
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3138

Review and Experiments on SDMSCue

Ashraf Anwar

Abstract—In this work, I present a review on Sparse Distributed

Memory for Small Cues (SDMSCue), a variant of Sparse Distributed
Memory (SDM) that is capable of handling small cues. I then conduct
and show some cognitive experiments on SDMSCue to test its
cognitive soundness compared to SDM. Small cues refer to input
cues that are presented to memory for reading associations; but have
many missing parts or fields from them. The original SDM failed to
handle such a problem. SDMSCue handles and overcomes this
pitfall. The main idea in SDMSCue; is the repeated projection of the
semantic space on smaller subspaces; that are selected based on the
input cue length and pattern. This process allows for Read/Write
operations using an input cue that is missing a large portion.
SDMSCue is augmented with the use of genetic algorithms for
memory allocation and initialization. I claim that SDM functionality
is a subset of SDMSCue functionality.

Keywords—Artificial intelligence, recall, recognition, SDM,
SDMSCue.

I. INTRODUCTION
PARSE Distributed Memory (SDM) is a content
addressable memory developed by Kanerva [16]. SDM

was proposed to be a tool and model of human associative
memory [8, 13, 15, 16, 17]. SDM is a content-addressable
memory technique that relies on similar memory items tending
to be clustered together in the same region or subspace of the
semantic space. SDM has been used before as associative
memory or control structure for software agents.

SDM has proven successful in modeling associative
memories [3, 20, 21, 22]. Associative memory is typically
needed for intelligent and cognitive autonomous agents [12,
20]. In particular, both cognitive software agents [9] and
“conscious” software agents [10] need such a memory. One of
the “conscious” software agents, which I have worked with,
IDA (Intelligent Distribution Agent), uses SDMSCue. I use
SDMSCue in IDA to learn and keep associations between
various pieces of information pertaining to the task of
personnel distribution [11]. Auto-associative SDMSCue is
indeed capable of recovering and recalling information using
an arbitrary small part of that information; when the original
SDM would fail. In general, we need to use SDMSCue
whenever we want to overcome the pitfall in original SDM; of
failing to handle small cues [4]. I conducted some cognitive
experiments using SDMSCue and SDM; pertaining to recall,
and recognition. The test results reveal superiority of
SDMSCue over SDM in many aspects. I claim that except for
chance convergence in original SDM; functionality of SDM is
a subset of that of SDMSCue.

II. THE MOTIVE FOR SDMSCue

In many cases the need for associative memory to be able

Ashraf Anwar is with the Gulf University for Science and Technology,
Hawalli, 32093 Kuwait (e-mail: anwar.a@gust.edu.kw).

to handle and retrieve associations based on arbitrary small
cues is crucial. For example; in IDA [11], we are often faced
with a situation in which we need to retrieve associations
based on very small pieces of information like part of email
address, part of name, or social security number. Humans have
no problem retrieving associations based on arbitrary small
cues. While original SDM modeled many aspects of human
memory very successfully [16], it failed miserably in dealing
with the issue of retrieving associations based on short-length
or small cues. Without such a capability, we are missing a key
human-like feature [4, 7]; in associative memory models that
are based on SDM. Hence, the role of SDMSCue comes to the
scene.

SDMSCue uses an elegant space projection mechanism to
enlarge the short-length input cue successively until it is large
enough for a Read/Write from/to the entire full-length SDM
semantic space [4]. The enlargement process uses successively
increasing subspaces for reads/writes. To be noted is that both
read and write operations in SDM involve the selection of an
access circle to read from, or to write to. The selection is
typically based on similarity between the input Read/Write
cue, and the hard locations addresses within the access circle.

III. SDM FOR SMALL CUES

Here, I present SDM for Small Cues, SDMSCue, and
contrast it when applicable to the original SDM.

