
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:5, 2011

753

 

 

  
Abstract—In order to make conventional implicit algorithm to be 

applicable in large scale parallel computers , an interface prediction 
and correction of discontinuous finite element method is presented to 
solve time-dependent neutron transport equations under 2-D 
cylindrical geometry. Domain decomposition is adopted in the 
computational domain.The numerical experiments show that our 
parallel algorithm with explicit prediction and implicit correction has 
good precision, parallelism and simplicity. Especially, it can reach 
perfect speedup even on hundreds of processors for large-scale 
problems. 
 

Keywords—Transport Equation； Discontinuous Finite Element

； Domain Decomposition； Interface Prediction And Correction 

I. INTRODUCTION 

IME-dependent neutron transport equation is a kind of 
important differential equation in nuclear and scientific 
application. High dimension particle transport calculation 

is very complex and huge scale scientific calculation problem. 
The 2-D cylindrical geometry time-dependent neutron 
transport equations are actually six dimensional, i.e.: two 
dimensions for the independent variables ),( rx  in the 
geometry space; two dimensions for the independent variables 

),( μξ  or ),( ωξ  in the neutron direction space; one 
dimension for group g  and one dimension for time t , with a 
large amount of computation and storage. To complete the 
calculation of time-dependent neutron transport problem, need 
high performance computer and efficient calculation method. 
The rapid development of large scale parallel computer has 
offered favourable condition for efficient parallel algorithm 
research of high dimension particle transport equations. 
     Along with the development of parallel computers and 
parallelizing techniques, the research in neutron transport 
parallel calculation had got great progress[4-13]. The transport 
equation calculation include computing of space grid ,angle 
direction and energy group , The parallelism of angular domain 
decomposition for Sn approximation is restricted by the 
number of discrete ordinates, similarly the scalability of 
parallel algorithm about energy variable is restricted by the 
number of energy groups for multigroup transport equation. 
Only base on geometry spatial domain decomposition, then we 
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can realize scalable parallel calculation for two dimension 
neutron transport problems[7 ， 8]. However, the parallel 
degree of geometry space is limited for the implicit discrete 
method, since the system of discrete ordinates equation on a 
cell should not be solved for a particular direction, until these 
discrete ordinates equations have been solved on all their 
‘upstream’ neighbors. Numerical experiments demonstrate that 
when the domain number increasing to certain scale, the 
latency times for idle are longer and parallel efficiency drops. 
Evidently, for the implicit discrete method of neutron transport 
problems, the strong data correlation and algorithmic serial 
essentiality become bottleneck problems of efficient parallel 
calculation. Therefore, we must research new parallel 
algorithm to be applicable in large scale parallel computers.  

For time-dependent neutron transport equations under 2-D 
cylindrical geometry, we presented a new parallel algorithm 
with interface prediction and correction of discontinuous finite 
element method based on domain decomposition. On the 
interface , an upwind explicit scheme is applied to give an 
incident boundary condition ,which enables the subdomain 
problem iterated independently[9,10]. The interface values are 
updated by an implicit scheme concurrently in iteration. The 
scheme shows good precision , parallelism and simplicity in 
numerical experiments. 

The remainder of this paper is organized as follows. In 
Section 2, the discontinuous finite element method is presented 
for time-dependent 2-D cylindrical geometric transport 
equation. In Section 3, we describe the construction of interface 
prediction and correction method based on spatial domain 
decomposition. In Section 4, we provide numerical results for 
parallel computing of 2-D spherical cylindrical geometric 
transport equation. In the final section, we offer summary and 
conclusions. 

