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Abstract—In this paper we introduce a novel method for

the characterization of synchronziation and coupling effects

in multivariate time series that can be used for the analysis

of EEG or ECoG signals recorded during epileptic seizures.

The method allows to visualize the spatio-temporal evolution

of synchronization and coupling effects that are characteristic

for epileptic seizures. Similar to other methods proposed for

this purpose our method is based on a regression analysis.

However, a more general definition of the regression together

with an effective channel selection procedure allows to use the

method even for time series that are highly correlated, which

is commonly the case in EEG/ECoG recordings with large

numbers of electrodes. The method was experimentally tested

on ECoG recordings of epileptic seizures from patients with

temporal lobe epilepsies. A comparision with the results from

a independent visual inspection by clinical experts showed

an excellent agreement with the patterns obtained with the

proposed method.

Keywords—EEG, epilepsy, regression analysis, seizure

propagation.

I. INTRODUCTION

A. Background

Determination of electroencephalogram (EEG) and electro-

corticogram (ECoG) activity propagation is important for the

investigation of information processing in the human brain.

It can be used for the analysis of epilepsy, a disease that

is characterized by a sudded and recurrent malfunction of

the brain that is termed seizure. Epileptic seizures reflect an

excessive and hypersynchronous activity of neurons in the

brain. They originate from a certain region in the brain and

may spread out over other regions. Localization of the epileptic

focus and brain regions affected by seizures is an important

task for the clinical therapy, in particular in the course of pre-

surgical clarification. This is usually done by visual inspection

of raw EEG or ECoG. Numerous methods for the analysis

of activity propagation have been published that may support

clinicians with this task [1]. Important measures hereby are
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the directed transfer function [2], [3], [4] and modifications

of it [5], directed coherence and partial directed coherence

[6], [7], and the ordinary coherence of multivariate spectral

estimates [8]. These methods are based on autoregressive

spectral estimation of multivariate signals [9] and an analysis

of the resulting estimated parametric spectra. More precisely,

multivariate spectra of the signals are estimated under the

assumption of an autoregressive signal model. These are

parametric models that are used in order to avoid overfitting,

which is an important issue since due to short time stationarity

the number of samples for this estimation typically is hardly

limited. The measures mentioned above are calculated with

regard to the obtained parametric spectra.

B. Contributions

In this article we introduce a novel approach for the

characterization of synchronization and coupling effects in

multichannel EEG and ECoG. The method is based on linear

spatio-temporal regressions of individual signals that are gen-

erated from a specific temporal neighborhood of each sample

itself and of a selection of related signals. In contrast to most

similar methods based on autoregressive spectral analysis,

the temporal neighborhood for the regression may include

succeeding samples in addition to preceeding samples. The

regression parameters are obtained as the solution of a Wiener-

Hopf equation using estimated correlation functions.

For the subsequent analysis a linear decomposition of the

regression value into terms related to the individual channels

is used. The variance of these terms is derived, revealing

measures of interactions and dependencies in the multivariate

signal. Employed in a moving window scheme, temporal

changes can be observed, and epileptic seizure evolution can

be visualized. Based on the detailed spatio-temporal analysis,

several measures characterizing synchronization and coupling

effects from a more global perspective can be derived. A

distinctive characteristic of our approach is the direct statistical

analysis of the regression values and their linear terms, i.e.,

the regressands are linearly decomposed into terms associated

to the involved signals. Based on the variances of these

terms we introduce extrinsic-to-intrinsic power ratio (EIPR)

and total extrinsic-to-intrinsic power ratio (TEIPR), which

are physiologically meaningful and valuable measures. In

contrast, numerous methods like directed transfer function,

directed coherence, etc., are fundamentally different in that a

multichannel autoregressive process is estimated and spectrally

analyzed.
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The proposed regression analysis will be used to investigate

ECoG signals of epileptic seizures. First results indicate that

the proposed analysis allows for fast and reliable detection

of interictal periods in the ECoG of epileptic patients and

effective examination of seizure propagation.

II. METHOD

A. Multichannel regression.

In the following analysis we consider a set of K real-valued

signals xk[n] with time indices n ∈ Z and channel indices

k = 1, ...,K, representing uniformly sampled multichannel

EEG/ECoG recordings. The signals are assumed to be zero-

mean and short-time stationary, i.e., stationary within some

time windows n = mT +1, . . . ,mT +N used for the analysis.

Temporal changes of the signal features can thus be observed

from window to window, however, for simplicity and without

loss of generality we restrict to the case m = 0.

