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Abstract—We numerically study  the three-dimensional 

magnetohydrodynamics (MHD) stability of oscillatory natural 
convection flow in a rectangular cavity, with  free top surface, filled 
with a liquid metal,   having an aspect ratio equal to A=L/H=5, and 
subjected to a transversal  temperature gradient and a uniform  
magnetic field oriented in  x and z directions.  The finite volume 
method was used in order to solve the equations of continuity, 
momentum, energy, and potential. The stability diagram obtained in 
this study highlights the dependence of the critical value of the 
Grashof number Grcrit , with the increase of  the Hartmann number 
Ha for two orientations of the magnetic field.  This study confirms 
the possibility of stabilization of a liquid metal flow in natural 
convection by application of a   magnetic field and shows that the 
flow stability is more important when the direction of magnetic field 
is longitudinal than when the direction is transversal.    
 

Keywords—Natural convection, Magnetic field, Oscillatory, 
Cavity, Liquid metal.  

  

I. INTRODUCTION 
ATURAL convection of a conducting fluid of electricity 
contained in a  cavity represents  an adequate research 

subject, because of its presence in many industrial processes, 
especially during the process of crystal growth (Tagawa and  
Ozoe, 1997). The widespread use of this process in electronic 
and optical applications had, for consequence, an extended 
research towards the comprehension and the control of the 
natural convection in these systems.  
    With the application of an external magnetic field, it is 
possible to act on the flows without any   physical contact, and 
thus to remove the fluctuations to control heat and mass 
transfers, in order to improve the quality of the crystal. For 
this purpose, the damping magnetic to control the flow 
induced by a temperature variation was used in several 
industrials applications [1]-[8].  Tagawa and Ozoe [1] 
numerically studied three-dimensional natural convection of a 
liquid metal in a cubic enclosure, under the action of a 
magnetic field applied, according to the three main directions. 
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Benhadid and Henry [2] studied the effect of a magnetic field 
on the flow of liquid metal in a parallelepiped cavity, using a 
spectral numerical method. Bessaih et al. [3] numerically 
examined the effect of the electric conductivity of the walls 
and the direction of the magnetic field on the flow of Gallium. 
Their results show a considerable reduction in the intensity of 
the convection when the magnetic field increases.  Juel and al. 
[4] had the results of a numerical and experimental study of 
the effect of the application of a magnetic field in the direction 
perpendicular to the convective flow of Gallium. 
Aleksandrova and Molokov [5] considered three-dimensional 
convection in a rectangular cavity subjected to a horizontal 
temperature gradient and a magnetic field, by an asymptotic 
model. The effectiveness of the application of the magnetic 
field depends considerably on the aspect ratio and the value of 
the Hartmann number.  Hof and al. [6] presented an 
experimental study of the effect of the magnetic field on the 
natural convection stability in a rectangular cavity of square 
section, filled with a liquid metal. These authors founded that 
the vertical direction of the magnetic field is most effective for 
the suppression of oscillations. This is in good agreement with 
the work of Gelfgat and Bar-Yoseph [7]. 

In the present work, we present a three-dimensional 
numerical study on the critical value of the Grashof number 
Grcrit , and the magnitude and orientation of a uniform 
magnetic field. Here, the geometry is the same considered by 
Xu et al. [8], which is filled with the liquid Gallium.  

II. GEOMETRY AND MATHEMATICAL MODEL 
The geometry of the flow field analysed in this study is 

illustrated in Fig. 1. A liquid metal with a density ρ , a 
kinematics viscosity ν  and an electrical conductivityσ , fills a 
rectangular cavity of dimensions WHL ×× , having an aspect 
ratio A=L/H=5, and submitted to a uniform magnetic field 0B . 
The magnetic field is applied separately in x-, and z- 
directions. The left wall is kept at a local hot temperature Th, 
and the right wall is maintained at a local cold temperature Tc   

(Th > Tc). The upper surface of the cavity is free and the other 
walls are adiabatic. The fluid contained in the rectangular 
cavity is the Gallium whose Prandtl number equal to 0.02. 
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Fig. 1 The geometry of the problem 
 

The interaction between the magnetic field and convective 
flow involves an induced electric current j

r
: 

[ ]BVj
rrr

∧+∇−= ϕσ                                                              (1) 

The divergence of Ohm’s law ∇. j
r

=0, produces the 
equation of the electric potentialϕ : 
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∧∇=∇ ϕ2                                                         (2) 
 

By Neglecting the induced magnetic field, the dissipation 
and Joule heating, and the Bousinesq approximation is valid; 

and using L,  L/ν ,  ν/2L  , ( )2

0 L
νρ and 0Bν , and (Th-Tc) as 

typical scales for  lengths, velocities, time, pressure, potential, 
and temperature, respectively, the dimensionless governing 
equations for the conservation of mass, momentum ,and 
energy,  together with appropriate boundary conditions in the 
Cartesian  coordinates  system (x, y, z),  are written as follows:         
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Where Gr ( ) 23 νβ LTTg ch −= is the Grashof number, 

Ha μσLB0=  the Hartmann number, and   Pr αν=  the 
Prandtl number. 
     The initial conditions impose that the fluid is at rest and 
that the temperature distribution is zero, and that the electric 
potential is zero everywhere in the rectangular cavity. Thus, at 
t=0, we  have: u=v=w=T=φ=0. 

