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Abstract—In this work, I present a review on Sparse Distributed 

Memory for Small Cues (SDMSCue), a variant of Sparse Distributed 
Memory (SDM) that is capable of handling small cues. I then conduct 
and show some cognitive experiments on SDMSCue to test its 
cognitive soundness compared to SDM. Small cues refer to input 
cues that are presented to memory for reading associations; but have 
many missing parts or fields from them. The original SDM failed to 
handle such a problem. SDMSCue handles and overcomes this 
pitfall. The main idea in SDMSCue; is the repeated projection of the 
semantic space on smaller subspaces; that are selected based on the 
input cue length and pattern. This process allows for Read/Write 
operations using an input cue that is missing a large portion. 
SDMSCue is augmented with the use of genetic algorithms for 
memory allocation and initialization. I claim that SDM functionality 
is a subset of SDMSCue functionality. 
 

Keywords—Artificial intelligence, recall, recognition, SDM, 
SDMSCue. 
 

I. INTRODUCTION 
PARSE Distributed Memory (SDM) is a content 
addressable memory developed by Kanerva [16]. SDM 

was proposed to be a tool and model of human associative 
memory [8, 13, 15, 16, 17]. SDM is a content-addressable 
memory technique that relies on similar memory items tending 
to be clustered together in the same region or subspace of the 
semantic space. SDM has been used before as associative 
memory or control structure for software agents. 

SDM has proven successful in modeling associative 
memories [3, 20, 21, 22]. Associative memory is typically 
needed for intelligent and cognitive autonomous agents [12, 
20]. In particular, both cognitive software agents [9] and 
“conscious” software agents [10] need such a memory. One of 
the “conscious” software agents, which I have worked with, 
IDA (Intelligent Distribution Agent), uses SDMSCue. I use 
SDMSCue in IDA to learn and keep associations between 
various pieces of information pertaining to the task of 
personnel distribution [11]. Auto-associative SDMSCue is 
indeed capable of recovering and recalling information using 
an arbitrary small part of that information; when the original 
SDM would fail. In general, we need to use SDMSCue 
whenever we want to overcome the pitfall in original SDM; of 
failing to handle small cues [4]. I conducted some cognitive 
experiments using SDMSCue and SDM; pertaining to recall, 
and recognition. The test results reveal superiority of 
SDMSCue over SDM in many aspects. I claim that except for 
chance convergence in original SDM; functionality of SDM is 
a subset of that of SDMSCue. 

 
II.  THE MOTIVE FOR SDMSCue 

In many cases the need for associative memory to be able 
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to handle and retrieve associations based on arbitrary small 
cues is crucial. For example; in IDA [11], we are often faced 
with a situation in which we need to retrieve associations 
based on very small pieces of information like part of email 
address, part of name, or social security number. Humans have 
no problem retrieving associations based on arbitrary small 
cues. While original SDM modeled many aspects of human 
memory very successfully [16], it failed miserably in dealing 
with the issue of retrieving associations based on short-length 
or small cues. Without such a capability, we are missing a key 
human-like feature [4, 7]; in associative memory models that 
are based on SDM. Hence, the role of SDMSCue comes to the 
scene. 

SDMSCue uses an elegant space projection mechanism to 
enlarge the short-length input cue successively until it is large 
enough for a Read/Write from/to the entire full-length SDM 
semantic space [4]. The enlargement process uses successively 
increasing subspaces for reads/writes. To be noted is that both 
read and write operations in SDM involve the selection of an 
access circle to read from, or to write to. The selection is 
typically based on similarity between the input Read/Write 
cue, and the hard locations addresses within the access circle. 

 
III.  SDM FOR SMALL CUES 

Here, I present SDM for Small Cues, SDMSCue, and 
contrast it when applicable to the original SDM. 
 