A. Approach
Using a variant of SDM capable of handling small cues,

we are able to overcome the main shortage in Kanerva's model
[16]. One of the main problems with Kanerva’s SDM is that
the input cue has to be of sufficient length to be able to
retrieve a match. The reason is that the entire input cue is
considered and the hamming distance between its entire
binary string representation and various hard locations in the
access sphere or access circle is considered when reading or
writing. So if we have a small cue, the missing large part is
almost guaranteed to sink the known small cue in terms of
hamming distance, thus being indifferent to all words or hard
locations in the SDM memory.

In many cases, we are faced with a very distinguished and
unique memory cue that is considerably small in size than the
typical 65-80% requirement in Kanerva’s work. We -humans-
are able to retrieve relevant information associated with such a
small cue efficiently. For SDM to be able to function
similarly, we need a variant of SDM that is capable of
handling small cues. When faced with retrieval based on a
substantially short cue like part of name, part of email address,
or social security number, this calls for the use of SDMSCue.

The goal is to retrieve appropriate corresponding word
matching such a small cue. Using subspaces with increasing
sizes in a progressive way, we are able to read and retrieve the
whole original corresponding memory item using only a small

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3139

portion of the cue with arbitrary small length as a start.
However, the number of levels needed for Read/Write
depends upon the original size of the small cue. The smaller
the original input cue is; the more levels of Read/Write
needed. Time complexity of the operation is linearly
proportional to the number of levels needed. Thus, the genuine
gain in performance is quite superior to the added time
complexity.

B. Design of SDMSCue
The idea is to project the original SDM semantic space

onto a smaller subspace corresponding to the small cue. In
such a projection, only memory locations with matching
content to the small input cue contribute to Read/Write
operations.

By projecting the space onto a smaller subspace, we are
able to use the smaller subspace for much higher recall rate for
a considerably small cue. The gain occurs mainly because of
constraining and limiting only hard locations that match the
small cue part and allowing only them to contribute to the
subspace for Read/Write operations.

The result obtained from a Read/Write operation at one
stage; is used to access a larger subspace including the input
cue along with associations retrieved that typically range from
25% to 35% of the former input cue length. Such associations
are retrieved from the contents of the hard locations that were
selected, and contributed to the former subspace Read/Write.

By repeating the above process for increasingly larger
subspaces and levels of projection, we eventually get to access
the entire semantic space for Read/Write.

To be noted is that during write operations, actual writing
to hard locations occurs only at the final level when writing to
the entire space. All preceding access takes place for
association retrieval only. So both read and write operations
are the same (reading and retrieving associations) until the
final level when we access the entire space. In both cases
association buildup takes place to enlarge the small input cue
gradually until the length obtained is large enough to read
from the entire semantic space. In the last level or phase, if it
is a read operation, we simply retrieve associations and obtain
the matching entire word. If it is a write operation, the
enlarged input cue is written to all hard locations within the
access circle of the last phase, which is part of the entire
semantic space.

C. How SDMSCue Works
Using SDMSCue, we can manage to access (Read/Write)

with small cues. The process goes in phases in reading or
writing operations. When accessing, in the first phase, we read
from a small sub-space that corresponds to the input small cue
plus extra association information. This read –if convergent-
yields a longer word due to the association of information.
This resulting word is then used as the input to the second
phase. In the second phase, a similar process takes place
reading from a larger subspace using the output result from the
first phase as input. This process continues until the subspace
being read from is the entire original semantic space.

For example, as shown in Table I, we start by reading with
a small cue of length 17% of the whole memory word size,
using a 0.35 ratio for associations. Then the reading operation

yields a larger word, due to adding associations, of length 23%
of the whole memory word size. Then using the 23% retrieved
and formed word as input to the second phase and adding 0.35
associations to it, a 31% word is obtained. The process
continues until in the final level (6th level in the example), a
77% retrieved and formed word is used to access (read from or
write to) the entire original semantic space.

To be noted is that the time complexity of a Read/Write
operation is linearly proportional to the number of levels
involved in a Read/Write. However, the overall effect is quite
minor compared to the gain of the approach.

Assume an original cue length of m% of the whole
memory word size; where m ranges from 0 to 100. When
reading/writing from SDMSCue, some associations are
retrieved for the small cue at each level resulting in a length
gain.