For each signal xk[n] a regressand is defined as

x̂k[n] , x̊k[n] + ~xk[n],

which is the sum of an intrinsic regression term defined as

x̊k[n] ,
∑

p∈P

ak,k[p] xk[n − p]

and an extrinsic regression term defined as

~xk[n] ,
∑

l∈Lk

~xk,l[n]. (1)

The extrinsic regression term ~xk is the sum of the partial

extrinsic regression terms, which are defined as

~xk,l ,
∑

q∈Q

ak,l[q] xl[n − q]

and reflect the contributions from channels xl in ~xk[n]. The

channels contributing to ~xk[n] are chosen according to an

extrinsic channel set Lk = {lk,1, lk,2, . . . , lk,Lk
}. This set is

separately defined for each regressand x̂k and contains Lk

enumerated values.

The temporal positions of regressors are separately de-

fined for intrinsic and extrinsic terms in the intrinsic lag

index set P = {p1, p2, . . . , pP } and the extrinsic lag index

set Q = {q1, q2, . . . , qQ} respectively, which are equal for all

channels. Note the difference in the definitions of x̊k and ~xk,k!

B. Wiener estimator.

Given the above definition of the multichannel regression,

one question is how to find meaningful regression parameters

a
(p)
k,l . Assuming knowledge on the temporal and spatial second

order statistics of the signals xk[n], a common approach

therefore is to construct a linear estimator minimizing the

mean squared error (MSE)

σ2
ek

= E
{

|ek[n]|2
}

,

ek[n] , xk[n] − x̂k[n].

These MSE parameters ak,l[p] are obtained by solving a

Wiener-Hopf equation Rxk
ak = rxkxk

, with regression pa-

rameter stacked into the vector 1

ak =
[

ak,k [n−p1] . . . ak,k [n−pP ]

~aT
k [n−q1] . . . ~aT

k [n−qQ]
]T

,

~ak[n] =
[

ak,lk,1
[n] . . . ak,lk,Lk

[n]
]T

,

and covariance functions Rxk
and rxkxk

defined as2

rxkxk
= E (xk[n] xk[n]) , Rxk

= E
(

xk[n]xT
k [n]

)

(2)

with stacked signal sample vector

xk[n] =
[

xk [n−p1] . . . xk [n−pP ]

~xT
k [n−q1] . . . ~xT

k [n−qQ]
]T

,

~xk[n] =
[

xlk,1
[n] . . . xlk,Lk

[n]
]T

.

Note that using this notation the regressand can easily be

written as x̂k[n] = a
T
k xk[n].

In practice, covarinace functions Rxk
and rxkxk

have to

be estimated, e.g., by means of a sample covariance function

which requires sufficiently large sample sizes N . On the other

hand, large N reduces the temporal resolution of the method

and may conflict with the assumption of short-time stationarity.

C. Temporal neighborhood.

The lag index sets P and Q define the temporal neighbor-

hood for intrinsic and extrinsic regressors respectively. For

classical autoregressive modelling, these are usually chosen

equal, i.e., either P = Q = {1, . . . , P} for forward predictions,

or P = Q = {−P, . . . ,−1} for backward predictions. Since

our aim is not to construct autoregressive process models,

these sets can be chosen more generally. E.g., 0 may be in-

cluded in the extrinsic lag index set Q, i.e., Q = {−Q, . . . , 0},

or Q = {0, . . . , Q}. Note that this does not make sense

for P, meaning that xk[n] would be a regressor for x̂k[n].
Moreover it is possible to define temporally symmetric sets,

resulting in P = {−Pmax, . . . ,−Pmin, Pmin, . . . , Pmax},

Q = {−Q, . . . , Q}. Another interesting option is to use empty

intrinsic lag index sets P = {} for pure extrinsic regressions.

D. Spatial neighborhood.

Choosing an extrinsic channel set and thus the spatial neigh-

borhood of the regression is a crucial part of this multichannel

regression analysis. This is due to the fact that the signals

xk[n], and in particular those that are spatially close together,

often have strong correlations causing the correlation matrix

Rxi
to be ill-conditioned. This problem is morover impaired

by the fact, that Rxi
in practice has to be estimated and

therefore is affected by an estimation error. For large numbers

of channels K, limiting L(k) to a smaller subset may then

greatly improve stability of the algorithm. However, it is not

1·T denotes transposition.
2E(·) denotes expectation.
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Table I
ALGORITHM FOR THE SEARCH OF AN OPTIMUM EXTRINSIC CHANNEL SET.