II. 2-D CYLINDRICAL GEOMETRIC TRANSPORT EQUATIONS 
The time-dependent, mlui-group neutron transport equations 

under 2-D cylindrical coordinate are written as follows: 
1 1( ) ( )g g tr

g g g g sg fg dg
g

D
r Q Q Q

V D t r r x r
ϕ ϕμ ∂ ∂ϕ ξ ζϕ σ ϕ

∂ ∂ ∂ω
∂

+ + − + = + +  

Gg ,,2,1 L=                    (1) 
Where 

   gϕ is the particle angular flux, 

max( , , , , ) ( , ) D 1 1 0 0 t Tg g x r t x rϕ ϕ ξ ω ξ ω π= ∈ − ≤ ≤ ≤ ≤ ≤ ≤； ； ； ；  
G is the group number,  D is system region, gV is neutron 

velocity, tr
gσ is the total macroscopic cross-section,  
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ωξμ cos1 2−=  and ωξζ sin1 2−=  are angular 

variables, dgsgfg QQQ ,,  are fission source , scattering source 

and external source respectively， 
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For the equations (1), the free boundary conditions 

  0|),,,,( =
ΩΓtrxg μξϕ  

is given on neutron-inward boundary ΩΓ  of each 

direction Ω
r

, where    { }0;),( <⋅ΩΓ∈=Γ ΓΩ nrx vv
 

Γ  is the outer boundary of the calculated region. 

The discretizing way is: 

1) Time discretization: Implicit difference scheme. 

2) Direction discretization: Sn discrete ordinate method. 

3) Geometry discretization: Discontinuous finite element 

method. 

The discrete equations on a triangle or quadrangle geometry 

grid are: 

⎩
⎨
⎧

+++∑
=

+ ),()(),(),( ,,,
1

)1(
,,, j

i
smsmj

i
sj

i
sm

I

i
ismg N

r
NN

x
NN

r
N γμ

∂
∂ξ

∂
∂μϕ ν

 

⎪
⎭

⎪
⎬

⎫

><−
Δ

++
+

jiji
n

g

rt
g NNNN

tV
,),()2(

2
1σ

 

∑ ∑ ∑ ∑ ∑
= = = = +=

→→
⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ

+++=
I

i

L

l

g

g

l

k

n
ismg

n

g

dg

G

g

v
ismg

f
ggg

vk
ismgl

k
l

ls
ggji

tv
QRNN

1 0 1 0
,,,

2
1

1

)(,0
,,,

)(,
,,,,

,

,

0

,

,,,,,

2
)(),( ϕφσνχφσ

 

><−
⎪
⎭

⎪
⎬

⎫+
+ ++

+

−+

jsmg
ismg

j
i

sm

smsm

sm NN
r
N

w
s

,),( )1(
,,

)1(

,,
2
1

,
,

,
2
1

,
2
1

,
νν χϕ

ββ
δ

   (2) 

Where 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==

==−

=
−

+

NsMm
w

NsMm

s
sm

sm

s
ssm

sm

,...,2,1,...,2,1,
2

,...,2,1,,

,

,
2
1

2
1,

, β

μ

γ
, 

⎪⎩

⎪
⎨
⎧

==

==
= +

NsMm

NsMm

s

s
sm

,...,2,1;1,...,,1

,...,2,1;,0
2
1

,δ ， 

smssm ,
2
1,

2
1 2

1
±±

Δ= ςξ
π

β   

The scalar product of volume integral  

   ∫∫=
pD

rABdxdrBA ),(  

The scalar product of area integral  
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pD−∂  is the neutron-inward boundary of the geometry grid 

pD  corresponding with the direction Ω
r

. 

iN ( Ii ,,1L= ) are the basis functions (linear or bilinear) 

on a certain geometry grid. 

ν  is iterative degree, and the time superscript 
2
1

+n  is 

omitted. 
Formula (2) can be abbreviated to： 
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(3) 
 Where k  is grid index, E  is the term independent of 

2
1

+n  row neutron flux. 

The brief course of the calculation for 2-D discontinuous 

finite element (DFE) equations: For each direction, the grid 

queue must be arranged by 0<⋅Ω nms
rr

 , and the solving 

according to the queue proceeds. Thus, when a grid is in 

calculation, the inflow segment of the boundary is either a part 

of outer boundary or a segment of the boundary belonging to 

the calculated neighbor grid. 