TABLE I
MULTI-LEVEL READING OPERATIONS FROM SDMSCue

Level

Input
Word

Length

Output
Word

Length

Output Word

1 17 23 |-----|
2 23 31 |--------|
3 31 42 |-------------|
4 42 57 |-------------------|
5 57 77 |---------------------------|
6 77 100 |-----------------------------------|

Let i be the percentage of the length gain at each level.

Adding the gain in length, i, to the next input cue in each
successive Read/Write level, the maximum number of
Read/Write levels N; is given by:

100 ≤ m * (1 + i) N; Last word length needs to be 100%, i.e.
last read needs to occur from the whole space

⎡ ⎤)1log(/)/100log(imN +=⇒

⎡ ⎤)1log(/)log2(imN +−=⇒

For m = 17 (17% original small cue length), i = 0.35 (35%), as
in Table I,

⎡ ⎤ ⎡ ⎤ Levels. 6 = 5.9 = 1.35 log / 17) log - (2 = N

For m = 10 (10% original small cue length), i = 0.3 (30%),

⎡ ⎤ ⎡ ⎤ Levels. 9 8.78 1.3 log / 10) log - (2 N ===

For m = 1 (1% original small cue length), i = 0.3 (30%),

⎡ ⎤ ⎡ ⎤ Levels. 18 17.55 1.3 log / 1) log - (2 N ===

SDMSCue Latency Factor [4] is the average number of
levels needed for Read/Write for a certain word distribution to
be written to or read from SDMSCue. Such a factor is both
semantic space dependent, and distribution dependent.

SDMSCue makes use of GA for more efficient space
initialization and hard locations allocation [1, 2]. The
uniformity of the semantic space is –in general- favorable to
better recall rates for SDMSCue as well as SDM.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3140

D. SDMSCue Convergence and Divergence
We need to develop a notion for overall convergence and

divergence in case of Read/Write from SDMSCue. For overall
convergence to occur, all phases or levels of Read/Write must
converge. Overall divergence occurs if at any phase or level,
the Read/Write operation diverges. In other words,
convergence in SDMSCue is the Boolean “AND” operation of
the convergence in all levels.

Convergence|SDMSCue = AND For All i(convergence|level i)
Divergence |SDMSCue = NOT (Convergence|SDMSCue)

The issue of false-positive (SDMSCue recalls some word

based on an input cue that was never stored before) might be
of concern here in case of memory convergence. Two cases
need to be considered. Firstly, when the original input cue is
of sufficient length, SDMSCue reverts in functionality to
SDM reading with one level only. Secondly, when the input
cue is small, it requires multiple reading levels. In this case, on
average, this should not increase the rate of false-positive
since the final reading occurs using a sufficiently long cue
from the full memory (similar to SDM). The input for the
reading operation at the last level should project to the same
original small input cue with a high probability if number of
reading levels is limited. However, in some extreme cases,
false-positive rate might increase compared to SDM if each
successive level of reading in SDMSCue presents noise
(toggles one or more bits) to the bits of the very original small
input cue. On the other hand, we should consider the huge
gain achieved by employing SDMSCue vs. SDM, which
greatly outweighs the issue of false-positive. On the other
hand, false-negative is not really a concern. This is because
SDM typically diverges, except for chance convergence, when
presented with a small cue.

E. Implementation
The following is a short note about the current

implementation of SDM with small cues (SDMSCue). Java
Visual Symantec Café Professional Edition was used for
testing and implementation of the code for SDMSCue in
Windows XP environment. The hardware was a Pentium 2.4
GHz with 1GB RAM. The results obtained are based on recall
performance and memory trace used for comparison tests of
SDMSCue vs. original SDM. Runs were performed
repetitively 100 times on average for each case. Other
implementations and implementation platforms may be
considered in future research.

IV. EXPERIMENTS

The experiments conducted here relate to SDMSCue vs.
SDM cognitive capabilities [4, 6]. Mainly recall and
recognition are considered here. More tests on other cognitive
capabilities including, but not limited to, deliberation and
reasoning will be target for future research..