A.  Approach 
Using a variant of SDM capable of handling small cues, 

we are able to overcome the main shortage in Kanerva's model 
[16]. One of the main problems with Kanerva’s SDM is that 
the input cue has to be of sufficient length to be able to 
retrieve a match. The reason is that the entire input cue is 
considered and the hamming distance between its entire 
binary string representation and various hard locations in the 
access sphere or access circle is considered when reading or 
writing. So if we have a small cue, the missing large part is 
almost guaranteed to sink the known small cue in terms of 
hamming distance, thus being indifferent to all words or hard 
locations in the SDM memory. 

In many cases, we are faced with a very distinguished and 
unique memory cue that is considerably small in size than the 
typical 65-80% requirement in Kanerva’s work. We -humans- 
are able to retrieve relevant information associated with such a 
small cue efficiently. For SDM to be able to function 
similarly, we need a variant of SDM that is capable of 
handling small cues. When faced with retrieval based on a 
substantially short cue like part of name, part of email address, 
or social security number, this calls for the use of SDMSCue. 

The goal is to retrieve appropriate corresponding word 
matching such a small cue. Using subspaces with increasing 
sizes in a progressive way, we are able to read and retrieve the 
whole original corresponding memory item using only a small 
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portion of the cue with arbitrary small length as a start. 
However, the number of levels needed for Read/Write 
depends upon the original size of the small cue. The smaller 
the original input cue is; the more levels of Read/Write 
needed. Time complexity of the operation is linearly 
proportional to the number of levels needed. Thus, the genuine 
gain in performance is quite superior to the added time 
complexity. 
 

B.  Design of SDMSCue 
The idea is to project the original SDM semantic space 

onto a smaller subspace corresponding to the small cue. In 
such a projection, only memory locations with matching 
content to the small input cue contribute to Read/Write 
operations.  

By projecting the space onto a smaller subspace, we are 
able to use the smaller subspace for much higher recall rate for 
a considerably small cue. The gain occurs mainly because of 
constraining and limiting only hard locations that match the 
small cue part and allowing only them to contribute to the 
subspace for Read/Write operations.  

The result obtained from a Read/Write operation at one 
stage; is used to access a larger subspace including the input 
cue along with associations retrieved that typically range from 
25% to 35% of the former input cue length. Such associations 
are retrieved from the contents of the hard locations that were 
selected, and contributed to the former subspace Read/Write. 

By repeating the above process for increasingly larger 
subspaces and levels of projection, we eventually get to access 
the entire semantic space for Read/Write. 

To be noted is that during write operations, actual writing 
to hard locations occurs only at the final level when writing to 
the entire space. All preceding access takes place for 
association retrieval only. So both read and write operations 
are the same (reading and retrieving associations) until the 
final level when we access the entire space. In both cases 
association buildup takes place to enlarge the small input cue 
gradually until the length obtained is large enough to read 
from the entire semantic space. In the last level or phase, if it 
is a read operation, we simply retrieve associations and obtain 
the matching entire word. If it is a write operation, the 
enlarged input cue is written to all hard locations within the 
access circle of the last phase, which is part of the entire 
semantic space. 
 

C.  How SDMSCue Works 
Using SDMSCue, we can manage to access (Read/Write) 

with small cues. The process goes in phases in reading or 
writing operations. When accessing, in the first phase, we read 
from a small sub-space that corresponds to the input small cue 
plus extra association information. This read –if convergent- 
yields a longer word due to the association of information. 
This resulting word is then used as the input to the second 
phase. In the second phase, a similar process takes place 
reading from a larger subspace using the output result from the 
first phase as input. This process continues until the subspace 
being read from is the entire original semantic space.  

For example, as shown in Table I, we start by reading with 
a small cue of length 17% of the whole memory word size, 
using a 0.35 ratio for associations. Then the reading operation 

yields a larger word, due to adding associations, of length 23% 
of the whole memory word size. Then using the 23% retrieved 
and formed word as input to the second phase and adding 0.35 
associations to it, a 31% word is obtained. The process 
continues until in the final level (6th level in the example), a 
77% retrieved and formed word is used to access (read from or 
write to) the entire original semantic space.  

To be noted is that the time complexity of a Read/Write 
operation is linearly proportional to the number of levels 
involved in a Read/Write. However, the overall effect is quite 
minor compared to the gain of the approach. 

