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Abstract—On the basis of Bayesian inference using the 

maximizer of the posterior marginal estimate, we carry out phase 

unwrapping using multiple interferograms via generalized mean-field 

theory. Numerical calculations for a typical wave-front in remote 

sensing using the synthetic aperture radar interferometry, phase 

diagram in hyper-parameter space clarifies that the present method 

succeeds in phase unwrapping perfectly under the constraint of 

surface- consistency condition, if the interferograms are not corrupted 

by any noises. Also, we find that prior is useful for extending a phase 

in which phase unwrapping under the constraint of the 

surface-consistency condition. These results are quantitatively 

confirmed by the Monte Carlo simulation. 

 

Keywords—Bayesian inference, generalized mean-field theory, 

phase unwrapping, statistical mechanics.  

I. INTRODUCTION 

OR a long time, researchers have been studying Bayesian 

inference in the field of information science and technology. 

Especially, in the initial stage of the development of this field, 

Bayesian inference [1], [2] has been applied to the fundamental 

problems which are related to error-correcting codes and image 

restoration. Then, the Bayesian inference has been utilized for 

various problems in many research fields.  

On the other hand, a lot of researchers have studied remote 

sensing using the synthetic aperture radar (SAR) interferometry 

[3], [4]. Main objective of this field is to acquire information on 

various objects and phenomena appearing on the surface of the 

earth. Then, researchers have constructed optical instruments 

using the interferometer. Also, the researchers have proposed a 

technique called as phase unwrapping to reconstruct original 

wave-fronts via the interferogram which was observed by the 

SAR interferometry. The important point of this problem is to 

remove residues in the observed interferogram. For this 

purpose, various techniques have been proposed for this 

problem, such as the least squares estimation [3], [4], the MAP 

estimation [5], simulated annealing [6] and Bayesian approach 

[7], [8] for this problem. In recent years, some researchers have 

investigated this problem form the statistical mechanical point 

of view. Saika and Nishimori [9] have proposed a method for 

phase retrieval based on the Bayesian inference using the 

maximizer of the posterior marginal (MPM) estimate. They 

found that the MPM estimate succeeded in phase retrieval with 

high degree of accuracy, if we used an appropriate model.  

Recently, Saika and Uezu [10] have proposed a method for 

 
Yohei Saika is with the Gunma National College of Technology, 580 Toriba, 

Maebashi 371-8530, Japan (phone: +81-27-254-9256; fax: +81-27-254-9009; 
e-mail: saika@ice.gunma-ct.ac.jp).  

wave-front reconstruction in remote sensing using the SAR 

interferometry. They first carried out phase unwrapping from 

the observed interferogram due to the Bayesian inference via 

the MPM estimate using the statistical mechanics of the 

three-state Ising model, and then reduced noises from the 

wave-fronts reconstructed by the MPM estimate. They have 

found that the MPM estimate was effective for phase 

unwrapping under the constraint of surface-consistency 

condition at each plaquette, and that the accuracy was improved 

by introducing the process of noise reduction using an 

appropriate model.  

In this paper, we construct a method of phase unwrapping 

using multiple interferograms based on the Bayesian inference 

using the MPM estimate which corresponds to the statistical 

mechanics of the three-state Ising model. Here, in order to 

construct a practical and useful technique for phase unwrapping, 

we apply a generalized version of the mean-field theory using 

the three-state Ising model to phase unwrapping using the 

multiple interferograms. In this study, we try this approach with 

a hope that the accuracy of phase unwrapping may be improved 

by probabilistic information processing utilizing fluctuations 

around the MAP solution, and that the accuracy is also 

improved with the use of multiple interferograms. Here, from 

the viewpoint of statistical mechanics, we then evaluate static 

property from a phase diagram in the hyper-parameter space. 

Here, we clarify that the present method is useful for phase 

unwrapping under the constraint of the surface- consistency 

condition. Also, we find that the prior information is useful for 

extending the PU phase in which the original wave-front is 

reconstructed perfectly/accurately. Next, we investigate 

dynamic property for phase unwrapping using the multiple 

interferograms. We find that the MPM estimate smoothly 

carries out phase unwrapping at the point located near the upper 

phase boundary of the PU phase. Then, these results obtained 

by the generalized mean-field theory is almost same as those 

obtained by the Monte Carlo simulation with respect to the 

artificial wave-front approximating the realistic one in remote 

sensing using the SAR interferometry. 