A. Recall
The following comparison between SDMSCue and regular

SDM was done using the same memory parameters, and
memory trace [19]. Memory performance in terms of various

operational parameters was considered for SDMSCue vs.
original SDM. The various memory parameters: Memory
Volume, Cue Volume, Similarity, and Noise were considered.

Memory Volume is the average number of features in the
memory trace. In other words, it is the average number of 1’s
in a memory word. It measures the richness of the memory
trace. Memory volume is a vital parameter in the distinction of
the memory trace. It signifies the distribution of various
memory words over the semantic space.

Retrieval Volume is the same as Memory volume but for a
single input cue or input word to memory. It has almost the
same effect on retrieval as memory volume.

Similarity is a measure of how similar, in average, are the
words written to memory. The more similar the words written
to memory are, the more clustered contiguously they are, and
the harder it is to retrieve them. The hamming distance is the
measure of similarity in SDM as well as SDMSCue. The less
the hamming distance between two memory words, the more
similar the memory words are. However, there is a difference
between the similarity of hard locations and the similarity of
written memory words. Using genetic algorithms [1], a
uniform distribution of the hard locations in SDM can be
obtained.

Noise determines the number of noise bits, on average, in a
memory word. It reflects directly on the reliability of retrieval
of stored memory words.

Table II shows the distribution of the percentage of input
cues in memory trace, used for the test, with respect to cue
length, measured as percentage of the whole length. For
example, according to Table II, 35% of the cues in memory
trace do not exceed 20% in length (small cues), while 25% of
the cues in memory trace have length greater than 20% but
less than or equal to 40% (low medium cues). Also only 10%
of the input cues have length greater than 70% (longest cues).
The second column gives the number of levels needed for
Read/Write operation using the formula devised in section 4.3.

TABLE II

DISTRIBUTION OF INPUT CUES IN MEMORY TRACE WITH RESPECT TO CUE
LENGTH

Cue Minimum-
Maximum Length as
% of the Whole Word

Average # of
Read/Write Levels

Needed

Percentage in
Memory

Trace
 Less than 20% 8 35%

20%-40% 5 25%
40%-50% 3 10%
50%-60% 2 10%
60%-70% 2 10%
70%-100% 1 10%

Average Length = 36% Latency Factor = 5

As shown in Table II, for the chosen distribution, the

overall average cue length is 36%, and the average number of
levels for Read/Write is 5. So, for the distribution at hand,
SDMSCue has a latency factor of 5.

To be noted is that this distribution was chosen to illustrate
the advantage of using SDMSCue when considerable
percentage of the input cues is short in length, i.e. missing too
many parts. By no means is this the only distribution that can
illustrate the idea, but just the one we settled upon after some
trials to illustrate the benefit of using SDMSCue when
considerable number of the input cues is short in length.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3141

However, varying the distribution will definitely change the
gain achieved from using SDMSCue over SDM.

Table III shows a comparison between the recall in SDM
vs. SDMSCue. Various combinations of the memory trace
parameters were considered. Each was varied on a Low/High
scale.

The gain achieved from using SDMSCue is illustrated in
the last two columns. The first gain, Recall Gain, measures the
improvement in successful recall or Hit in SDMSCue over
original SDM.
 The second gain, Decrease in Miss in Recall, measures the
decrease in miss rate in SDMSCue over the original SDM. In
other words, it measures the improvement in SDMSCue over

SDM in terms of decrease in the percentage of unsuccessful
recall, or memory miss rate.

To be noted is that a T-Test of statistical dependence [18,
23] shows statistical significance between the recall of
SDMSCue and that of SDM.

In Table III, Row 4, which represents poor recall
conditions (Low Memory Volume, Low Retrieval Volume,
High Similarity, and High Noise), shows large improvement
in successful recall in SDMSCue over original SDM.

Row 13, on the other hand, represents near optimal recall
conditions (High Memory Volume, High Retrieval Volume,
Low Similarity, and Low Noise). Row 13 corresponds to 36%
recall gain.