Assume an original cue length of m% of the whole 
memory word size; where m ranges from 0 to 100. When 
reading/writing from SDMSCue, some associations are 
retrieved for the small cue at each level resulting in a length 
gain.  

TABLE I 
MULTI-LEVEL READING OPERATIONS FROM SDMSCue 

Level 
# 

Input 
Word 

Length 

Output 
Word 

Length 

Output Word 

1 17 23 |-----| 
2 23 31 |--------| 
3 31 42 |-------------| 
4 42 57 |-------------------| 
5 57 77 |---------------------------| 
6 77 100 |-----------------------------------| 
 
Let i be the percentage of the length gain at each level. 

Adding the gain in length, i, to the next input cue in each 
successive Read/Write level, the maximum number of 
Read/Write levels N; is given by: 

 
100 ≤ m * (1 + i) N; Last word length needs to be 100%, i.e. 
last read needs to occur from the whole space 
 

⎡ ⎤)1log(/)/100log( imN +=⇒  

⎡ ⎤)1log(/)log2( imN +−=⇒  

 
For m = 17 (17% original small cue length), i = 0.35 (35%), as 
in Table I,  

⎡ ⎤ ⎡ ⎤ Levels. 6 = 5.9 = 1.35 log / 17) log - (2  = N  
 
For m = 10 (10% original small cue length), i = 0.3 (30%), 

⎡ ⎤ ⎡ ⎤ Levels. 9  8.78  1.3 log / 10) log - (2  N ===  
 
For m = 1 (1% original small cue length), i = 0.3 (30%),  

⎡ ⎤ ⎡ ⎤ Levels. 18  17.55  1.3 log / 1) log - (2  N ===  
 

SDMSCue Latency Factor [4] is the average number of 
levels needed for Read/Write for a certain word distribution to 
be written to or read from SDMSCue. Such a factor is both 
semantic space dependent, and distribution dependent. 

SDMSCue makes use of GA for more efficient space 
initialization and hard locations allocation [1, 2]. The 
uniformity of the semantic space is –in general- favorable to 
better recall rates for SDMSCue as well as SDM. 
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D.   SDMSCue Convergence and Divergence 
We need to develop a notion for overall convergence and 

divergence in case of Read/Write from SDMSCue. For overall 
convergence to occur, all phases or levels of Read/Write must 
converge. Overall divergence occurs if at any phase or level, 
the Read/Write operation diverges. In other words, 
convergence in SDMSCue is the Boolean “AND” operation of 
the convergence in all levels. 

 
Convergence|SDMSCue = AND For All i(convergence|level i) 
Divergence  |SDMSCue = NOT (Convergence|SDMSCue) 

 
The issue of false-positive (SDMSCue recalls some word 

based on an input cue that was never stored before) might be 
of concern here in case of memory convergence. Two cases 
need to be considered. Firstly, when the original input cue is 
of sufficient length, SDMSCue reverts in functionality to 
SDM reading with one level only. Secondly, when the input 
cue is small, it requires multiple reading levels. In this case, on 
average, this should not increase the rate of false-positive 
since the final reading occurs using a sufficiently long cue 
from the full memory (similar to SDM). The input for the 
reading operation at the last level should project to the same 
original small input cue with a high probability if number of 
reading levels is limited. However, in some extreme cases, 
false-positive rate might increase compared to SDM if each 
successive level of reading in SDMSCue presents noise 
(toggles one or more bits) to the bits of the very original small 
input cue. On the other hand, we should consider the huge 
gain achieved by employing SDMSCue vs. SDM, which 
greatly outweighs the issue of false-positive. On the other 
hand, false-negative is not really a concern. This is because 
SDM typically diverges, except for chance convergence, when 
presented with a small cue. 
 

E.  Implementation 
The following is a short note about the current 

implementation of SDM with small cues (SDMSCue). Java 
Visual Symantec Café Professional Edition was used for 
testing and implementation of the code for SDMSCue in 
Windows XP environment. The hardware was a Pentium 2.4 
GHz with 1GB RAM. The results obtained are based on recall 
performance and memory trace used for comparison tests of 
SDMSCue vs. original SDM. Runs were performed 
repetitively 100 times on average for each case. Other 
implementations and implementation platforms may be 
considered in future research. 

