International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:2, 2008

Experiments on Element and Document Statistics
for XML Retrieval

Mohamed Ben Aouicha, Mohamed Tmar, Mohand Boughanem, and Mohamed Abid

Abstract—This paper presents an information retrieval model on
XML documents based on tree matching. Queries and documents are
represented by extended trees. An extended tree is built starting from
the original tree, with additional weighted virtual links between each
node and its indirect descendants allowing to directly reach each
descendant. Therefore only one level separates between each node
and its indirect descendants. This allows to compare the user query
and the document with flexibility and with respect to the structural
constraints of the query. The content of each node is very important to
decide weither a document element is relevant or not, thus the content
should be taken into account in the retrieval process. We separate
between the structure-based and the content-based retrieval processes.
The content-based score of each node is commonly based on the
well-known T'f x Idf criteria. In this paper, we compare between
this criteria and another one we call T'f x Ief. The comparison
is based on some experiments into a dataset provided by INEX! to
show the effectiveness of our approach on one hand and those of
both weighting functions on the other.

Keywords—XML retrieval, INEX, T'f x Idf, T'f x Ief

I. INTRODUCTION

XTENSIBLE Markup Language (XML) [1] is becoming

widely used as a standard document format in many
application domains. We believe since few years that a great
volume of static and dynamic data were produced in XML.

Therefore, XML retrieval becomes more and more essential
[4]. XML documents covers a big part not only on the web,
but also on modern digital libraries, business to business
and business to consumer software and essentially on Web
services oriented software. This is due to the great importance
of structured information.

While both text and structure are important, we usually
give higher priority to text when ranking XML elements.
We adapt unstructured retrieval methods to handle additional
structural constraints. Such approach are called text centric
XML retrieval. The vector-space based XML retrieval method
proposed by [20] defines each dimension by sub-trees that
contain at least one indexing term. Queries and documents
are then represented by vectors in this space and the

M. B. Aouicha is with the Institut de Recherche en Informa-
tigue de Toulouse, 118 Route de Narbonne, 31062, email: mo-
hamed.benaouicha@irit.fr

M. Tmar is with the Institut Supérieur d’Informatique et du Multimédia de
Sfax, Route de Tunis, B.P.: 1030, 3018, email: mohamedtmar@isimf.rnu.tn

M. Boughanem is with the Institut de Recherche en Informatique de
Toulouse, 118 Route de Narbonne, 31062, email:boughane@irit.fr

M. Abid Ecole Nationale d’Ingénieurs de Sfax, Route de Soukra, 3038,
mohamed.abid@enis.rnu.tn

LINitiative for the Evaluation of XML retrieval, an evaluation forum that
aims at promoting retrieval capabilities on XML documents.

system computes matches between them using well-known
similarity measures (Cosine, Dice, Overlap . ..). Schlieder and
Meuss [16] describe similar approaches. They proposed the
ApproXQL model, which integrates the document structure in
the vector space model similarity measure. The query model
is based on tree matching: it rewrites the queries and the
documents independently and then performs XML retrieval
based on the vector space model basics.

Several teams have used a language modeling approach
to XML retrieval. Ogilvie and Callan [21] use a tree-based
generative language model for ranking documents and
components. They build a language model for nodes and
another for leaf nodes depending on their components. Inner
nodes are estimated using a linear interpolation among the
children nodes. The probabilistic model has been applied to
XML documents by [19] and [11].

Contrarily to text-centric XML, data-centric XML mainly
encodes non-text data. When querying data-centric XML,
the user imposes exact match conditions in most cases.
This approach is commonly used for data collections with
complex structures and non-text data. There are powerful
query languages for XML that can efficiently handle structure.

The most known of such languages is XQuery [22]. How-
ever, it is challenging to implement an XQuery-based typically
to provide ranked lists of elements. Amer Yahia [23] uses
a pettern matching model based on Xquery to handle XML
retrieval.

Fuhr [5] uses a query language XIRQL that combines
the structural and the content based approach. It integrates
features related to data-centric by using ideas from logic-
based probabilistic IR models, in combination with concepts
from the database area.

In this paper, we separate between content and structure
since indexing queries and documents [12]. We handle
the document structure by retrieving candidate document
fragments that almost follow the query structure and then
complete their scores by content retrieval. By means of
structure, scores are assigned to document fragments, highest
scores are assigned to those that have exactly the same
structure as the query.

Besides, we assume that content retrieval is the main
decisive criteria of relevance. Although XML retrieval
is based on structure constraints, the content is still the

463

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:2, 2008

most important element to retrieve by the XML retrieval
system and to exploit by the user. The main goal of this
paper is to compare between two content-based weighting
functions: T'f x Idf and Tf x Ief. Tf x Idf weighting
formula is commonly used in traditional information retrieval,
it shows that a term weight depends on its frequency on
the document and the total number of documents containing it.

