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Abstract—Solid oxide fuel cells have been considered in the last 
years as one of the most promising technologies for very high-
efficiency electric energy generation from hydrogen or other 
hydrocarbons, both with simple fuel cell plants and with integrated 
gas turbine-fuel cell systems. In the present study, a detailed 
thermodynamic analysis has been carried out.  Mass and exergy 
balances are performed not only for the whole plant but also for each 
component in order to evaluate the thermal efficiency of combined 
cycle. Moreover, different sources of irreversibilities within the 
SOFC stack have been discussed and a parametric study conducted to 
evaluate the effect of temperature as well as pressure on SOFC 
irreversibilities and its performance. In this investigation methane 
and hydrogen have been used for fueling the SOFC stack and 
combustion chamber. 
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I. INTRODUCTION 
INDING efficient power systems is of major concerns,    
especially with the depletion of fossil fuel sources with 

time. Energy demands are expected to keep increasing in the 
future. Thus, finding efficient systems is vital to reduce the 
unit of energy produced per the unit of fuel consumed. On the 
other hand, producing energy from fossil fuel causes some 
problem to the environment, such as global warming, air 
pollution, acid precipitation, ozone depletion, forest 
destruction and emission of radioactive substances, Dincer [1, 
2]. For example, from 1990 to 2007 the CO2 equivalent 
emissions increased 17% in USA [3]. Therefore, finding 
efficient systems that produce less harmful emissions is 
crucial. 
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The efficiency of conventional power plants are usually less 
than 39%. That is, more than 60% of a plant’s energy is lost. 
On the other hand, the overall efficiency of a conventional 
plant that produces electricity and heat separately is around 
60% [4]. 
     The Solid Oxide Fuel Cell (SOFC) is one of the most 
promising types of fuel cells. It is considered an excellent 
device for future power plants, expected to produce clean 
electrical energy at high conversion rates, low emissions and 
low noise levels [5], [6], and [7]. This electrochemical device 
is based on a solid-state ion-conducting (O2) electrolyte 
(yttria-stabilized zirconia), which requires high operating 
temperature (up to 1000 °C). Such temperatures impose 
several technological constraints on SOFC materials, but make 
this device very suitable for co-generation or coupling with 
gas turbines (GTs). The integration of an SOFC stack with 
GTs and other conventional devices, such as compressors and 
heat exchangers, is a very successful application, since an 
SOFC–GT hybrid system can reach net electrical and global 
efficiencies close to 70% and 85%, respectively [8], [9] and 
[10]. In the last few years, many researchers were involved in 
the investigation of the SOFC stack and of the hybrid plant 
[11], [12] and [13]. A number of their papers simulated the 
performance of several types of SOFC–GT systems, analyzing 
their performance. 
     In this paper a parametric study on solid oxide fuel cell has 
been conducted and the effect of different parameters on 
SOFC performance has been discussed. Also total 
performance of combined solid oxide fuel cell and gas turbine 
with respect to pressure ratio discussed. 
 

II.   SYSTEM DESCRIPTION 
The integrated GT–SOFC layout is schematically illustrated 

in Fig. 1. It is composed of six components: (1) air 
compressor, (2) recuperator, (3) high-temperature Solid Oxide 
Fuel Cell (SOFC), (4) combustor, (5) high pressure turbine 
(HPT) and (6) low pressure turbine (LPT). In the Proposed 
system air enters the cycle at state 1 through a compressor, 
where it is pressurized and then leaves at state 2. 
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For GT power plants, preheating of air within a heat 

exchanger, such as a recuperator, by hot gases at the exhaust 
of the cycle improves the total efficiency of the system. Thus, 
air is preheated in the recuperator up to state 3, after which it 
enters the SOFC stack at the cathode side to participate in the 
electrochemical reaction. Since the electricity produced by 
SOFC stack is DC, an inverter is considered to convert it to 
AC. due to internal fuel cell irreversibilities–mainly ohmic 
resistances–heat is also generated to make temperatures of the 
reaction products rise up to state 4. Most of the mass flow rate 
of the fuel is not completely oxidized within the SOFC. It is 
assumed that this percentage of fuel will be burnt in the 
combustor, which is located, downstream of the SOFC.  

Therefore, exit products from the stack (state 4) are further 
heated up to the desired temperature, such as state 5 in the  

combustor, due to direct combustion of fuel that is separately 
fed into the chamber. Then, the working gas carries a 
significant amount of thermal energy to drive the high pressure 
gas turbine, which provides the power requirement of the 
compressor, as shown in Fig. 1. It subsequently expands and 
drops in temperature until it leaves the GT at state 6. However, 
at this point, the working fluid still carries a higher amount of 
energy, which is able to drive the power turbine and produce 
further useful work, through further expansion of the working 
gas up to about atmospheric pressure (state 7). The heat of the 
exhaust gas is further utilized in the recuperator at relatively 
low compression ratios, to increase the temperature of the 
fresh air at the upstream side of the cell stack. Eventually, the 
exhaust working gas is discharged to the atmosphere at state 8.  