The boundary condition for each grid is from either outer 

boundary condition or flux on the corresponding inflow grid. 

For each energy group, each SN discrete direction and 

each grid , only an I-order (I=3 or 4)  algebraic equation is 

needed to solve. 

III. PARALLEL ALGORITHM WITH INTERFACE PREDICTION AND 
CORRECTION 

According to the continuity condition for neutron flow, 

the inflow flux of a mesh equal to the corresponding outflow 

flux of neighbor meshes. It is obvious that, for each angular 

direction, at first, only these finite elements located at the 

boundary of domain with known boundary inflow flux can be 

solved (See Figure 1). 
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Fig. 1 The boundary relation of meshes 

For an inner subdomain, as Figure 2 shows, the solving is 

dependent on its “upper elements” D1 and D2. Only after 

solving the DFE equations on D1 and D2, the DFE equations 

on D can be solved. 

 
Fig. 2 The boundary relation of subdomains 

Thus, it is inevitable that there is the data interrelation among 
the neighboring meshes. In order to resolve the exchange of 
message among the processors, a layer of assistant meshes is 
added along the boundary of each subdomain to store the flux 
message on these meshes of the neighbor subdomains. 

For a certain discrete direction mΩ
r

, the solving sequence of 
meshes is determined by the flow-line of neutrons. Meanwhile, 
aimed at the 2-D cylindrical geometry, there are the dependent 
relations among the directions. Then the parallel SN sweep 
algorithm is designed, the main steps of the algorithm are: 

1) Calculate the in-degree for each cell, and insert the cell 
with zero in-degree into a queue according to some inserting 
algorithm. 

2) Extract one cell from the queue. For its element and 
direction, for all groups, solve Equation (3), then subtract 1 
from the in-degree of each downstream cell. 

3) Send the flux of the cell to the processor owning the 
downstream cell. 

4) Receive all messages from other processors. 
5) Insert new cells with zero in-degree into the queue. 
 For a given direction msΩ

r
,when compute on the cell D, the 

angle flux inflow to D must be known, i.e. 
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n
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known, it is solved in current iterative, so compute on the cell D 
must wait for the computing on 1D   and 2D . If D is in the 

different domain with 1D  and 2D , then we must transmit 
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Fig. 3 Incidence boundary of sub-domain 

So, for each sub-domain, the data relativity of grids is 

represented by 
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ksmg  of current iterative, then we can 

adopt interface prediction and correction method for 
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ksmg of the domain boundary cells, .ie., for the 

domain boundary cells D, if the ‘upstream’ cell 1D  are in the 

different domain ,but the ‘upstream’ cell 2D  are in the same 

domain with D(Fig.3), substitute 
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We use originally implicit method (3) to compute 
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For *
,,, 1 DDsmg →χ , we use interface prediction and 

correction method: 
1) Prediction: for the first iterative of 1+nt  time layer, solve 

the flux 
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2
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Dsmg   on 1D  by using explicit method to get 
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2)Correction: after the fisrt iterative of 1+nt  time layer, 

solve the flux
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Dsmg   on 1D  by using implicit scheme to 

get *
,,, 1 DDsmg →χ  for correction. 
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(6) 
Then, the strategy of the parallel method with interface 

prediction and correction of discontinuous finite element 
method to solve 2-D cylindrical geometry time-dependent 
neutron transport equations is as follows 
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Step 1.  Given the discrete initial value and incident flux 
on boundary; 

Step 2.  Divide the physical space region into 
nonoverlapping sub-domains and note the information of 
boundary grids ; 

Step 3.  Arrange the grid solving queue according to each 
angle direction in each sub-domain, and get the boundary grids’ 
relations of neighbouring domains; 

Step 4.  Compute the downflow flux values on the 
boundary cells of each sub-domain by explicit prediction 
scheme (5); 

Step 5.  Send the flux of the cell to the processor owning 
the downstream cell, and receive all messages from other 
processors; 

Step 6.  Solve the implicit equation (3) using explicit 
prediction values as inflow boundary conditions to get 

)1(
2
1

,,,

++ ν
ϕ

n

ksmg  on each sub-domain in parallel; 
Step 7.  The iterative procedure stop when the iterative 

precision at 1+nt  time layer is satisfied, else go to step 8; 
Step 8.  Compute the downflow flux values on the boundary 

cells of each sub-domain by implicit scheme (6), go to step 5. 