This paper is organized into five sections. The second
section exposes tree extension used to build a flexible
representation of documents and queries and the exact match
algorithm we use starting from these representations to
perform structure retrieval. In the third section, we present
content retrieval and how content and structure retrieval
scores are combined to meet a definitive score to a candidate
fragment. We also explore the weighting functions used in
our experiments.

The fourth section presents the experiments and the obtained
results. The fifth section concludes.

Il. STRUCTURE INDEXING AND RETRIEVAL

Formally, an XML tree is a set of node paths A — B
where node A is the parent of node B. The XML tree root
is the only one that has no parent. So an XML tree T should
have the following property:

{N,YN' € T,N' — N ¢ T'} = {root} (1)

A fragment can be defined by the result of the inner
join of two paths. For example, if an XML tree contains
paths A — B and B — (C, we define another path
A — B — C. A path is then an ordered list of nodes
N1 —>N2%—>Nn

No cycles have to occur in a tree path, thus if Ny —
Ny — ... — N, is a path resulted from the tree T, all
N should be different. This brings to another property which
requires that each node but the root has only one parent:

0 if N =root
1 otherwise

VN,|{N’—>N€T}\:{ @)

The structure retrieval can be viewed as comparing between
the structures of two XML trees. Comparing between trees
was initially introduced by the tree to tree correction theory
[17]. To compare between two trees, we trend to build a tree
starting from the second tree and compute correction costs
while correcting. The correction process considers hidden
relations between nodes. For example, if node A is the parent
of node B which is the parent of node C in the tree T, and
node A is the parent of node C in the tree 7", the T' to T”
correction can be held by removing node B and linking node
A with node C. This operation has a cost and the tree to
tree correction cost is the total cumulated cost of correction
operations.

0.14
N—Lt >N — s N —L >N,

o

Fig. 1. Original and additional paths, the original paths are weighted by 1.

The total cost c of tree to tree correction can be viewed as
the inverse of the similarity between both of them. Typically,
if ¢ = 0, this means that no correction operation is needed to
build a tree starting from the second, so they are totally similar.

This process can be applied to estimate the structure
similarity between two XML documents, or an XML
document and an XML query. The main motivation of its
application is that it allows to perform structure comparison,
which is necessary in XML retrieval and second, it provides
a ranked list of document trees (or document sub-trees),
where the score is the inverse of the total cumulated cost of
the document tree to the query tree correction (or the query
tree to the document tree correction). However, due to some
practice reasons, this cannot be applied to structure retrieval
[19]. First, we assume that the similarity between tree 7" and
tree 7" should be equal to the similarity between tree T”
and tree T', whereas tree T to tree 7" correction has not the
same cost as tree 7" to tree T correction. In fact, removing
and appending nodes have not the same cost, in addition,
depending on the tree to tree correction algorithm, when we
start from a tree T to meet another tree 7", it is possible
that the operations are not the inverse of those that we use to
meet the tree T starting from the tree 7”. Second, the tree to
tree correction algorithms are very much not scalable: they
cannot be applied on XML retrieval on very large corpuses.

The structural retrieval process should look for the deepest
and widest sub-tree shared by both representations [17]. To
do so, we add to each path A — B a weight reflecting the
importance of the relation between nodes A and B. According
to the parent-child relation, this weight is equal to 1. The more
A is distant from B in the original path, the less its weight
is. Naturally, the weight depends on the distance between two
nodes that occur in a path. We use the weighting function f
defined by f(A — B) = exp(1l — d(A, B)) where d(A, B)
is the distance that separates node A from node B. We denote
this path by A %> B where w = exp(1 — d(4, B)) is the
weight of the path A — B.

Figure 1 shows how a path Ny — Ny — N3 — Ny is
extended to a set of weighted paths.

We apply an exact match algorithm on the extended trees.
Starting from tree 7" and tree 7" this algorithm looks for the
deepest and widest sub tree shared by T and 7" and computes
the similarity depending on the weights of paths appearing in
each one.

464

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:2, 2008

Relevant fragments are those having similar structure than
the user query. This can be done by looking in the extended
document for fragments having exactly the same structure as
the extended query or a part of it. This allows flexible XML
retrieval [7].