The content of this paper is organized as follows. First, we 

show our formulation for phase unwrapping using the multiple 

interferograms on the basis of the Bayesian inference using the 

MPM estimate using the generalized mean-field theory. Then, 

we examine the static property of the present method from the 

PU phase of the phase diagram in the hyper-parameter space. 

Last part is devoted to summary and discussion.  

II. BAYESIAN INFERENCE 

For a long time, a lot of researchers have been investigating 

Yohei Saika 

Generalized Mean-field Theory of Phase Unwrapping 

via Multiple Interferograms 

F



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1094

 

 

information sciences related to problems of image restoration 

and error-correcting codes. Then, researchers have developed 

various techniques on the basis of the Bayesian inference in 

various fields, such as information communication and 

information reconstruction. In the following part of this chapter, 

we show the general formulation on the Bayesian inference 

using the maximizer of the posterior marginal (MPM) estimate. 

First, we consider a set of original images {ξi,j} (ξi,j=0, 1, 

i,j=1,…,L) generated by the assumed true prior which is 

expressed as the probability Pr({ξi,j}). Here, ξi,j=0,…,255 and i, 

j=1,…,L. In this study, we assume the Boltzmann distribution: 
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for the true prior. Next, each image is rewritten into a corrupted 

image {τi,j} by some noises expressed as the conditional 

probability Pr({τi,j}|{ξi,j}). Here, τi,j=0, 1, as we assume the 

additive white Gaussian noise as 
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where σs
2
 is the variance of the Gaussian noise. Then, with the 

use of information on each corrupted image {τi,j}, we carry out 

image restoration based on the Bayesian inference using the 

MPM estimate. For this purpose, we consider a set of variables 

{zi,j} which are arranged on the square lattice, where zi,j=0, 1, 

i,j=1,…,L. In this method, with the use of the set of variables 

{zi,j}, we restore image so as to maximize the marginal 

posterior probability as 
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Here, the posterior probability is estimated based on the 

Bayes-formula using the likelihood and the model of the true 

prior. Here, we assume the likelihood as  
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Then, we assume the model of the true prior as  
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Here, σ, J and Tm are the parameters which should be 

determined appropriately. 

Here, it has been known that the optimal performance is 

realized under the conditions:  
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These equations indicate that the optimal performance is 

realized, if information both on the true prior and the 

conditional property of corruption are clarified.  

III. GENERAL FORMULATION 

Here, as shown in Fig. 1, we show our formulation for phase 

unwrapping using multiple interferograms based on the 

Bayesian inference using the generalized mean-field theory.  

As shown in Fig. 2, we first consider an original wave-front 

{ξi,j} which is arranged on the square lattice, where 0< ξi,j<∞ 

and i, j=1,…,L. The original wave-front {ξi,j} is then corrupted 

by some noises, when the wave-front is carried through a noisy 

transmission to optical measurement systems. Here, as shown 

in Fig. 3, receivers observe a set of interferograms restricted to 

the principal interval from –π to +π: 
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Here, {ni,j (k)} (k=1,…,N, i,j=1,…,L) are some noises onto 

the original wave-front. Then, we derive two set of principal 

phase differences both along the x- and y-axis:  
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from the interferograms {ηi,j (k)}. Here, n
,x

i,j(k) and n
y
i,j(k) are 

some noises onto the phase differences restricted to the 

principal interval. Here, we note that the residue pattern is 

shown in Fig. 4. As shown in Fig. 5 (a), aliasing does not occur, 

if the absolute value of the wave-front slope is less than π at 

each sampling point. On the other hand, as shown in Fig. 5 (b), 

aliasing occurs, if the absolute values of the wave-front slopes 

are more than π at several sampling points. 

Next, we carry out phase unwrapping from these phase 

differences {τ
x
i,j} and {τ

y
i,j} based on the Bayesian inference 

using the MPM estimate corresponding to statistical mechanics 

of three-state Ising model {n
x
i,j} and {n

y
i,j} on the square lattice 

in Fig. 6. Here, n
x
i,j=-1, 0, +1, i = 1,…,L-1, j = 1,…,L and n

y
i,j = 

-1, 0, +1, i =1,…,L, j = 1,…,L-1. This model is used to remove 

residues which appear in the set of the interferograms {ηi,j (k)}. 