TABLE III

COMPARISON BETWEEN GA-INITIALIZED SDM AND GA-INITIALIZED SDMSCue. MEMORY VOLUME AND RETRIEVAL VOLUME (H=60%, L=10%).
SIMILARITY BETWEEN MEMORY ITEMS (H=70%, L=30%). NOISE (H=30%, L=10%).

Memory
Volume

Retrieval
Volume Similarity Noise SDM Hit %

in Recall
SDMSCue

Hit % in Recall Recall Gain %

Decrease in
Miss in
Recall
Gain %

1 L L L L 6 44 633 40
2 L L L H 5 40 700 37
3 L L H L 7 39 457 34
4 L L H H 5 34 580 31
5 L H L L 9 56 522 52
6 L H L H 8 50 525 46
7 L H H L 11 49 345 43
8 L H H H 5 42 740 39
9 H L L L 74 98 32 92
10 H L L H 66 93 41 79
11 H L H L 61 93 52 82
12 H L H H 54 89 65 76
13 H H L L 73 99 36 96
14 H H L H 56 95 70 89
15 H H H L 60 96 60 90
16 H H H H 50 92 84 84

For decrease in miss in recall gain, recall conditions play

similar role. Row 4, which represents poor recall conditions,
shows 31% gain. Row 13, which represents near optimal recall
conditions, shows 96% gain.

In general, results in Table III show that the higher the
volume of the memory and/or the retrieval volume, the better
the recall for both memories, SDMSCue and SDM. However,
when the memory volume is quite low, the recall gets really
affected. The degradation in performance is more grace in
SDMSCue than it is in SDM. This has to do with the fact that
SDMSCue projects the space on the part of the cue that exists,
thus greatly moderating the typical negative effect of low
memory volume.

With respect to similarity, the more distinct the memory
words are, i.e. the less similarity, the better the recall in
general. This makes absolute sense since SDM in general; and
accordingly SDMSCue as well, uses hamming distance as a
measure of inclusion of memory words in access sphere or
access circle for Read/Write. The more similar memory words
are, the closer they become in terms of hamming distance.
Hence, they tend to get clustered together and cause crowding
effect in the semantic space, where they may sink each other
in certain regions of the semantic space.

To be noted, though, is that such clustering effect in the
semantic space resulting from highly similar items being

written to SDM or SDMSCue is somewhat similar but not the
same as clustering of hard locations when a poor initialization
technique is used for hard locations assignment. The later is
more crucial to the functioning of SDM or SDMSCue, and
should be application independent. Whereas the former
depends on the memory trace fed to SDM or SDMSCue, and
hence is application dependent by nature. While there is a
straightforward way to guarantee uniformity of hard locations
assignment in the semantic space of SDM or SDMSCue [2],
there is no immediate direct solution to overcome clustering in
SDM or SDMSCue due to similarity of words or memory
items written to it.

As expected, for the effect of noise on recall; the lower the
noise, the better the recall in general. Noise can however be
sunk to a degree as a result of the distributed nature of
Read/Write, as well as the abstraction achieved from using
SDM and SDMSCue.

Fig. 1 contrasts the performance of SDMSCue vs. SDM in
terms of hit rate in recall. The top line shows the recall hit rate
in SDMSCue. The bottom line shows the recall hit rate in
SDM. The X-axis is for the 16 different memory parameters
configurations from Table III. The Y-axis is for the percentage
of Recall Hit Rate.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3142

SDMSCue vs. SDM Hit Rate % in
Recall

0

50

100

150

1 3 5 7 9 11 13 15

Memory Parameters
Configuration

Re
ca

ll
H

it
% SDM Hit % in

Recall
SDMSCue Hit
% in Recall

Fig. 1 SDMSCue vs. SDM hit rate % in recall

In this comparison, the 16 different memory configurations

in Table III were used, e.g. configuration 9 is (HLLL) which
stands for High Memory Volume, Low Retrieval Volume,
Low Similarity, and Low Noise. For each configuration, the
same memory trace was applied to both SDM and SDMSCue.
Then recall was tested with the same set of patterns with
lengths distributed according to Table II. Recall hit rate for
each case was calculated and is shown as percentage over the
vertical axis in Fig. 1.