The search strategy we adopt is iterative. We start from
extended document and query trees. We build a returned frag-
ment incrementally, starting from common potential roots, we
build for each one its common child nodes, and then for each
child node, we build its common child nodes and so on until
leaf nodes. When building relevant candidate fragments, we
compute the structure-based score by cumulating the product
of the paths weights in the document and their matched ones in
the query tree. Algorithm 1 shows this search strategy. Figure
2 illustrates the structure score computation. Each query node
is matched with a document node and the structure score is
the sum of each path weight multiplied by its matched one:
0.37x140.14 x 0.14 + 0.37 x 0.14 4+ 1 x 0.37 = 0.81.

I1l. CONTENT RETRIEVAL

The content-based score is computed for each document
node according to a given query. This score is computed
independently from the structure-based retrieval as follows:

rsve(n) = Z w(p,n)

peENNg

where w(p,n) is the weight of term p in node n and nNq is
the set of terms apprearing in both the query and the element
node. The term weight in a document node is computed as
follows:

tf(p., ck)
Z d(n,cg) +1)

n—c1—Cca...Ck

w(p,n) = idf, X

where tf(t, c) is the frequency of term p in node ¢, and idf,
is the inverse of document frequency of term p and is done
by the following:

N
idfy, = .
where N is the total number of documents and n, is the
number of documents containing term p. Equation 3 shows
that each node content is propagated to its ancestor nodes. For
example, if node A is the parent of node B which contains
term p, we assume that node A contains term p and we
downweight it in node A by dividing it by 2 = d(4,B) + 1
[24]. If node C is the parent of node A, term p is propagated
from node B to node C and we divide its weight by
3=d(C,B)+1...

According to the T' f x Ie f weighting formula, N is replaced
by the total number of elements and n, by the number of
elements containing term p. Both of these weighting functions
have been tested in our experiments.

Algorithm 1 Structure retrieval

1: E, {The extended query tree}
2. Eq {The extended document tree}
3. F «— () {the set of returned fragments, initially empty}
2 for all n, —% ny € E,{n; is an ancestor of n,} do
5. forall ng =% nj) € Eq,ng = ng and n), = n){nis an
ancestor of ng, & = 3 shows that nodes « and 3 should
have the same tag name, so they can be matched} do
6: if 3(fy,fa,C,r) € F,(ng — .ng — .) €
Cor (. — ng,. — nq) € C { Fragments f, and
fa can be enriched by all matchable paths n; — .
and n), — ., C is a set of pairs where each
pair (p,p’) € C shows that path p in the query
tree is matched with path p’ in the document tree, r
is the structure score computed incrementally while
building potential structure relevant fragments} then

w’ w) _
7 for all n;l—‘% ng € Eg,ny —= njy € Eq,ng =
w ’)
ny {n, —% n/ and n/; —% n! are used to enrich
the retrieved fragments f, and f;} do

8 (fg: 3,67 — (fo fa. Cor) {we
clone (fy, fa,C,r) towards a new fragment
(fg:f3,C*,r*) and then enrich it by paths

n! 2% p and n/ w—:i> n/;

q q d d

o fi = fy 0 {nfy =5)

10: f5— fru{n, =% 0/

11: O — C*U{(My % nl/ 'y 24)

12: 7 e— r* 4wy x w;{update the score}

13; F «—— FU{(f;, f;,C*,r*)}{update the set F'}
14 end for

15: else

{the path does not yet exist among the already
built fragments, it can be added as a new relevant
fragment each with only one path}F «— F U
{({ng == ni}, {na =5 nj},{(ng = nijng =%

1)}, wg X wa) }

16:17: end if
18: end for
19: end for

IV. EXPERIMENTS AND RESULTS

Experiments have been undertaken into a dataset provided
by INEX. It contains 16819 articles taken from IEEE
publications in 24 journals covering the period of 1995-2004
and totaling about 750 megabytes, and 87 queries (40 for
CO+S and CO tasks and 47 for CAS task on which we place
the emphasis in this paper).

The INEX metric for evaluation is based on the exhaustivity
and specificity measures which are analogous to the traditional
recall and precision measures. The specificity is an extent to
which a document component is focused on the information
need, while being an informative unit. The exhaustiveness is
an extent to which the information contained in a document

465

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:2, 2008

? N
7 \
Fig. 2. Structure retrieval

component satisfies the information need.

Each document component has one of the following values
of specificity (resp. exhaustivity):

« 0: non specific (resp. non exhaustive)

« 1: slightly specific (resp. slightly exhaustive)

o 2: specific (resp. exhaustive)

« 3: very specific (resp. very exhaustive)

These measures are quantized onto a single relevance value.
Quantization functions for three user standpoints are used:

_ L oif(es)=(2,1)
Forice(s,€) = { 0 otherwise
fgeneralized(s7 6) = eXs

foencLifted(s,e) = (e+1)xs

The INEX CAS (Content and structure) measures are de-
scribed as follows:

« VVCAS: the information retrieval assessments of the
whole topic (done against the narrative).

o SVCAS: the subset of VVCAS assessments that strictly
satisfy the target element constraint.

o VSCAS: those VVCAS assessments that satisfy all sup-
port element constraints, regardless of the target element
constraint. Boolean operators between support elements
are followed strictly.