 
IV. EXPERIMENTS 

The experiments conducted here relate to SDMSCue vs. 
SDM cognitive capabilities [4, 6]. Mainly recall and 
recognition are considered here. More tests on other cognitive 
capabilities including, but not limited to, deliberation and 
reasoning will be target for future research.. 
 

A.  Recall 
The following comparison between SDMSCue and regular 

SDM was done using the same memory parameters, and 
memory trace [19]. Memory performance in terms of various 

operational parameters was considered for SDMSCue vs. 
original SDM. The various memory parameters: Memory 
Volume, Cue Volume, Similarity, and Noise were considered.  

Memory Volume is the average number of features in the 
memory trace. In other words, it is the average number of 1’s 
in a memory word. It measures the richness of the memory 
trace. Memory volume is a vital parameter in the distinction of 
the memory trace. It signifies the distribution of various 
memory words over the semantic space. 

Retrieval Volume is the same as Memory volume but for a 
single input cue or input word to memory.  It has almost the 
same effect on retrieval as memory volume. 

Similarity is a measure of how similar, in average, are the 
words written to memory. The more similar the words written 
to memory are, the more clustered contiguously they are, and 
the harder it is to retrieve them. The hamming distance is the 
measure of similarity in SDM as well as SDMSCue. The less 
the hamming distance between two memory words, the more 
similar the memory words are. However, there is a difference 
between the similarity of hard locations and the similarity of 
written memory words. Using genetic algorithms [1], a 
uniform distribution of the hard locations in SDM can be 
obtained. 

Noise determines the number of noise bits, on average, in a 
memory word. It reflects directly on the reliability of retrieval 
of stored memory words. 

Table II shows the distribution of the percentage of input 
cues in memory trace, used for the test, with respect to cue 
length, measured as percentage of the whole length. For 
example, according to Table II, 35% of the cues in memory 
trace do not exceed 20% in length (small cues), while 25% of 
the cues in memory trace have length greater than 20% but 
less than or equal to 40% (low medium cues). Also only 10% 
of the input cues have length greater than 70% (longest cues). 
The second column gives the number of levels needed for 
Read/Write operation using the formula devised in section 4.3.  

 
TABLE II 

DISTRIBUTION OF INPUT CUES IN MEMORY TRACE WITH RESPECT TO CUE 
LENGTH 

Cue Minimum-
Maximum Length as 
% of the Whole Word 

Average # of  
Read/Write Levels  

Needed 

Percentage in 
Memory 

Trace 
  Less than 20% 8 35% 

20%-40% 5 25% 
40%-50% 3 10% 
50%-60% 2 10% 
60%-70% 2 10% 
70%-100% 1 10% 

Average Length = 36% Latency Factor = 5  
 
As shown in Table II, for the chosen distribution, the 

overall average cue length is 36%, and the average number of 
levels for Read/Write is 5. So, for the distribution at hand, 
SDMSCue has a latency factor of 5. 

To be noted is that this distribution was chosen to illustrate 
the advantage of using SDMSCue when considerable 
percentage of the input cues is short in length, i.e. missing too 
many parts. By no means is this the only distribution that can 
illustrate the idea, but just the one we settled upon after some 
trials to illustrate the benefit of using SDMSCue when 
considerable number of the input cues is short in length. 
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However, varying the distribution will definitely change the 
gain achieved from using SDMSCue over SDM.  

Table III shows a comparison between the recall in SDM 
vs. SDMSCue. Various combinations of the memory trace 
parameters were considered. Each was varied on a Low/High 
scale.  

The gain achieved from using SDMSCue is illustrated in 
the last two columns. The first gain, Recall Gain, measures the 
improvement in successful recall or Hit in SDMSCue over 
original SDM. 
 The second gain, Decrease in Miss in Recall, measures the 
decrease in miss rate in SDMSCue over the original SDM. In 
other words, it measures the improvement in SDMSCue over 

SDM in terms of decrease in the percentage of unsuccessful 
recall, or memory miss rate.  

