non-
functional requirements such as remote application
performance.
The objective of the first experiment is to see if a new peer is
able to join an existing network consisting of at least one
active peer. To join the network a new peer must notify the
active peers of the applications it is sharing and retrieve the
list applications shared by the active peers. To test that, we
start each of the peers in order. When each peer connects to
the network we check if the applications shared by that peer
are available on the other peers and vice versa.
 The second experiment is to add and remove an application
on a peer and see if the other active peers become aware of
these changes. To test this scenario the user selects and
removes an application in the list of shared applications on a
peer. When this is done the list of available applications is
checked on the other two peers to see if the application is not
in the list of available applications. The peer selection
algorithm must be tested to see if the peers are selected based
on their performance when multiple peers are sharing the
same application. In order to conduct this test two peers are
loaded with the same application and one of the peers is made
to perform intensive calculations such as applying a
transformation to a large image or copy large amounts of data.
In such a scenario the third peer which is requesting the
application must select the peer which is not under heavy
load.
 The third experiment is to execute an application shared by
a remote peer and check if it is able to access the local data.
This is tested by running a remote text editor shared by
another peer and opening a locally available text file in the
editor. Once the application is executed the non-functional
testing can be performed.
 We used the following application programs to conduct the
experiments: GIMP, Kate, and Firefox. GIMP is an image
editor. The application was used to load large images. This
task requires sending large amounts of data between the peers,
which allows us to experiment the performance of accessing
remote files. The image must be displayed on the user screen,
which tests the sending of complex graphics data. GIMP

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1346

allows applying transformations to the image such as blurring
and scaling of the image. These transformations are CPU
intensive, when such an operation is executed it creates high
load on the peer. The Kate application is a text editor. This
application allows for testing interactive input by the user. The
user is able to open and edit text files with this application.
Firefox web browser offers tests of displaying mixed data.
The browser displays text and raster graphics data from web
pages. The X Window system is optimized for drawing the
GUI widgets remotely as well as transferring text data
between the application and the remote client. However it
cannot easily optimize the transfer of graphics. It is therefore
expected that the applications will require large amounts of
bandwidth to transfer the graphics data. This will affect the
GIMP and Firefox applications. The GIMP must send the
image document across the network and any time changes are
applied to the image a new copy of the image must be sent. It
is expected that this will require a large amount of bandwidth,
especially when dealing with large images. The Firefox
browser needs to send images from web pages to the client
peer. This again may require increased bandwidth. In contrast
the Kate editor is expected to be more consistent in its
responsiveness since it never needs to transfer graphics across
the network.
 The applications were executed under three scenarios. In
the first scenario the load on the peers was low and there was
no conflicting network traffic. The results in this case were
expected to be good. It was expected the application to be
responsive to the user and be able to handle the remote data
without noticeable lag. In the second scenario the bandwidth
on the network were tied up in transferring large data files
unrelated to the CPCC network. It is expected that the
applications not to be responsive under these conditions, the
user might experience lag between input and the updates in
the application interface. When the remote applications must
access local files it is expected that there will be lag while the
contents of the file are transferred to the application over NFS.
The third scenario involved running an application from a
peer which was under high load from computational tasks. It
was expected that the application to exhibit unresponsive
behavior similar to that caused by decreased network
bandwidth. The user might experience lack of the interface
updates on the application or the application may become
completely unresponsive.
 The results of the control test are shown in Table 1 which
shows that the applications behaved in the same fashion when
being run locally and remotely. The notable differences in
behavior were in the different path to the user home directory
between local and remote applications.

When full100Mb/s bandwidth is available for remote
execution there is no perceivable difference between local and
remote applications. The screens of the remote applications
update in real time when the user interacts with the
application.

TABLE I CONTROL TEST RESULTS

 The results of the low bandwidth test are shown in Table
2. As expected the application performance drops as less
bandwidth becomes available. When the available bandwidth
falls below the 10Kb/s threshold the applications stop being
responsive in real time. In other words there is noticeable lag
between the user input and the application interface updates.
Table 2 shows that the times of the tests performed in the
remote applications are slightly greater than those of local
applications. The GIMP test was the most affected as the large
image had to be transferred over the network after the
transformation. The Kate test was not perceivably affected,
since the input can be sent to the application faster than the
user is able to type it. The Firefox test was not significantly
affected by the reduced bandwidth, since the web page data
can still be transferred under 3 seconds. This amount of lag is
not noticeable to the user.