« SSCAS: those assessments that strictly satisfy all support
element constraints as well as the target element con-
straint.

Where for XYCAS, X is the target element and Y is the
support element, and either can be S for strict or V for vague.
We emphasize our experiments on the VVVCAS task which is
the most appropriate to our model. The INEX metric we use
for evaluation is based on the mean average effort precision
(M Aep).

First experiments were undertaken to show the effectiveness
of our approach on XML retrieval. Figures 3, 4 and 5 show
our results (bold curves) compared to official INEX obtained
results by all participants on the MAep quantization measure.

Figures 6, 7 and 8 show the obtained results of using
Tf x Idf and Tf x Ief (bold curve) weighting functions.

/ \”
o:/ \37

INEX 2005: Results’ Summary
metric: ep-gr,quantization: gen
task: VVCAS

effort-precision

0 0.5 1
gain-recall

Fig. 3. Comparative results with INEX official participants, Generalized
quantization function

Globally, the T'f x Ief weighting function provides better
results. In high gain-recall values, the T'f x Idf provides
slightly better results. We can conclude from our experiments
the importance of content-based retrieval on XML corpuses
and the importance of the term weighting function to choose
on the XML retrieval process.

V. CONCLUSIONS

We have presented in this paper an XML retrieval approach
based on tree matching. The approach consists of comparing
document and query representations, computing a structure
and a content score to each document node and then combine
them into a final score.

Each score is computed independently of the other, and
the final score depends on both of them. Undertaking content
and structure scores computation independently leads to
the independence between content and structure scores

466

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:2, 2008

INEX 2005: Results’ Summary

metric: ep-gr,quantization: genLifted
task: VVCAS

0.4 ¢

0.32 H

0.24 |

0.16

effort-precision

0.08

gain-recall

Fig. 4. Comparative results with INEX official participants, Generalized
lifted quantization function

INEX 2005: Results’ Summary
metric: ep-gr,quantization: strict
task: VVCAS

0.28
o .
K=l ?
Qo 0.21
[S] :
e H
2
5 014
=
()

0.07

0 0.5 1
gain-recall

Fig. 5. Comparative results with INEX official participants, Strict quantiza-
tion function

distributions. This assumption is needed to estimate the score
of each document node by its probability of relevance.

We have experimented our approach into a dataset provided
by INEX. We have placed the emphasis on the VVCAS task,
which represents an excellent illustration of flexible XML
retrieval. This task is the most appropriate for our retrieval
model. The system was designed especially for such tasks.

INEX 2005: Results’ Summary
metric: ep-gr,quantization: gen
task: VVCAS

0.3 |

0.2

effort-precision

0.1 ‘ o

0 0.5 1
gain-recall

Fig. 6. T f x Idf and T'f x Ief results, Generalized quantization function

INEX 2005: Results’ Summary
metric: ep-gr,quantization: genLifted
task: VVCAS
0.16 \

c
Q
82}
o
o
S
= 0.08
<]
£
3]
0
0 0.5 1

gain-recall

Fig. 7. Tf x Idf and Tf x Ief results, Generalized lifted quantization
function

Additional experiments have been undertaken to show the
effectiveness of using T'f x Idf and Tf x Ief weighting
functions. We have observed that the T'f x Ief weight-
ing function provides globally better results. Currently, we
are using an XML retrieval prototype based on flexible
tree matching. Further experiments should be achieved on
other topics/collections such as Wikipedia corpus provided by
INEX. Besides, we plan to investigate an issue of combining
Tfx Idf and T f x Ief weighting functions first to consider

467

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:2, 2008

INEX 2005: Results’ Summary

metric: ep-gr,quantization: strict

task: VVCAS
0.28
c 021
R
0
(8}
[©]
g 014
S
=
(]
0.07
0
0 0.5 1
gain-recall

Fig. 8. T f x Idf and T'f x Ief results, Strict quantization function

both of them in our XML retrieval system and second to
take advantage from both of them to improve the system
performance.

REFERENCES

[1] World wide web consortium (w3c). extensible markup language (xml)
1.0. http://Amwww3.org/ TR/REC-xml, 2000.