It is clear from Fig. 1 that SDMSCue consistently
outperforms SDM in terms of recall under all conditions. This
comes at no surprise since SDMSCue uses SDM functionality
in addition to the elegant space-projection to filter out non-
relevant memory locations. SDMSCue also uses a far more
superior GA approach for uniform space initialization and
allocation of hard locations [1].

Fig. 2 shows the gain of SDMSCue over original SDM
using the results and figures from Fig. 1. The results were
obtained using Fig. 1. The bottom area shows the gain in
recall. The upper area shows the improvement in recall
measured as the decrease in miss rate in recall.

The bottom area is the recall gain in SDMSCue over SDM.
The gain percentage of SDMSCue over SDM is defined by:
100*(SDMSCue Hit% – SDM Hit%) / (SDM Hit%). For
example, for memory parameter configuration 1, the gain is
100 * (44 - 6) / 6 = 633%.

The upper area is the improvement in recall measured as the
decrease in miss rate in recall. This is defined by: 100*(SDM
Miss% – SDMSCue Miss%) / (SDM Miss%). For example,
for memory parameter configuration 1, the improvement as
decrease in miss rate is 100*(94 – 56) / 94 = 40%. For
memory parameter configuration 13, the improvement as
decrease in miss rate is 100*(27 – 1) / 27 = 96%.

Fig. 2 SDMSCue recall gain over SDM

B. Recognition
For recognition [7, 19], the “meaning” of information or

data is recognized; rather than the mere information or data.
Per-se, when SDMSCue enhances recall as shown in 5.1,

recognition has a room for improvement. Firstly, the retrieval
or recall based on arbitrary small cue is one way to achieve
simple recognition. In this retrieval, a meaning could be stored
in SDMSCue with a key or cue for access and retrieval. In
other words, when SDMSCue goes into a reading cycle
expanding the input cue through level-reading; this is arguably
a form of this simple recognition. Secondly, more
sophisticated recognition can be achieved more easily with
SDMSCue vs. SDM. Any form of meaning association,
conceptualization, or abstraction can make use of the small
cue extra functionality provided by SDMSCue to some extent.

An accurate measure of recognition improvement is
typically domain dependent. However, a crude general
measure of recognition and/or recognition improvement may
be devised for our test purposes as follows:

a. for SDM, build two sparse distributed memories: auto-
associative and hetero-associative

b. in the first, the auto-associative memory, store
concepts in a certain domain. For example, in
computer literacy domain, what is external storage,
what is data communication, etc…

c. in the second, the hetero-associative memory, store
elaborations or meanings of the concepts stored in b.

d. the output from b is fed as input to c. This way, the
concept retrieved is elaborated upon or meanings for it
are extracted.

e. for SDMSCue, build two corresponding memories:
one auto-associative, and one hetero-associative and
store same data. Same operations as in b, c, and d.

f. start retrieval from both SDM and SDMSCue with an
input cue.

g. examine the chain of associations retrieved from the
hetero-associative memory for SDM vs. the one for
SDMSCue. This chain or sequence may represent the
thought sequence provoked by an idea or a concept
that flashes in mind. Deliberation, reasoning, and
introspection [5, 14] on this sequence is yet another
task that can be performed.

h. The hamming distance between the input cue and the
mean word of the output convergent sequence from

SDMSCue Recall Gain over SDM

0
200
400
600
800

1000

1 3 5 7 9 11 13 15
Memory Parameters

Configuration

Gain % Decrease in Miss
in Recall Gain %
Recall Gain %

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3143

hetero SDMSCue vs. hetero SDM is considered. The
lesser, the better.

i. The sum of the hamming distances between the input
cue and the first K words in the output sequence,
divided by K (K=10 for results shown). Hetero
SDMSCue vs. hetero SDM are considered and shown.
The lesser, the better.