 

NOMENCLATURE    
A Constant appeared in .  Net power output of the plant, . 
A  Cell Area,  Greek letters 

B Constant that appears in  .  Δ  Sum of the voltages looses due to 
irreversibilities. 

E Nernst potential or open circuit voltage, 
Volts.  Efficiency. 

E  Ideal cell voltage at standard conditions, 
volts.  Ratio of specific heats. 

F Faraday constant.  Stoichiometric ratio. 
H Enthalpy, ⁄ . Superscript  
I Current, .  Cycle 
j Current density, ⁄ . subscripts  
j  Exchange current density, ⁄ . Act Activation 
j  Limiting current density, ⁄  . C Cell 
LHV Lower Heating value, ⁄  . comb Combustor 
m Mass flow rate, ⁄  . conc Concentration 
P Pressure,  . FC Fuel cell 
Q Heat transfer rate,  . Gen Generator 

Q ,FC Heating rate generated within the cell 
stack, . GT Gas Turbine 

R Universal gas Constance, 
8.314  ⁄  . in Inlet 

r  Compression ratio.  invert DC AC inverter 
T Temperature, . ohm Ohmic 
T  Cold sink temperature, . out Outlet 
U  Fuel utilization factor. PT Power turbine 
V Voltage, volts. Recup Recuperator 

 Power, . th Thermal 

,  DC power output of the cell stack, .   
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physical factors relating to how well the air around the 
cathode can circulate, and how quickly the oxygen can be 
replenished. This change in concentration will cause a 
reduction in the partial pressure of the oxygen. 

Similarly, if the anode of a fuel cell is supplied with 
hydrogen, then there will be a slight drop in pressure if the 
hydrogen is consumed as a result of a current being drawn 
from the cell. This reduction in pressure results from the fact 
that there will be a flow of hydrogen down the supply ducts 
and tubes, and this flow will result in a pressure drop due to 
their fluid resistance. This reduction in pressure will depend 
on the electric current from the cell (and hence H2 
consumption) and the physical characteristics of the hydrogen 
supply system. In both cases, the reduction in gas pressure will 
result in a reduction in voltage. Following equation gives a 
very good fit to the results, provided the constants m and n are 
chosen properly. 

∆                                                              (3) 
 

E.  Total Voltage Losees 
All the voltage losses listed earlier are summarized using a 

single formula that accounts for all the described phenomena: 
 

                                     (4) 
 

Constants values in the above equation for a high temperature 
solid oxide fuel cell are given Table I. 

 
TABLE I 

CONSTANT OPERATING PARAMETERS OF SOFC 
  1.01 

 Ω  2.0 10  
  0.002 
  1.0 10  

  8 10  
 
  

F.  Effect of Temperature and Pressure 
The thermodynamic efficiency of SOFCs operating on H2 

and O2 at open circuit voltage is lower than that of other low 
temperature fuel cells because of the lower free energy at 
higher temperatures. On the other hand, the higher operating 
temperature of SOFCs is beneficial in reducing polarization 
resistance. The dependence of SOFC performance on 
temperature is expressed by the following equation: 
 
∆ 0.008                                                  (5) 
 

SOFCs, like other fuel cells, show enhanced performance 
by increasing cell pressure. The following equation 
approximates the effect of pressure on cell performance. 

∆ 59 ln                                                            (6) 
 

Where P1 and P2 are different cell pressures. The above 
correlation was based on the assumption that overpotentials 
are predominately affected by gas pressures and that these 
overpotentials decrease with increased pressure. 
 

IV.  ENERGY FORMULATION OF COMPONENTS 
The thermodynamic performance of each of the components 

introduced in the preceding section will be analyzed here. The 
mass and energy balance are employed under the assumption 
of steady flow for the entire cycle. The main stream of the 
working fluid assumed as ideal gas, at different states of the 
cycle is shown in Fig. 1. 

A. Compressor 
The isentropic efficiency of the compressor is defined as: 

                                                                  (7) 
 

Where the ideal temperature of the working fluid at the 
outlet of the compressor can be determined using the 
following equality. 

⁄
                                                                    (8) 

 

Applying the energy balance for the system, one may find 
the following work required for the compressor to produce a 
compression ratio of rp. 

                                                                 (9) 
 

B. Recuperator 
The effectiveness of the recuperator is described as: 

 
                                                                       (10) 

Using the following energy balance equation, one may find 
the outlet temperature of the cycle: 

                                              (11) 
 

C. Solid Oxide Fuel Cell 
The fuel utilized to supply the system is methane (CH4), 

with a lower heating value of 50,050 kJ/kg. The following 
electrochemical reactions occur within the anode and cathode 
of the fuel cell: 

In this investigation methane and hydrogen have been used 
for fueling the SOFC stack and combustion chamber. 