[2] Inex - initiative for the evaluation of xml
http: //inex.is.informatik.uniduisburg.de, 2003.

[3] H. Blanken, R. Grabs, and G. Weikum. Intelligent search on xml.
Springer-Verlag, 2003.

[4] D. Carmel, Y. Maarek, S. Mandelbrod, M. Mass, and A. Soffer. Searching
xml documents via xml fragments. Proc. of the 24th annual ACM SGIR
conference on research and development in Information Retrieval, pages
151-158, 2003.

[5] N. Fuhr and K. Grossjohann. Xirgl: A query language for information
retrieval in xml documents. Proc. of the 24th annual ACM SGIR
conference on research and development in Information Retrieval, New
Orlans, USA, pages 172-180, 2001.

[6] M. Fuller, E. Mackie, R. Sacks-Davis, and R. Wilkinson. Structural
answers for a large structured document collection. Proc. of the 24th
annual ACM SGIR conference on research and development in Informa-
tion Retrieval, Pittsburgh, USA, pages 204-213, 1993.

[7]1 G. B. G. and Pasi. Flexible querying of structured documents. Proc.
of the fourth International Conference on Flexible Query Answering
Systems(FQAS), 2000.

[8] T. Grust. Accelerating xpath location steps. Proc. of the 2002 ACM
S GMOD International Conference on Management of Data, Madison,
Wisconsin, USA, pages 109-120, 2002.

[9] J. Kamps, M. Marx, M. D. Rijke, and B. Sigurbjornsson. Xml retrieval
: What to retrieve ? Proc. of the 24th annual ACM SIGIR conference
on research and development in Information Retrieval, pages 409-410,
2003.

[10] G. Kazai, M. Lalmas, and T. Roelleke. A model for the representation
and focused retrieval of structured documents based on fuzzy aggregation.
Proc. of SPIRE2001, Chile, pages 123-135, 2001.

[11] M. Lalmas. Dempster-shafers theory of evidence applied to structured
documents: Modeling uncertainty. Proc. of the 24th annual ACM
S GIR conference on research and development in Information Retrieval,
Philadelphia, USA, pages 110-118, 1997.

[12] R. Luk, H. Leong, T. Dillon, A. Chan, W. Croft, and J. Allan. A survey in
indexing and searching xml documents. Journal of the American Society
for Information Science and Technology, 6(53), 2000.

retrieval.

[13] M. Marx, J. Kamps, and M. D. Rijka. The university of amsterdam at
inex 2002. Proc. of the INEX 2002 Workshop, Germany, pages 23-28,
2002.

[14] A. Moffat, R. Sacks-Davis, R. Wilkinson, and J. Zobel. Retrieval of
partial documents. Proc. of TREC-2, 1993.

[15] F. N., G. N, K. G., and L. M. Inex : Evaluation initiative for xml
retrieval. Proc. of INEX 2002 Workshop, DELOS Wbrkshop, 2003.

[16] T. Schlieder and H. Meuss. Querying and ranking xml documents.
Journal of the American Society for Information Science and Technology,
6(53):489-503, 2002.

[17] S. Selkow. The tree-to-tree edition problem. Information processing
letters, pages 184-186, 1977.

[18] R. Wilkinson. Effective retrieval of structured documents. Proc. of
the 24th annual ACM SIGIR conference on research and development in
Information Retrieval, Dublin, Ireland, pages 311-317, 1994.

[19] J. Wolff, H. Firke, and A. Cremers. Searching and browsing collections
of structural information. Proc. of IEEE advances in digital libraries,
Washington, USA, pages 141-150, 2000.

[20] Y. Mass, M. Mandelbrod, E. Amitay, D. Carmel, Y. S. Maarek
and A. Soffer. JuruXML an XML retrieval system at INEXO02.
http://inex.is.infor matik.uni-duisburg.de: 2003/proceedings.pdf, pages 73-
80, 2003.

[21] P. Ogilvie and J. Callan. Parameter estimation for a simple hierar-
chical generative model for XML retrieval. http://inex.is.informatik.uni-
duisburg.de: 2005/proceedings.pdf, pages 211-224, 2005.

[22] XQuery: A query language for XML. http:/mww.w3.org/TR/xquery/,
2001.

[23] S. Amer-Yahia, B. Chavdar, J. Dorre and J. Shanmugasundaram. XQuery
full-text extensions explained. IBM Systems Journal, pages 335-352,
2006.

[24] K. Sauvagnat and M. Boughanem. The impact of leaf nodes relevance
values evaluation in a propagation method for XML retrieval. 3rd XML
and Information Retrieval Workshop, SIGIR 2004, Sheffield, England,
pages 19-22, 2004.

468