To be noted is that a T-Test of statistical dependence [18, 
23] shows statistical significance between the recall of 
SDMSCue and that of SDM.  

In Table III, Row 4, which represents poor recall 
conditions (Low Memory Volume, Low Retrieval Volume, 
High Similarity, and High Noise), shows large improvement 
in successful recall in SDMSCue over original SDM.  

Row 13, on the other hand, represents near optimal recall 
conditions (High Memory Volume, High Retrieval Volume, 
Low Similarity, and Low Noise). Row 13 corresponds to 36% 
recall gain. 

 
TABLE III 

COMPARISON BETWEEN GA-INITIALIZED SDM AND GA-INITIALIZED SDMSCue. MEMORY VOLUME AND RETRIEVAL VOLUME (H=60%, L=10%). 
SIMILARITY BETWEEN MEMORY ITEMS (H=70%, L=30%). NOISE (H=30%, L=10%). 

# 
Memory 
Volume 

Retrieval 
Volume Similarity Noise SDM  Hit % 

in Recall 
SDMSCue 

Hit % in Recall Recall Gain % 

Decrease in 
Miss in  
Recall 
Gain % 

1 L L L L 6 44 633 40 
2 L L L H 5 40 700 37 
3 L L H L 7 39 457 34 
4 L L H H 5 34 580 31 
5 L H L L 9 56 522 52 
6 L H L H 8 50 525 46 
7 L H H L 11 49 345 43 
8 L H H H 5 42 740 39 
9 H L L L 74 98 32 92 
10 H L L H 66 93 41 79 
11 H L H L 61 93 52 82 
12 H L H H 54 89 65 76 
13 H H L L 73 99 36 96 
14 H H L H 56 95 70 89 
15 H H H L 60 96 60 90 
16 H H H H 50 92 84 84 

 
For decrease in miss in recall gain, recall conditions play 

similar role. Row 4, which represents poor recall conditions, 
shows 31% gain. Row 13, which represents near optimal recall 
conditions, shows 96% gain. 

In general, results in Table III show that the higher the 
volume of the memory and/or the retrieval volume, the better 
the recall for both memories, SDMSCue and SDM. However, 
when the memory volume is quite low, the recall gets really 
affected. The degradation in performance is more grace in 
SDMSCue than it is in SDM. This has to do with the fact that 
SDMSCue projects the space on the part of the cue that exists, 
thus greatly moderating the typical negative effect of low 
memory volume. 

With respect to similarity, the more distinct the memory 
words are, i.e. the less similarity, the better the recall in 
general. This makes absolute sense since SDM in general; and 
accordingly SDMSCue as well, uses hamming distance as a 
measure of inclusion of memory words in access sphere or 
access circle for Read/Write. The more similar memory words 
are, the closer they become in terms of hamming distance. 
Hence, they tend to get clustered together and cause crowding 
effect in the semantic space, where they may sink each other 
in certain regions of the semantic space.  

To be noted, though, is that such clustering effect  in the 
semantic space resulting from highly similar items being 

written to SDM or SDMSCue is somewhat similar but not the 
same as clustering of hard locations when a poor initialization 
technique is used for hard locations assignment. The later is 
more crucial to the functioning of SDM or SDMSCue, and 
should be application independent. Whereas the former 
depends on the memory trace fed to SDM or SDMSCue, and 
hence is application dependent by nature. While there is a 
straightforward way to guarantee uniformity of hard locations 
assignment in the semantic space of SDM or SDMSCue [2], 
there is no immediate direct solution to overcome clustering in 
SDM or SDMSCue due to similarity of words or memory 
items written to it. 

As expected, for the effect of noise on recall; the lower the 
noise, the better the recall in general. Noise can however be 
sunk to a degree as a result of the distributed nature of 
Read/Write, as well as the abstraction achieved from using 
SDM and SDMSCue. 