TABLE II HIGH BANDWIDTH TEST RESULTS

 The results of the high load test are shown in Table 3.
Again as in the previous test the application responsiveness
drops off as the peer load increases. In the case of high peer
load the application performance is the worst of the three
scenarios. While there can be observed noticeable lag when
the bandwidth is insufficient, the applications can stop
responding completely when the peer load is high. It shows
that the times of the tests performed in the remote applications
were in fact greater than those of local applications. The
GIMP and Kate applications were most affected by the high
load, while the Firefox application had much lower impact.
This test clearly shows that the load of the peer executing the
applications impacts the performance the greatest.
 As has been observed during the experiments, the
application performance is influenced by the available
bandwidth and the load of the participating peers. The load of
the server peer is the greatest factor in the performance of the
remote applications in these tests. The applications are still
responsive even when high amounts of bandwidth are being
used for other networking. The limitations of the CPCC
prototype implementation are not exclusive to the CPCC
system, but exist in any remote execution scenario.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1347

VI. CONCLUSION
 In this paper, we propose community-based personal cloud
computing as a new model of cloud computing. As such it
introduces several new concepts to the fields of cloud
computing technology. The paper presents the concept of
community application sharing and provides a method for
allowing members of a distributed community to share their
applications with other members of the community. The
shared applications do not need to be copied to and installed
on the client machines in order to be used. Since the
applications are executed by the application provider, CPCC
is potentially platform independent. Members of the
community can use different platforms and operating systems,
yet still be able to use applications shared by other members
of the community.
 While P2P networks have been used for sharing files and
for communication, no networks currently exist which
facilitate the remote sharing of applications. By joining a
community and sharing their applications with each other, the
users of the CPCC network create a community desktop. The
P2P network which backs CPCC does not facilitate file-
sharing as typical P2P networks do, but instead it tracks the
applications available on the network, and the peers which
share these applications. The network provides load balancing
to ensure that the applications are executed on the optimal
peers.

The CPCC architecture is designed using a modular
architecture. The architecture consists of three major
subsystems, which include a remote execution subsystem, a
P2P network, and a file service. Each of these subsystems is
independent of the other subsystem. This allows for an
implementation where each of these subsystems is provided
by a standalone application. In the example of the prototype,
the remote execution is provided by the X Window system.
This subsystem can be substituted for a different remote
execution system without the need to change the other
components.

Community-based personal cloud computing as a new form
of cloud computing provides facility for end-user to end-user
or personal cloud computing, without depending on
applications and services providers on enterprise scale servers.

REFERENCES
[1] David Chappel. A short introduction to cloud platforms: an enterprise-

oriented view. DavidChappell & Associates, Aug. 2008.
[2] Brian Hayes. Cloud computing. Communication of ACM, Vol. 51 No. 7.

July 2008.
[3] Tim Jones. Cloud computing with Linux. IBM, Sep. 2008.
[4] Constantine Mantratzis and Mehmet Orgun. Towards a peer2peer world-

wide-web for the broadband-enabled user community. Proceedings of
the 2004 ACM workshop on Next-generation residential broadband
challenges, pages 42–49, 2004.

[5] Luciano Paccagnella. Getting the seats of your pants dirty: Strategies for
ethnographic research on virtual communities.
http://jcmc.indiana.edu/vol3/issue1/paccagnella.html, June 1997.

[6] Richard Quinn. Peer-to-peer networks. http://www.richard-quinn.com/
quinn-pages/essays/p2p/peer-to-peer.html, March 2004 (accessed).

[7] Calvin J. Ribbens, Dennis Kafura, Amit Karnik, and Markus Lorch. The
Virginia tech computational grid: A research agenda. Technical report,
Department of Computer Science Virginia Polytechnic Institute & State
University, 2002.

[8] Christian Wagner and Narasimha Bolloju. Supporting knowledge
management in organizations with conversational technologies:
Discussion forums, weblogs, and wikis. http://wagnernet.com/tiki, June
2005 (accessed).

[9] Lizhe Wang, Jie Tao, Marcel Kunze. Scientific cloud computing: early
definition and experience. Proceedings of the 10th IEEE international
conference on high performance computing and communication. IEEE
press, 2008.

[10] Klaus H. Wolf, Konrad Froitzheim, and Peter Schulthess. Multimedia
application sharing in a heterogeneous environment. ACM Multimedia
95 – Electronic Proceedings, pages 57–64, November 1995.