In this method, we carry out phase unwrapping so as to 

maximize the marginal posterior probability as 
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where the posterior probabilities in these equations can be 

estimated based on the Bayes formula: 
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In this study, we assume the model prior so as to suppress the 
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occurrence of residues in the interferograms. The explicit form 

of the model prior is given as 
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where the h, Tm and p are hyper-parameters which we should 

tune appropriately. Then, we assume the likelihood so as to 

enhance smooth structures, as seen from patterns of 

wave-fronts which are typical in remote sensing using the SAR 

interferometry. The explicit form of the likelihood used here is
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Fig. 1 General formulation for phase unwrapping using multiple 

interferograms 

 

Fig. 2 An original information which approximates the wave

remote sensing using the SAR interferometry 

 

 

occurrence of residues in the interferograms. The explicit form 

}



+

,
||| py

ji

p

j
n ,    (14) 

parameters which we should 

tune appropriately. Then, we assume the likelihood so as to 

enhance smooth structures, as seen from patterns of 

fronts which are typical in remote sensing using the SAR 

cit form of the likelihood used here is 

} ,}){},({ 



yx

nn
   (15) 

}

}−+−

+−+

+

+

x

ji

x

ji

x

ji

y

ji

y

ji

y

ji

nnπτ

nnπτ

2

,,1,

2

,1,,

)(2

)(2

 (16) 

} .)
2

,1,,
−−

+

y

ji

x

jij
nn

  (17) 

 

Fig. 1 General formulation for phase unwrapping using multiple 
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Fig. 3 An interferogram of the original wave

Fig. 4 A residue pattern of the interferogram in Fig. 3.
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utilize the generalized version of the mean
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Fig. 3 An interferogram of the original wave-front in Fig. 2 

 

 

Fig. 4 A residue pattern of the interferogram in Fig. 3. 

In this study, in order to estimate posterior probability, we 
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(b) 

Fig. 5 Shannon’s sampling theorem, (a) aliasing

every sampling point, if each absolute value of the wave

less than π (b) aliasing occurs, if several absolute values of the 

wave-fronts are more than π
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Fig. 5 Shannon’s sampling theorem, (a) aliasing does not occur at 

every sampling point, if each absolute value of the wave-front slope is 

(b) aliasing occurs, if several absolute values of the 

fronts are more than π 

Fig. 6 Square lattice used for this problem

Fig. 7 Lattice for one of the effective Hamiltonian 

{my}) used for the generalized mean

lattice point. Then, 〇 is the lattice point where the Q

{ny} is arranged. Next, 〇〇〇〇 is the lattice point where the effective field

{mx}/{my
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Fig. 6 Square lattice used for this problem 

 

 

Fig. 7 Lattice for one of the effective Hamiltonian Hx({nx}, {ny} | {mx}, 

}) used for the generalized mean-field theory. Here, ● is the target 

is the lattice point where the Q-Ising spin {nx}/ 
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Here, as seen from Fig. 7, {m
x
i,j} and {m

effective fields which are defined on the boundary of the 

effective Hamiltonian. Next, the effective Hamiltonian 

H
y
eff({n

x
}, {n

y
}; {m

x
}, {m

y
}) is then constructed in the similar 

way to the above case. In this method, these variables should be 

determined by following self- consistency conditions as
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Fig. 8 Mean square error as a function of parameter 

MPM estimate via 8 interferograms which are not corrupted 

noises.  Here, ▲ denotes the upper phase boundary of the PU phase, 

if σ=0, J=1, α=0 and h=0. Then, ■ denotes the upper phase boundary 

the PU phase, if σ=0, J=1, α=0 and 
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m
y
i,j} are the set of the 

effective fields which are defined on the boundary of the 

effective Hamiltonian. Next, the effective Hamiltonian 

}) is then constructed in the similar 

way to the above case. In this method, these variables should be 

consistency conditions as 
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a function of parameter Tm due to the 

which are not corrupted  by any 

▲ denotes the upper phase boundary of the PU phase,  

■ denotes the upper phase boundary of 

=0 and h=1 

Fig. 9 A wave-front perfectly reconstructed from the interferogram in

Fig. 3 by the generalized mean

Fig. 10 A wave-front reconstructed from the interferograms in Fig. 3 

by the generalized mean-field theory

Fig. 11 A wave-front reconstructed by the mean

interferograms

Here, βm (=1/Tm) is a hyper

inverse temperature. Here, s study, we used the above model 

prior and likelihood following the previous papers [10],[11]. 