Fig. 1 contrasts the performance of SDMSCue vs. SDM in 
terms of hit rate in recall. The top line shows the recall hit rate 
in SDMSCue. The bottom line shows the recall hit rate in 
SDM. The X-axis is for the 16 different memory parameters 
configurations from Table III. The Y-axis is for the percentage 
of Recall Hit Rate. 
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SDMSCue vs. SDM Hit Rate % in 
Recall
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Fig. 1 SDMSCue vs. SDM hit rate % in recall 

 
In this comparison, the 16 different memory configurations 

in Table III were used, e.g. configuration 9 is (HLLL) which 
stands for High Memory Volume, Low Retrieval Volume, 
Low Similarity, and Low Noise. For each configuration, the 
same memory trace was applied to both SDM and SDMSCue. 
Then recall was tested with the same set of patterns with 
lengths distributed according to Table II. Recall hit rate for 
each case was calculated and is shown as percentage over the 
vertical axis in Fig. 1. 

It is clear from Fig. 1 that SDMSCue consistently 
outperforms SDM in terms of recall under all conditions. This 
comes at no surprise since SDMSCue uses SDM functionality 
in addition to the elegant space-projection to filter out non-
relevant memory locations. SDMSCue also uses a far more 
superior GA approach for uniform space initialization and 
allocation of hard locations [1]. 

Fig. 2 shows the gain of SDMSCue over original SDM 
using the results and figures from Fig. 1. The results were 
obtained using Fig. 1. The bottom area shows the gain in 
recall. The upper area shows the improvement in recall 
measured as the decrease in miss rate in recall. 

The bottom area is the recall gain in SDMSCue over SDM. 
The gain percentage of SDMSCue over SDM is defined by: 
100*(SDMSCue Hit% – SDM Hit%) / (SDM Hit%). For 
example, for memory parameter configuration 1, the gain is 
100 * (44 - 6) / 6 = 633%. 

The upper area is the improvement in recall measured as the 
decrease in miss rate in recall. This is defined by: 100*(SDM 
Miss% – SDMSCue Miss%) / (SDM Miss%). For example, 
for memory parameter configuration 1, the improvement as 
decrease in miss rate is 100*(94 – 56) / 94 = 40%. For 
memory parameter configuration 13, the improvement as 
decrease in miss rate is 100*(27 – 1) / 27 = 96%. 

 

 
Fig. 2 SDMSCue recall gain over SDM 

 
B.  Recognition 
For recognition [7, 19], the “meaning” of information or 

data is recognized; rather than the mere information or data.  
Per-se, when SDMSCue enhances recall as shown in 5.1, 

recognition has a room for improvement. Firstly, the retrieval 
or recall based on arbitrary small cue is one way to achieve 
simple recognition. In this retrieval, a meaning could be stored 
in SDMSCue with a key or cue for access and retrieval. In 
other words, when SDMSCue goes into a reading cycle 
expanding the input cue through level-reading; this is arguably 
a form of this simple recognition. Secondly, more 
sophisticated recognition can be achieved more easily with 
SDMSCue vs. SDM. Any form of meaning association, 
conceptualization, or abstraction can make use of the small 
cue extra functionality provided by SDMSCue to some extent.  

An accurate measure of recognition improvement is 
typically domain dependent. However, a crude general 
measure of recognition and/or recognition improvement may 
be devised for our test purposes as follows: 

a. for SDM, build two sparse distributed memories: auto-
associative and hetero-associative 

b. in the first, the auto-associative memory, store 
concepts in a certain domain. For example, in 
computer literacy domain, what is external storage, 
what is data communication, etc… 

c. in the second, the hetero-associative memory, store 
elaborations or meanings of the concepts stored in b. 

d. the output from b is fed as input to c. This way, the 
concept retrieved is elaborated upon or meanings for it 
are extracted. 

e. for SDMSCue, build two corresponding memories: 
one auto-associative, and one hetero-associative and 
store same data. Same operations as in b, c, and d. 

f. start retrieval from both SDM and SDMSCue with an 
input cue. 