For each regressand x̂k[n], k = 1, ..., K:

Extrinsic channel set: L = {}
Extension pool: K = {1, ..., K}
Caluclate cost function σ2

e

∀k ∈ K: calculate cost function σ2
e(k) with extrinsic

channel set Lk = L ∪ k

Optimum extension: kopt = arg mink σ2
e(k)

Extend extrinsic channel set: L← L ∪ kopt

Reduce extension pool: K← K\kopt

Update cost function: σ2
e = σ2

e(kopt)
while σ2

e − σ2
e(kopt) > θ

Extrinsic channel set for channel k: Lk = L

n − q1n

time

l1

l2

l3

k

ch
an

n
els

n − qQ

Fig. 1. Example for the illustration of temporal and spatial distribution
of regressors: k = 2, L(k) = {1, 3, 5}, P = {−5, ...,−2, 2, ..., 5}, Q =
{−5, ..., 5}.

obvious how to choose this subset to improve stability without

removing strongly coupled channels that could indicate im-

portant connections. One obvious method would be to choose

the channels of a number of spatially nearest electrodes. Note

that this subset is constant over time and requires information

about spatial positions of the electrodes. If these positions are

not known one can calculate ordinary correlation coefficients

and choose a number of signals with the highest correlation

coefficients. Here, L(k) can be recalculated for each window

separately. Due to the high correlation of the signals chosen

with these methods, the problem of potentially ill-conditioned

correletion matrices may arise. Therefore, we propose an

iterative procedure for determinig L(k) and x̂k[n] for each

channel k according to table I. This algorithm is initialized

with an empty extrinsic channel set L, which is then iteratively

extended according to an optimality criterium. In our case,

this optimality criterium is the best reduction of the MSE of

the residual σ2
k = E

(

|xk − x̂k|
2
)

. Alternatively the Akaike

Information criterion (AIC) [10] or any of its numerous

variants, like e.g. corrected AIC [11] could be used in this

algorithm for the search of an extrinsic channel set. Although

this might be a more elegant criterion it has not yet been tested

in practice.

Fig. 1 illustrates an example for temporal and spatial dis-

tributions of the regressors xl[n − q] (white squares) in the

regressand x̂k[n] for xl[k] (black square). The gray squares

indicate the positions of samples not used in the regression.

E. Definitions

The aim of the method described here is the identification

of mutual dependencies of multivariate signals, indicating

synchronization and coupling effects of brain regions during

epileptic seizures. A number of methods using autoregressive

modeling have been proposed, analyzing cross correlations

and cross spectra of an multichannel autoregressive models

for the signals. In contrast to these approaches, we perform

a direct analysis of the linear terms of the regressand, which

are associated to the respective channels. The variance of the

intrinsic regression term can be written as

σ2
x̊k

= E

{

|̊xk[n]|
2
}

=

pP
∑

p=p1

pP
∑

r=p1

ak,k[p]rxk
[p − r]ak,k[r]

with the auto-correlation function rxk
[p] =

E (xk[n] xk[n − p]). Similarly, the variance of the partial

extrinsic regression term is

σ2
~xk,l

= E

{

|~xk,l[n]|
2
}

=

qQ
∑

q=q1

qQ
∑

r=q1

ak,l[q]rxl
[q − r]ak,l[r],

and the variance of the extrinsic regression term is

σ2
~xk

= E
{
∣

∣~xk[n]2
∣

∣

}

=

qQ
∑

q=q1

qQ
∑

r=q1

~aT
k [q]R~xk

[q − r]~ak[r]

with the cross correlation function rxk,xl
[q] =

E (xk[n] xl[n − q]). Note that σ2
~xk

can not be written as

a sum of σ2
~xk,l

, unless spatial correlations are zero (cf. (1)).

Using the correlation matrices in (2) these expressions can

alternatively be written in matrix notation as3

σ2
~xk,l

= r
T
xkxk

R
−1
xk

[[

0 0

0 Sl

]

⊙ Rxk

]

R
−1
xk

rxkxk

with the QLk × QLk selection matrix Sl that masks the ele-

ments corresponding to rxl
[q] in Rxk

. Similarly, the variance

of the intrinsic regression term can be written as

σ2
x̊k

= r
T
xkxk

R
−1
xk

[[

1P 0

0 0

]

⊙ Rxk

]

R
−1
xk

rxkxk
,

and the variance of the extrinsic regression term as

σ2
~xk

= r
T
xkxk

R
−1
xk

[[

0 0

0 1QLk

]

⊙ Rxk

]

R
−1
xk

rxkxk
.

F. Synchronization measures

Based on the expressions introduced in the previous section

we introduce two novel measures for the synchronization of

EEG or ECoG. First we introduce the extrinsic-to-intrinsic

power ratio (EIPR) as

ηk,l ,
σ2

~xk,l

σ2
x̊k

,

3An all-zero matrix is denoted by 0, a P ×P all-one matrix is denoted by
1P , and ⊙ stands for element-wise multiplication.
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which quantifies coupling or synchronization effects of specific

signal pairs. It is high for large partial extrinsic regression

variance and small intrinsic regression variance, i.e., when the

signal xl yields significant information about xk.