IV. NUMERICAL RESULTS 
Two test problems in 2-D cylindrical geometry are 

calculated on large parallel computers. The first problem has an 
analytic solution which is related to time variable only. The 
second problem describes a typical transport problem without 
known analytic solution.  

4.1. Test 1 
Given an analytic solution on a sphere as follows:  

t
h e−=ϕ with the source item  

)()()1( hsdhfdh
tr
g

g
dg QQ

v
Q ϕϕϕσ −−+−= .  

 This problem is about a pure absorber.  
We assume the macroscopic total cross-section tr

gσ  to be 1 

cm and particle velocity to be scm μ/103  , and use the S4 
quadrature set and the number of  spatial grid is 16384. The 
computing end time T is sμ1.0  

Let 
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  Then define the maximum error:   
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The numerical results of numerical precision and the 

speedup are presented in Table 1. The parallel computations are 
implemented individually with 1, 16, 32, 64, 128, 256 and 512 
processors. From these data we can observe that the parallel 

numerical precision of the interface prediction and correction 
of discontinuous finite element method maintain the precision 
of single processor. From 1 to 512 processors, the new method 
can reach exceed linear speedup profiting from the Cache . 

 
TABLE I   

NUMERICAL RESULTS FOR PROBLEM 1  

 

4.2. Test 2 

This problem is a time-dependent sphericity model，the 
material is uranium.  

8.809r cm= ，
318.71 /g cmρ = ， 

 
235 20.247286 10 /n g−= × ， 

Define λ  is the system neutron increasing constant of 
time:      
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Where gN  is the number of group g and time t     

 Define relatively error is     ⎟
⎠
⎞⎜

⎝
⎛ −=

old

newabserr λ
λ1  

The numerical results are presented in Table 2.The compute 
region is divided into 16384 spatial grids. The parallel 
computations are implemented individually with 1, 16, 32, 64, 
128, 256 and 512 processors. For this problem, the parallel 
numerical precision of the interface prediction and correction 
of discontinuous finite element method maintain the precision 
of single processor. The speedups, which increase exceed 
linearly with the number of processors, are shown as Table 
II.For 512 processors, the new method causes some degration 
in the rate of convergence,but the fractional increase in the num  
ber of iterations it takes to converge is usually substantially 
smaller than the relative speedup achieved by simultaneously 
beginning sweeps from all the sub-domains. 

 
 
 
 
 
 

 
 

CPU  Maxerr
( 410−× ) 

Average-
err( 610−× ) 

Iterative 
number 

compute 
time (s) 

speed
up 

1 0.1535 0.8680 2000 47160 1.0 
16 0.1535 0.8680 2000 1790 26.3 
64 0.1535 0.8680 2000 414.5 113.8 

128 0.1535 0.8680 2000 202.6 232.8 
256 0.1535 0.8680 2000 100.3 470.2 
512 0.1535 0.8680 2000 64.89 726.8 
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TABLE II  
 NUMERICAL RESULTS FOR PROBLEM 2 

V. SUMMARY AND CONCLUSIONS 
This paper is motivated by the need to obtain precise and 

efficient solutions to time-dependent 2-D cylindrical geometric 
transport equation in large scale parallel computers . We have 
presented a parallel algorithm that uses a combination of spatial 
decomposition with interface prediction and correction of 
discontinuous finite element method. On the interface , an 
upwind explicit scheme is applied to give an incident boundary 
condition ,which enables the subdomain problem iterated 
independently. The interface values are updated by an implicit 
scheme concurrently in iteration. Moreover, the parallel 
method is easy to reach load balance, and needs only local 
communication.  Numerical results shows good precision , 
parallelism and simplicity for 2-D cylindrical geometric 
transport equation. Especially, it can reach perfect speedup 
even on hundreds of processors for large-scale problems.The 
further study will aim at constructing higher order numerical 
scheme to improve computational precision and efficiency with 
less computing time for interface prediction and correction. 