g. examine the chain of associations retrieved from the 
hetero-associative memory for SDM vs. the one for 
SDMSCue. This chain or sequence may represent the 
thought sequence provoked by an idea or a concept 
that flashes in mind. Deliberation, reasoning, and 
introspection [5, 14] on this sequence is yet another 
task that can be performed. 

h. The hamming distance between the input cue and the 
mean word of the output convergent sequence from 

SDMSCue Recall Gain over SDM

0
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1 3 5 7 9 11 13 15 
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Recall Gain %
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hetero SDMSCue vs. hetero SDM is considered. The 
lesser, the better. 

i. The sum of the hamming distances between the input 
cue and the first K words in the output sequence, 
divided by K (K=10 for results shown). Hetero 
SDMSCue vs. hetero SDM are considered and shown. 
The lesser, the better. 

 
When comparing recognition between SDMSCue and 

original SDM according to the method described above, a 
system like the one shown in Fig. 3 may be used. 

A sample run of the system using the same data set used in 
recall experiments along with words for the hetero-associative 
version yields the results shown in Fig. 4, and Fig. 5. Top line 
is for hetero SDM, and bottom line is for hetero SDMSCue. 
The figures show hamming distance as a function of input cue 
word length for SDMSCue vs. SDM. Fig. 4 is for the 
hamming distance between the input cue and mean word of 
the output convergent sequence (as described in h) on the Y-
axis, vs. the input cue length on the X-axis. 

As the graph shows, SDMSCue significantly has a lesser 
hamming distance between the input cue word and the mean 
word of the hetero SDMSCue output sequence. This is true for 
all values of the x-axis which represents the lengths of the 
input cue words. 

 
Fig. 3 The layout for the comparison of recognition of SDMSCue 

vs. SDM 
 
On the other hand, SDM does not even approach the 

performance of SDMSCue until the input cue length is of 
sufficient length as shown in Fig. 4. In such a case, SDM 
converges to match SDMSCue performance as shown. The 
huge gap is in part due to the big word size (10,000 bits) and 
the starting input cue length of 10 bits. As might be expected, 
if the start length of the input cue is large, the gap will not be 
as huge as shown in Fig. 4.  
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Fig. 4 Hamming distance for mean word as a function of input cue 

word length 
 
Fig. 5 is for the average hamming distance (sum of 

hamming distances between the input cue and the first K 
words in the output sequence, divided by K); as described in i, 
on the Y-axis vs. the input cue length on the X-axis. Again, 
the performance of SDMSCue vs. SDM is contrasted. Due to 
similar arguments, SDMSCue again outperforms SDM for all 
small cue lengths. SDM only aspires to catch up with 
SDMSCue for sufficiently large input cue words. Again the 
gap is huge due to the same arguments given earlier. 
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Fig. 5 Average hamming distance as a function of input cue word 

length 
 

V.  CONCLUSION 
SDMSCue is superior to traditional SDM in its capability 

of handling small cues that original SDM was not able to. One 
of the major difficulties encountered in using original SDM as 
an associative memory, is its inability to recover associations 
based upon relatively small cues; whereas we humans do. For 
a typical SDM to converge, a sufficiently large portion of a 
previously written word must be presented to the memory as 
an address. The SDMSCue enhanced version of SDM, allows 
for handling small input cues and overcoming these pitfalls. 
Such cues were beyond the scope of original SDM work. The 
ability of SDMSCue to overcome the input cue length 
constraint in the original SDM model provides superior 
functionality for associative memory. It allows for association 
and matching based on small hints or input cues. The recall 
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results obtained for SDMSCue are –in general- superior to 
those of original SDM. The gain achieved is quite significant 
statistically as well as objectively. SDMSCue recognition as 
defined here; is also quite superior to that of original SDM. 
 

VI.  FUTURE RESEARCH  
More comparisons and tests of SDMSCue vs. original 

SDM in cognitive domains are underway. Deliberation and 
reasoning using both techniques is being considered. Applying 
SDMSCue as an associative memory technique for some 
existing intelligent architectures; is also under consideration. 
A more thorough analysis of the relation between number of 
reading levels and input data distribution vs. false-positive rate 
may also be done. 
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