At t>0 the boundary conditions of the dimensionless 
quantities (u, v, w, T and ϕ) are: 

At   x=0,      u=v=w=0,   T=1,   0=
∂
∂

x
ϕ                          (6a)                            

At   x=1,      u=v=w=0,         T=0    ,   0=
∂
∂

x
ϕ               (6b)                   

At   y=0,      u=v=w=0,       0=
∂
∂

y
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∂
∂

y
ϕ                (6c)                   
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At   z=0,     u=v=w=0,  0=
∂
∂

z
T   ,  0=

∂
∂

z
ϕ                    (6e)                    

At  z=5,  u=v=w=0,     0=
∂
∂

z
T   ,  0=

∂
∂

z
ϕ                     (6f)                   

The Biot number in equation (6d) is given by Bi=hL/k, 
where h is a heat transfer coefficient to the surroundings at the 
cold wall temperature, and k is the thermal conductivity of the 
fluid.  

III. NUMERICAL METHOD 
The equations (2) − (5) with the boundary conditions (6a-

6f) were solved by using the finite volume method [9].  Scalar 
quantities (P, T, ϕ) were stored in the center of these volumes, 
whereas the vectorial quantities (u, v, and w) are stored on the 
faces. For the discretisation of spatial terms, a second-order 
central difference scheme was used for the diffusion and 
convection parts of the equations (3-5), and the SIMPLER 
algorithm [9] was used to determine the pressure from 
continuity equation.  

In order to examine the effect of the grid on the numerical 
solution, a number of grid sizes have been investigated for 
grid independence: 32 ×  32 × 52, 60 ×  60 × 100 and 80 ×  
80 × 150 nodes. By increasing the grid size from a 60 ×  60 
× 100 to 80 ×  80 × 150 nodes, less than 2% change in 
computed values, was observed in Fig. 2. Therefore, the grid 
used has 60 ×  60 × 100 nodes and was chosen after 
performing grid independency tests, since it is considered to 
have the best compromise between the computing time and 
the sufficient resolution in calculations. Calculations were 
carried out on a PC with CPU 3 GHz, thus the average 
computing time for a typical case was approximately of 24 
hours. 

IV. RESULTS AND DISCUSSION 

A. Code Validation with Experimental Data 
The sentence of validation consisted in establishing some 

comparisons with experimental investigations presented in the 
literature [8].  We compared the temperature distribution T* 
(in dimensional value) for various positions y with 
measurements obtained by Xu et al. [8] in a rectangular 
cavity, with stress-free top surface.  We note easily that the 
computed values are in good agreement with measurements, 
in the absence of a magnetic field (Fig. 3(a)), and in the 
presence of a magnetic field of 300 Gauss, applied in the 
longitudinal direction (Fig. 3(b)). 
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Fig. 2 Variation of the dimensional vertical velocity v  vs. x for three 

grids. 
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Fig. 3 Validation of the code with experimental measurements (Xu et 
al., 2006), for A=5. (a) Without magnetic field, (b) with magnetic 

field 

B. Flow Fields  
Fig. 4 (a) and Fig. 4(b) show the velocity field of flows in 

the rectangular cavity for both orientations of the magnetic 
field. We can see that the fluid moves from the hot wall (at 
x=0) towards the cold wall (at x=W). As the fluid moves away 
from the hot wall, the magnitude of velocity increases until the 
fluid approaches the cold wall. In this region, the magnitude 
of the velocity is reduced. Both figures show a single rotating 
cell. At the top of the cavity, the fluid flow circulates from the 
hot wall towards the cold wall. 
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 Fig. 4 Velocity vectors with (a) transversal magnetic field Bx, (b) 
longitudinal magnetic field Bz. 

 

C. Oscillatory Solution with Magnetic Field  
In this section, we determine the physical instabilities 

within the flow from natural convection of a low Prandtl 
number fluid (Pr =0.02), contained in a rectangular cavity of 
an aspect ratio A= 5. This flow is subjected to a magnetic field 
oriented in x-, and z- directions. Then, the determination of 
physical instabilities is reduced to the determination of the 
critical value of the Grashof number Grcrit characterizing the 
subjacent flow, starting from which flow becomes oscillatory. 
It is noted that, the results obtained at given Grashof number 
were successively used for computation at the following Gr 
number.  