REFERENCES 
[1]  [ 1 ]  W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron 

transport equation, 
[2] Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973. 
[3] [2]  F.Lianxiang and Y.Shulin. Researches on 2-D neutron transport 

solver NTXY2D. Technical report, Institute of Applied Physics and 
Computational Mathematics in Beijing, 1999.10. 

[4] [3]  E.E. Lewis, W.F. Miller. Computational Methods of Neutron 
Transport [M]. New York: John Wiley & Sons Publisher, 1984.  

[5] [4]  R.S.Baker, K.R.Koch. An Sn algorithm for the massively parallel 
CM-200 computer [J]. Nuclear Science and Engineering, 1998, Vol.128
：312-320.  

[6] [5]  S.Plimpton, B.Hendrickson, S.Burns, W.McLendon. Parallel 
algorithms for radiation transprt on unstructured grids [A]. Proceeding of 
SuperComputing’2000.  

[7] [6]  Shawn D Pautz. An Algorithm for Parallel Sn Sweeps on 
Unstructured Meshes [J]. Nuclear Science and Engineering ,2002 ,140 (2) 
:111-136. 

[8] [7]  Mo Z, Fu L. Parallel flux sweeping algorithm for neutron transport on 
unstructured grid. Journal of Supercomputing, 2004, 30(1): 5-17. 

[9] [8]  WEI Jun-xia , YANG Shu-lin, FU Lian-xiang. A Parallel Domain 
Decomposition Method for Neutron Transport Equations Under 2-D 
Cylindrical Geometry[J]. Chinese J Comput Phys, 2010, 27(1):1-7. 

[10] [9]  Yuan Guangwei, Hang Xudeng. A parallel algorithm for the particle 
transport SN method with interface corrections [J]. Chinese J Comput 
Phys, 2006, 23(6):637-641. 

[11] [10] Zhenying Hong,Guangwei Yuan, Aparallel algorithm with interface 
prediction and correction for spherical geometric transport equation. 
Prog.Nucl.Energy,51,268-273(2009). 

[12] [11] Zhang Aiqing , Mo Zeyao. Parallelization of the 2D multi-group 
radiation transport code LARED-R-1 [J]. Chinese J Comput Phys, 2007, 
24(2): 146-152. 

[13] [12] Yang Shulin, Mo Zeyao, Shen Longjun. The Domain Decomposition 
Parallel Iterative Algorithm foe the 3-D Transport Issue [J].  Chinese J 
Comput Phys, 2004, 21(1): 1-9. 

[14] [13] T.A. Wareing, J.M. McGhee, J.E. Morel and S.D. Pautz, 
Discontinuous Finite Methods Sn Methods on 3-D unstructured Grids, in 
Proceeding of International Conference on Mathematics and 
Computation, Reactor Physics and Environment Analysis in Nuclear 
Applications, 1999, Madrid, Spain. 

[15] [14] SWEEP3D:3D Discrete Ordinates Neutron Transport Benchmark 
Codes, 
http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/sweep3d_rea
dme.html. 

 
 

 

CPU 
numb

er 

λ  err Iterative 
number 

compute 
time (s) 

speed
up 

1 -0.25298 -- 1000 26418.5 1.0 
16 -0.25286 0.05% 1000 813.7 32.5 
64 -0.25265 0.13% 1000 184.4 143.3 

128 -0.25223 0.29% 1000 87.0 303.7 
256 -0.25208 0.35% 1000 44.54 593.1 
512 -0.25305 0.03% 1082 32.7 807.9 