When comparing recognition between SDMSCue and

original SDM according to the method described above, a
system like the one shown in Fig. 3 may be used.

A sample run of the system using the same data set used in
recall experiments along with words for the hetero-associative
version yields the results shown in Fig. 4, and Fig. 5. Top line
is for hetero SDM, and bottom line is for hetero SDMSCue.
The figures show hamming distance as a function of input cue
word length for SDMSCue vs. SDM. Fig. 4 is for the
hamming distance between the input cue and mean word of
the output convergent sequence (as described in h) on the Y-
axis, vs. the input cue length on the X-axis.

As the graph shows, SDMSCue significantly has a lesser
hamming distance between the input cue word and the mean
word of the hetero SDMSCue output sequence. This is true for
all values of the x-axis which represents the lengths of the
input cue words.

Fig. 3 The layout for the comparison of recognition of SDMSCue

vs. SDM

On the other hand, SDM does not even approach the

performance of SDMSCue until the input cue length is of
sufficient length as shown in Fig. 4. In such a case, SDM
converges to match SDMSCue performance as shown. The
huge gap is in part due to the big word size (10,000 bits) and
the starting input cue length of 10 bits. As might be expected,
if the start length of the input cue is large, the gap will not be
as huge as shown in Fig. 4.

100
200

500

1000

5000

100000
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

100 200 500 1000 5000 10000

SDMSCue SDM

Fig. 4 Hamming distance for mean word as a function of input cue

word length

Fig. 5 is for the average hamming distance (sum of

hamming distances between the input cue and the first K
words in the output sequence, divided by K); as described in i,
on the Y-axis vs. the input cue length on the X-axis. Again,
the performance of SDMSCue vs. SDM is contrasted. Due to
similar arguments, SDMSCue again outperforms SDM for all
small cue lengths. SDM only aspires to catch up with
SDMSCue for sufficiently large input cue words. Again the
gap is huge due to the same arguments given earlier.

100
200

500

1000

5000

100000
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

100 200 500 1000 5000 10000

SDMSCue SDM

Fig. 5 Average hamming distance as a function of input cue word

length

V. CONCLUSION
SDMSCue is superior to traditional SDM in its capability

of handling small cues that original SDM was not able to. One
of the major difficulties encountered in using original SDM as
an associative memory, is its inability to recover associations
based upon relatively small cues; whereas we humans do. For
a typical SDM to converge, a sufficiently large portion of a
previously written word must be presented to the memory as
an address. The SDMSCue enhanced version of SDM, allows
for handling small input cues and overcoming these pitfalls.
Such cues were beyond the scope of original SDM work. The
ability of SDMSCue to overcome the input cue length
constraint in the original SDM model provides superior
functionality for associative memory. It allows for association
and matching based on small hints or input cues. The recall

SD
M

A

uto

SD
M

H

etero

SD
M

SC
ue

A
uto

SD
M

SC
ue

H
etero

Input Cue

Compare and Analyze

Hetero Hetero
SDM SDMSCue
Output Output

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3144

results obtained for SDMSCue are –in general- superior to
those of original SDM. The gain achieved is quite significant
statistically as well as objectively. SDMSCue recognition as
defined here; is also quite superior to that of original SDM.

VI. FUTURE RESEARCH
More comparisons and tests of SDMSCue vs. original

SDM in cognitive domains are underway. Deliberation and
reasoning using both techniques is being considered. Applying
SDMSCue as an associative memory technique for some
existing intelligent architectures; is also under consideration.
A more thorough analysis of the relation between number of
reading levels and input data distribution vs. false-positive rate
may also be done.

REFERENCES
[1] Anwar, Ashraf, ‘Sparse Distributed Memory with Evolutionary

Mechanisms’, Proceedings of Genetic and Evolutionary Computation
Conference Workshop (GECCO), 1999, pp. 339-40.

[2] Anwar, Ashraf, Dasgupta, Dipankar, and Franklin, Stan, Using Genetic
Algorithms for Sparse Distributed Memory Initialization, Proceedings of
Congress on Evolutionary Computation (CEC), 1999.