Then, the reconstructed wave
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If we clarify the performance of the present method, we 

evaluate the accuracy of the present method based on the 

performance measure using the mean square error: 
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IV. PERFORMANCE

In this chapter, we show the performance estimation on the 

MPM estimate for phase unwrapping from the statistical 

mechanical point of view. Here, we show the performance of 
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s study, we used the above model 

prior and likelihood following the previous papers [10],[11]. 
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If we clarify the performance of the present method, we 

evaluate the accuracy of the present method based on the 

performance measure using the mean square error:  
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This becomes zero, if the wave-front is reconstructed 

ERFORMANCE 

In this chapter, we show the performance estimation on the 

MPM estimate for phase unwrapping from the statistical 

mechanical point of view. Here, we show the performance of 
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the generalized mean-field theory from the phase diagram in 

the hyper-parameter space. Then, we clarify the efficiency of 

our model for the problem of phase unwrapping with respect to 

the single wave-front in Fig. 2. 

In this simulation, we utilize an original wave-front {ξi,j} in 

Fig. 2 which is a typical example in remote sensing via the SAR 

interferometry. Then, the original wave-front {ξi,j} is corrupted 

by the Gaussian noise {ni,j(0, σ
2
)}. Here, σ

2
 is the variance of 

the Gaussian noise, if the wave-front is carried through the 

noisy channel, such as atmosphere. Next, we observe multiple 

interferograms {ζi,j(k)} from the corrupted wave-front {ηi,j}. 

Then, we derive two sets of phase differences {τ
k
,
x
i,j} and 

{τ
k,y

i,j} in the principal interval from the corrupted wave-front 

{η
k
i,j}. Then, on the basis of the Bayesian inference using the 

mean-field theory, we carry out phase unwrapping via multiple 

interferograms {η
k
i,j} (Fig. 3) by making use of the generalized 

mean-field theory due to the three-state Ising model on the 

square lattice. In order to clarify the efficiency of the present 

method, we evaluate the performance measure using the mean 

square error.  

In this estimation, in order to clarify the static property of the 

present method, we describe the phase diagram which shows 

the stability of the PU phase in the hyper-parameter spaces, 

where the PU phase is a phase in which the present method 

succeeds in phase unwrapping perfectly, if the observed 

interferograms are not corrupted by any noises. As shown in 

Figs. 8 and 9, we find that the present method succeeds in phase 

unwrapping perfectly under the constraint of the surface- 

consistency condition, and that the prior information is 

available of extending the PU phase under the constraint of the 

surface consistency condition. Also, we find that the structure 

of the phase diagram in Fig. 7 is almost same as that obtained 

by the Monte Carlo simulation [11] for the wave-front which is 

typical in remote sensing using the SAR interferometry. Then, 

as shown in Figs. 10 and 11, we find that the accuracy in phase 

unwrapping is improved with the increase in the number of the 

interferograms observed by the SAR interferometry, even if the 

interferograms are corrupted by some noises. These results 

mean that the generalized mean-field theory proposed in this 

paper realizes almost same performance as the Bayesian 

inference using the MPM estimate due to the Monte Carlo 

simulation for the wave-front in remote sensing using the SAR 

interferometry.  

V. SUMMARY AND DISCUSSION 

In previous chapters, after we have overviewed the statistical 

mechanical Bayesian inference in information science and 

technology, such as image restoration and error-correcting 

codes, we have outlined the methodologies of the statistical 

mechanical Bayesian inference for these problems. In this 

paper, we have shown the Bayesian inference through the 

typical example of image restoration with respect to grayscale 

images. Here, we have shown that thermal fluctuations around 

the ground state (the MAP solution) are useful for the Bayesian 

inference with high degree of accuracy. In the following part, 

we have shown our original research on the generalized 

mean-field theory for the problem of phase unwrapping via 

multiple interferograms. Here, we have first constructed the 

technique of phase unwrapping via multiple interferograms 

based on the generalized mean-field theory. Then, we have 

examined static property of the present method for this problem. 

We have clarified the static property of the present method 

from the phase diagram in the hyper-parameter space. We have 

clarified that the Bayesian inference using the MPM estimate 

succeeded in phase unwrapping perfectly under the constraint 

of the surface-consistency condition, and that the prior 

information is useful for extending the PU phase under the 

constraint of the surface-consistency condition. Next, we have 

clarified that the accuracy of the generalized mean-field theory 

was improved with the increase in the number of the 

interfeorgrams use for phase unwrapping. 

As a future problem, we are going to apply the present 

method on the basis of the generalized mean-field theory via 

the three-state Ising model to realistic problem in remote 

sensing using the SAR interferometry.  
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