
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

446

PmSPARQL: Extended SPARQL for
Multi-paradigm Path Extraction

Thabet Slimani, Boutheina Ben Yaghlane, and Khaled Mellouli,

Abstract—In the last few years, the Semantic Web gained scientific
acceptance as a means of relationships identification in knowledge
base, widely known by semantic association. Query about complex
relationships between entities is a strong requirement for many
applications in analytical domains. In bioinformatics for example, it is
critical to extract exchanges between proteins. Currently, the widely
known result of such queries is to provide paths between connected
entities from data graph. However, they do not always give good
results while facing the user need by the best association or a set
of limited best association, because they only consider all existing
paths but ignore the path evaluation. In this paper, we present an
approach for supporting association discovery queries. Our proposal
includes (i) a query language PmSPRQL which provides a multi-
paradigm query expressions for association extraction and (ii) some
quantification measures making easy the process of association rank-
ing. The originality of our proposal is demonstrated by a performance
evaluation of our approach on real world datasets.

Keywords—Association extraction, Query Language, relationships,
knowledge base, multi-paradigm Query.

I. INTRODUCTION

INCREASINGLY the organizations converge towards the
use of semantic Web technologies, in other word the choice

depends on the adequacy of their needs with the support
provided by these technologies. Consequently, the possibilities
of the semantic requests and information storage become
recommended to provide a uniform space of research allowing
the mining and the flexible exploitation of semantic data. In the
field of the semantic Web, current exploitation technologies,
mainly concentrate on the entities, resources, and/or associa-
tions identification (interesting relations or path in RDF graph).
The research techniques of path offer effective significance
to answer requests of type ”is there a semantic relationship
between entities A and B?”. The concept of relation or
semantic association refers to a complex path which connects
two entities contained in a knowledge base [1] [2] [3]. The
origin of semantic associations was appeared with the theories
and the methods coming from the research of LSDIS labora-
tory at the university of Georgia 1. The semantic association
discovery is a process of path extraction which connects two
specified entities. The approaches and the methods which offer
a language of association extraction and estimation of their
qualities became increasingly recommended. Certainly, there
are attempts to making possible an approach of associations

T. Slimani is with the Department of Computer Science, High Institute
of Management, Tunisia, CA 2000, Bardo Tunisia (Phone: 0021697498557;
email:Thabet.slimani@gmail.com).

B.B. Yaghlane and K. Mellouli are with the Department of Computer
Science, Institute of High Commercial Study, CA 2016, Carthage Precidency,
Tunisia (emails: {boutheina.yaghlane,khaled.mellouli}@ihec.rnu.tn)

1http://lsdis.cs.uga.edu/

extractions and ranking [4] [1] [2] [3] [5]. The associa-
tion identification and ranking are a very interesting topic
adapted in the context of the semantic Web. However, there
is no remarkable profit of perspicacity about what gives good
associations and in the manner of finding them effectively.
Query languages, starting from RDF bases, such as RDQL
[6] and its Successor SPARQL [7] support the definition
of the graph models and allow restrictions on the entities
and the properties which take part in certain definite models.
Nevertheless, no support is provided by these languages with
regard to the extraction of paths or associations in RDF graphs.
Recently, two languages [8] and [9] who are interested in
the extraction of the paths in RDF graph have been developed.
These languages offer a support for path extraction, but they
miss the evaluation process of the extracted paths. It is within
this framework where our work is, which proposes a new
PmSPARQL language which doesn’t only make it possible to
achieve the needs for semantic associations extraction, but also
to provide, in some cases, the possibilities of arranging them to
distinguish the most suitable association with the user’s need.
Moreover, we propose to provide a space of needs specification
in a request in such a way that the result will not be presented
exclusively in the form of the assertion ”entities A and B
are connected through such and such a way”, but also by
the extraction of the best way according to some specified
dimensions.

The paper is organized as follows. In Section 2, we give
a motivation for querying semantic association discovery in
RDF graph. In Section 3, we introduce the related work and
contribution. In Section 4, we present the specification of
semantic association in RDF base. In Section 5, we propose the
analysis of semantic association quality. Section 6, introduces
our proposed PmSPARQL language, the concept of a path in
PmSPARQL, shows the syntax and semantics of the language,
and describes its algorithm for path identification. Finally, in
section 7, we discuss the performance and the experimental
results of our implementation.

II. MOTIVATIONS

In spite of the quick change with regard to the development
of the storage and extraction means in the field of semantic
Web, there remains/stills a radical gap between the support
provided by the developed mechanisms and the needs for
certain categories of applications. In particular, the analytical
and investigatory applications in some fields such as national
security, economic intelligence, bioinformatics, scientific re-
search, require the associations and interactions identification

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

447

which exist between data. However, it is crucial to invent
methods that make possible to answer questions of the type
”How two entities A and B are connected?”, ”what’s the best
connection?” and ”there exists a fashion of presenting these
connections by order of merit?”. Such request refers to the
extraction of paths which connect two specified entities or
which connect a single source entity with unknown target
entity. Moreover, the developed language provides the possible
requests which include multi-paradigm choice with regard to
the nature of the associations wished by an extraction process.
We present here, a definite real task of analysis which can
adopt these types of requests:

Biological Science: some examples of semantic associations
can be generated in the sequences of metabolic pathways. The
metabolic pathways are composed by sequences of chemical
reactions occurring in a cell. For example, the pathway N-
Glycan Biosynthesis [10] is an example quite clear of the
metabolic pathways. The mining of metabolic sequences is
a difficult problem which requires a request of regular path.
The results produced by these requests allow the researchers
in the field of biology to extract some ordered sequences of
specific reactions which can occur starting from a specified
sequence in entry to the desired final product.