The second measure introduced here is the total extrinsic-

to-intrinsic power ratio (TEIPR) defined as

~ηk ,
σ2

~xk

σ2
x̊k

,

which relates the power of the total extrinsic regression terms

to the power of the intrinsic regression terms. In contrast to the

pair-wise EIPR, this is a global quantity defined for each signal

separately. TEIPR is a measure for the total synchronization

of one signal with neighboring brain regions and can be

utilized for temporal allocation of epileptic seizures and spatial

determination of epileptic foci.

III. RESULTS

In this section we present numerical results from a propa-

gation study of eplileptic seizures. Electrocorticogram (ECoG)

recordings analyzed in this study are taken from two patients

in the Vienna General Hospital, Department of Neurology,

“Patient A” and “Patient B”. Both patients had temporal lobe

epilepsies and the data were obtained in the course of a pre-

surgical clarification, each lasting for approximately one week.

For the time of two seizures extrinsic-to-intrinsic power ratios

(EIPR) were calculated, whereby the following preprocessing

was used. The ECoG signals were referenced to an electrode

oustside of the seizure focus, line interference was removed

using an appropriate notch filter at 50 Hz, and the signals were

were downsampled from 256 Hz to 128 Hz sampling rate. The

EIPR was calculated within windows of length 6 s and with

temporal neighborhood index sets P = {−5,−4,−3, 3, 4, 5}
for the intrinsic and Q = {−5,−4, ..., 5} for the extrinsic

regressors. The results obtained are illustrated in Figs. 2 and 3

for a temporally equidistant sequence of the windows, starting

15 s before seizure onsets in steps of 6 s. The times written in

each graph quote the end of each window, i.e., the time when

a result can be obtained in an online implementation of the

algorithm. In each graph the circles represent the spatial layout

of the electrodes, and the arrows indicate values of EIPR

between two electrodes. Arrows for values below a certain

treshold were removed in order to obtain clear pictures. This

treshold was manually chosen. Note that thick, dark arrows

represent high values and thin, light arrows represent low

values of EIPR. Arrows pointing from electrode k to electrode

l represent ηk,l.

IV. DISCUSSION

According to clinicians who visually inspected the raw

ECoG signals, the seizure onset in the ECoG of Patient A

(cf. Fig. 2) was at 12:45:45 in the right hemisphere of the

brain (left side in the figure). Then seizure activity spreads

out over the left hemisphere (right side) at 12:46:04. Later

activity reduces on the left hemisphere, and finally stops at the

right hemisphere at 12:47:00. Comparing these results with

the EIPR it can clearly be seen that they are in excellent

agreement. Although the seizure start is indicated with a slight

latency, the propagation of activity from one to the other

hemisphere can nicely be visualized. Furthermore, the drop at

the end of the seizure is consistent with the clinicians results.

The seizure onset for the data of Patient B was identified

by clinicians at 08:06:34 in the right hemisphere (left figure

side) and spreads over to the left hemisphere at 08:06:46. The

seizure activity first reduces in the left hemisphere and finally

the seizure stops at 08:08:30. Here, our visualization indicates

synchronization on the focus channels even slightly before the

first signs are visible in the raw ECoG. We note that this

might be an early synchronization indicator. The seizure start

is clearly indicated by strong EIPRs corresponding to the left

hemisphere. Also the spread-over to the right hemisphere is

nicely visualized. Finally, the end of this seizure is clearly

visible, since no activity is indicated after 08:08:31.

Our results suggest that the arrows point to the “source of

activity” and start from brain regions that are synchronized

to this “source”. Looking to a temporal sequence of graphs,

the activity propagation can be tracked over time. Our method

therefore has the potential to assist clinicians with their diag-

noses and thereby serve as an objective measure. This however

requires further research in order to investigate properties of

EIPR measure in more detail.
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12:47:42 12:47:48 12:47:54

12:47:24 12:47:30 12:47:36

12:47:06 12:47:12 12:47:18

12:46:48 12:46:54 12:47:00

12:46:30 12:46:36 12:46:42

12:46:12 12:46:18 12:46:24

12:45:54 12:46:00 12:46:06

12:45:42 12:45:4812:45:36

Fig. 2. Partial extrinsic-to-intrinsic power ratio illustrated during an epileptic seizure of Patient A starting at 12:45:51 and ending at 12:47:00.
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08:08:25 08:08:31 08:08:37

08:08:07 08:08:13 08:08:19

08:07:49 08:07:55 08:08:01

08:07:31 08:07:37 08:07:43

08:07:13 08:07:19 08:07:25

08:06:55 08:07:01 08:07:07

08:06:37 08:06:43 08:06:49

08:06:25 08:06:3108:06:19

Fig. 3. Partial extrinsic-to-intrinsic power ratio illustrated during an epileptic seizure of Patient B starting at 08:06:34 and ending at 08:08:30