[3] Anwar, Ashraf, and Franklin, Stan, Sparse Distributed Memory for
“Conscious” Software Agents, Cognitive Systems Research Journal,
UK: Elsevier, December 2003, v 4 n 4, pp. 339-54.

[4] Anwar, Ashraf, and Franklin, Stan, A Sparse Distributed Memory
Capable of Handling Small Cues, SDMSCue, IFIP International
Federation for Information Processing, USA: Springer
Science+Business Media Inc., Formerly Kluwer Boston Inc, 2005, vol.
172, pp. 23, ISSN: 1571-5736 (Paper) 1861-2288 (Online).

[5] Doyle, John, A Model for Deliberation, Action, and Introspection (AI
TR), USA: MIT, AI Lab, 1980.

[6] Evans, Richard, and Surkan, Alvin, Relating Number of Processing
Elements in a Sparse Distributed Memory Model to Learning Rate and
Generalization, APL Quote Quad, Aug 1991, v 21, n 4, pp. 166.

[7] Feldman, Robert S., Understanding Psychology, USA: McGraw Hill,
2005.

[8] Franklin, Stan, Artificial Minds, USA: MIT Press, 1995.
[9] Franklin, Stan, Autonomous Agents as Embodied AI, Cybernetics and

Systems Journal, special issue on Epistemological Issues in Embedded
AI, 1997.

[10] Franklin, Stan, and Graesser, Art, A Software Agent Model of
Consciousness, Consciousness and Cognition Journal, 1999, v 8, pp.
285-305.

[11] Franklin, Stan, Kelemen, Arpad, and McCauley, Lee, IDA: A Cognitive
Agent Architecture, IEEE Transactions on Systems, Man, and
Cybernetics, USA: IEEE, NJ, 1998.

[12] Glenberg, Arthur M., What Memory is for?, Behavioral and Brain
Sciences Journal, USA: Cambridge University Press, 1997.

[13] Hely, T., The Sparse Distributed Memory: A Neurobiologically
Plausible Memory Model?, Master's Thesis, UK: Edinburgh University,
Department of Artificial Intelligence, 1994.

[14] Ingrand, F. F., and Georgeff, M. P., Managing Deliberation and
Reasoning in Real-Time AI Systems, Proceedings of the Workshop on
Innovative Approaches to Planning, Scheduling and Control, pp. 284-91,
1990.

[15] Kanerva, Pentti, and Raugh, Michael, Sparse Distributed Memory,
RIACS, Annual Report, USA: NASA Ames Research Center, Moffett
Field, CA, 1987.

[16] Kanerva, Pentti, Sparse Distributed Memory, USA: MIT Press, 1988.
[17] Kanerva, Pentti, The Organization of an Autonomous Learning System,

USA: RIACS-TR-88, NASA Ames Research Center, Moffett Field, CA,
1988.

[18] Kanji, Gopal K., 100 Statistical Tests, USA: Sage Publications, 1999.
[19] Loftus, Geoffrey, and Loftus, Elizabeth, Human Memory, the Processing

of Information, USA: Lawrence Erlbaum Associates, 1976.
[20] Rao, Rajesh P. N., and Fuentes, Olac, Learning Navigational Behaviors

using a Predictive Sparse Distributed Memory, Proceedings of the 4th
international Conference on Simulation of Adaptive Behavior, From
Animals to Animats IV, 1996, pp. 382.

[21] Rao, Rajesh P. N., and Fuentes, Olac, Hierarchical Learning of
Navigation Behaviors in an Autonomous Robot using a Predictive
Sparse Distributed Memory, Machine Learning Journal, April 1998, v
31, n 1/3, pp. 87-113.

[22] Scott, E., Fuller, C., and O'Brien, W., Sparse Distributed Associative
Memory for the Identification of Aerospace Acoustic Sources, AIAA
Journal, September 1993, v 31, n 9, pp. 1583.

[23] Vogt, W. Paul, Dictionary of Statistics and Methodology, 2nd Edition,
USA: Sage Publications, 1998.