From point of view of the dynamic systems, when a system 
re-enters in instability it presents to the beginning an 
oscillatory or periodic character, then because of the 
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bifurcation phenomenon, this system will become quasi-
periodic, and finally it re-enters in chaos (or turbulence). The 
Grashof numbers characterizing the periodic flows are the 
critical numbers: transition from steady (Fig. 5) to time-
dependent flow (Fig. 6 (a-d)). 
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Fig. 5 Time evolution of the dimensionless temperature T for Gr=7.6 

x 106 and Ha=0 
 

The oscillatory aspect (periodic) of the temporal evolutions 
of three dimensionless components velocity  u (Fig. 6(a)) and 
v (Fig. 6 (b)) and w (Fig. 6 (c)) and dimensionless  
temperature T (Fig. 6 (d))   for Ha=7.5, recorded with a probe, 
indicates that oscillatory instabilities start and the flow 
bifurcates  towards an unstable regime. By comparing the 
amplitudes of oscillations, we can notice that these amplitudes 
present different magnitudes, according to the points from 
recordings. This oscillatory behavior of the various parameters 
translates the existence of a continuous change of the flow 
structures (with periodicity). Also, we can notice clearly that 
the amplitudes of oscillations of the temperature (Fig. 6 (d)) 
are smaller than those of u (Fig. 6 (a)), v (Fig. 6 (b)) and w 
(Fig. 6 (c)). This can be interpreted by the domination of the 
conductive heat transfer mode in this type of   low Prandtl 
number fluids flow. Also, we can notice on these figures, that 
the value of Grcrit when the field is transverse is lower than 
that when the field is longitudinal. The amplitudes of 
oscillations are larger when the field is transverse.  
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Fig. 6 Time evolutions  vs. two orientations of the magnetic field 

(Bx and Bz) Ha=5:  (a) dimensionless velocity u,  (b) dimensionless 
velocity v,  (c) dimensionless velocity w,   (d) dimensionless 

temperature T 
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D. Stability Diagram  
In absence of the magnetic field (Ha=0), the oscillatory 

mode begins at the critical value of the Grashof number Grcrit 
= 6107.7 × . The flow stability appears when the direction of 
the magnetic field is longitudinal than when the direction of 
the magnetic field is transverse (Fig. 7). The increase of with 
the Hartmann number Ha is clearly seen if the magnetic field 
is longitudinal. In the case when the magnetic field is 
transverse, a reduction is noticed at   Ha = 5, and beyond this 
value, the variation of Grcrit increases with Ha. 
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Fig. 7  Stability diagram Grcrit –Ha for two orientations of the 

magnetic field (Bx and Bz) 
 

V. CONCLUSION 
A three-dimensional numerical study of a low Prandtl 

number fluid flow inside a rectangular cavity, which is 
subjected to a uniform magnetic field, has been carried out. 
The geometry considered here is related to crystal growth by a 
horizontal Bridgman configuration. The finite-volume method 
was used to discretize the mathematical model.  

In the absence of a magnetic field, the results obtained 
show that the flow is steady for Gr =7.6 x 106 < Grcrit , and 
becomes oscillatory for the critical value of the Grashof 
number,  Grcrit =7.7 x 106.  The application of a magnetic field 
causes a change of the flow and thermal fields, and 
consequently stabilizes the convective flow. The flow stability 
appears when the direction of the magnetic field is 
longitudinal than when the direction of the magnetic field is 
transverse. The dependences of the critical value of the 
Grashof number with the Hartmann number for two 
orientations of the magnetic field was recapitulated in the 
stability diagram. Finally, the results obtained in this study 
will allow the research workers and industrialists to know the 
oscillatory modes in the presence of a magnetic field, in order 
to improve quality of the crystal. 

 
 
 
 
 

TABLE I 
NOMENCLATURE 

Symbol Quantity Unity 
A apect ratio = L/H  
B
r

 dimensioless magnetic flux density vector  

0
B  uiform  magnetic  flux density T 

Bi Biot number = hL/k  
g
r

 acceleration due to gravity m/s2 

Gr Grashof number ( ) 23 νβ LTTg
ch

−=   

Be
r

 unitary vector of the direction of B
r

 
 

H height of the cavity M 
Ha Hartmann number μσLB

0
=   

H heat transfer  coefficient W /m2.K 
j
r

 
electric current density  A/m2 

K thermal conductivity of the fluid  W/m.K 
Lr length of the cavity M 
P dimensionless pressure  

Pr Prandtl number αν=   

T dimensionless temperature  
T* temperature K 

∞
T  ambient temperature K 

t dimensionless time     

V
r

 dimensionless velocity vector                     

u, v, w   dimensionless velocities in x-, y-, and z- 
directions, respectively 

 

W width of the cavity m 
x, y, z dimensionless transversal, vertical and 

longitudinal coordinates, respectively 
 

α thermal diffusivity of the fluid m2/s 
β thermal expansion coefficient of   the fluid K-1 

μ  dynamic  viscosity Pa.s 
ν  kinematic viscosity of the fluid m2/s 
ρ density of the fluid kg/m3 
σ electric conductivity Ω-1.m-1 
ϕ  electric potential V 
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