In the anode the following electrochemical reaction occurs: 
 

2  
2  

4 2 8                                  (12) 
 

And for the anode side: 

2                                                                  (13) 

The degree to which an anode supports direct oxidation will 
then impact the degree of prereforming of the fuel that is 
required, which in turn typically impacts the balance of plant 
complexity and cost [33]. 

The net cell reaction is thus written as: 

2 2                                                  (14) 
 

And the net cell reaction for hydrogen as fuel is as following: 
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                                                                 (15) 
 

The solution of the overall mass and energy balances of the 
fuel cell requires the evaluation of both the voltage and the 
current produced by the stack. The reversible cell voltage, E, 
is defined by the Nernst equation as follows: 
 

E=                                                             (16) 
 

where E0 is the ideal cell voltage at standard conditions (i.e., 
298.15 K and 1 bar), R is the universal gas constant, T is the 
stack temperature, and F denotes the Faraday constant (96,485 
C/ mole).The Nernst equation provides a relationship between 
the ideal standard potential, E0, for the cell reaction and the 
ideal equilibrium potential, E, at other temperatures and partial 
pressures of reactants and products. By defining the current 
density, j, as the rate of electron transfer per unit activation 
area of the fuel cell, the DC electric power produced by the 
fuel cell can be expressed by: 
 

,                                                                      (17) 
 

Where Vc represents the cell voltage. This is the difference 
between the open-circuit voltage, obtained from the Nernst 
equation, and voltage losses in the fuel cell: 

                                                                    (18) 
 

Where ∆  is the sum of the voltage losses due to 
irreversibilities in the fuel cell, which include activation 
polarization, ohmic losses and concentration losses obtained 
by summation of equations 1-3. 

Each of the irreversibilites which mentioned in eq. 16 can 
be obtained using following equations. 

Some heat generation occurs within the cell stack, due to 
the irreversibilities mentioned earlier. The following equation 
may be used to determine the rate of heat generated within the 
cell stack. 

,  10                 (19) 

The oxygen used in the reaction of Eq. (12) will be 
normally derived from air. The airflow is usually well above 
the stoichiometric amount, typically twice higher. If the 
stoichiometric ratio is l, then the following equation gives the 
mass flow rate of air usage: 
Air usage 3.75 10 λ WFC,

V
 Kg s⁄                    (20) 

The mass balance for this system gives: 

∑  ∑                                 (21) 
 

Thus, 
 

( )3 , 4 , 1+ = + × −& & & &fuel FC fuel FC fm m m   m U                     (22) 
 

Where Uf denotes the fuel utilization factor. The last term on 
the right side of the above equality represents the non-reacted 
mass flow rate that leaves the fuel cell downstream of the 
products. Applying the first law of thermodynamics to the 
SOFC and assuming an adiabatic process, 
 

( )
3 3 , ,

, ,

4 4

1
0

+ × × + ×

− −

− =

& &

&

&

fuel FC f fuel FC

f fuel in FC dc

m h m U LHV m

U h W
m h

                   (23) 

 

Where LHV is the lower heating value of the fuel.  
 

D. Cumbustor 
The working fluid of the cycle, with products from the fuel 

cell, is further heated within the combustor. Considering that 
non-reacted flow of fuel from the SOFC is burnt in the 
combustor, the mass balance of the combustor yields: 
 

( ) ( )3 , ,

, 4

, 5

1fuel FC f fuel FC f

fuel comb

fuel comb

m m U m U

m m

m m

+ + −

+ =

+ =

& & &

& &

& &

                                     (24) 

 

The first law of thermodynamics for the combustor can be 
expressed as: 

 

, 0    (25) 
 

Where 
And  represents the efficiency of the combustor.  

( ), ,1comb fuel FC f fuel combQ m U m

LHV

⎡ ⎤= × − +⎣ ⎦
×

& & &
                                  (26) 

( )
( )

, ,1

1
loos fuel FC f fuel comb

comb

Q m U m

η LHV

⎡ ⎤= × − +⎣ ⎦
× − ×

& & &
                                     (27) 

 
E. Gas Turbine 
As shown in Fig. 1, the required work of the compressor is 

provided by the high pressure gas turbine: 

                                                                            (28) 

Knowing the turbine inlet temperature (TIT), the outlet 
temperature of the turbine, T6, can be determined. 
Furthermore, through the definition of isentropic efficiency of 
the turbine, 

                                                            (29) 
 

The ideal temperature of the working gas at the outlet of the 
turbine can be evaluated. Therefore, using Eq. (37), the 
downstream pressure of the gas turbine is determined as: 
 

⁄
                                                             (30) 

 
F. Power Turbine 
The relevant governing equations for the power turbine are 

similar to those presented in the previous section. Considering 
the isentropic efficiency of the turbine, the downstream 
temperature of the power turbine, T7, may be determined from 

 
                                                            (31) 
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