- Analysis of genes interaction implied in advanced ovarian
cancer treated in [11]. The researchers will like to analyze
these genes with regard to the biological pathways which they
participate to facilitate the comprehension of the mechanism
which leads to the disease. The identification of these inter-
actions requires only a language which makes it possible to
express specific constraints of concerned genes, for example
expressed in epithelial cells.

National Security:To ensure the safety concerning the
threats that can occur on certain flights. The type of requests
which can be adopted in this task related to the identification
of some relationships between terrorist peoples who purchased
tickets according to a well specified period.

Scientific research: To evaluate the degree of connectivity
of a specific researcher, such as its field of expertise and for
example the degree of relevance of a paper subjected to a con-
ference with the field of expertise of a reviewer. The request
type which can be adopted in this case must have constraint
to the level of the identification of the frequent properties
which have a relationship to the resources related to the fields
of research. Some works concerning the analysis of links to
discovering social relationships in academic communities were
presented in [12].

III. RELATED WORK AND CONTRIBUTIONS

The topic of semantic associations can be regarded as a
fundamental layer in various real-world applications. This
topic approached in various sectors; especially, in the national
security sector [13], the extraction of biomedical acts [14],
the geospatial semantic analysis [15],...Also, the extraction
of the semantic relationships was presented in the work
of [16] which implies the discovery of new paths between
entities, new loops and nodes significantly connected. As an
attempt at efficient presentation of an association to a user, the

semantic associations ranking was also presented in the work
of [4] [1] [2] [3] [5], as well as of the effective algorithms
concentrating on the execution and the effectiveness were
presented in work of [17] [18]. The credibility measures
of semantic associations starting from multiple sources were
proposed in the work of ([19] [20]).

Works presented earlier does not offer a flexible model of
association extraction which is applicable for various fields.
We are interested by paths extraction languages. In the lit-
erature, several query languages designed for semi-structured
databases in order to support the definition of regular paths
requests. Among these languages, we can state the language
G [21], G+ [22] and Graphlog [23]. In the field of
semantic Web, the paths extraction starting from RDF graphs
is treated by SQL-Like SerQL languages [24], SPARQL,
RDQL. Rule-based languages such as TRIPLE [25], N3 and
traversal graph languages such as Versa [26] and PxPath
[27]. These languages offer a partial support for the paths
extraction, but do not include possibilities of regular paths
extraction. Recently, an important SPARQeL language [9]
which represents the extension of SPARQL language has
been developed specifically for semantic association extraction
starting from RDF graph. This language incorporates paths
models making it possible to capture the needs of semantic and
structural association. In this paper, the semantic association
extraction looks like the SPARQel language in the manner of
association extraction which connects two resources, but which
includes additional functionalities (association evaluation and
ranking).

IV. SPECIFICATION OF SEMANTIC ASSOCIATION IN RDF
BASE

RDF (Resource Description Framework) is based on a
model of triple (subject: property: object) whose values are
either resources, literal or blank nodes. Each element (subject
or object) of the triple constitutes an entity or a resource
of RDF graph. A property/predicate is a binary relation
between two entities (resources). Let I, B and L (IRIs, Blank
nodes, and literals) pairwise disjoint finite sets. The triple
(subject,predicate,object) ∈(I ∪B)×I×(I ∪B ∪ L) is called an
RDF triple. An RDF graph (RDF dataset) is a set of RDF
triples. A path in RDF graph represents a variety of explicit
relations. The existence of a path through which the entities
are connected represents the foundation of the assumption
which affirms the existence of semantic associations between
these entities. We can distinguish several types of semantic
associations. In the work of [5], Anyanwu and Sheth present
an approach based on the ρ operator for semantic associa-
tion extraction. More specifically, the ρ operator provides a
mechanism for semantic associations reasoning which exist
in a knowledge base (RDF graph). Two entities contained in
a knowledge base are semantically connected when they are
associated through the ρ-path, ρ-join or ρ-iso operator.

Figure 1 shows some examples of semantic associations.
Being given two entities e1 and e2, in Figure 1 (a), ρ-path
identifies direct paths which connect e1 to e2. The ρ-join
operator of Figure 1(b) seeks if there exist direct paths between

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

448

Fig. 1. Semantic Association types.

e1 and e2 which meets some node en. Finally, Figure 1(c)
seeks pairs of directed sub-graphs of which the roots are,
respectively, represented by e1 and e2 and both sub-graphs
are semantically similar. In addition to semantic associations
through direct paths (example of relation between the entity of
the type professor (R0) and the entity of the type ResearchArea
(R03))(Figure 2), it is important to drive semantic associations
with indirect paths. A good illustration of this observation is
schematized by the Figure 2-a, describing indirect association
between the entities of the type professor R0 and R1. In
spite of the inexistence of direct path which exists between
these two entities, R0 and R1 are semantically associated.
Semantic association results from the existence of the direct
path which exists between R0 and R1 towards the same entities
R11 and R03. In the same manner, in the Figure 2-b, it is
interesting to seek indirect associations to identify the network
of proteins shared by two different diseases. In the example of
the Figure 2-b, we can conclude that the disease ”Li-Fraumeni
Syndrome” and the disease ”Cockayne syndromeXeroderma”
have proteins in common, which make it possible to facilitate
the identification of the fundamental molecular base shared
between these two diseases [28].

In this paper, a semantic association is a direct or indirect
path connecting two entities contained in RDF graph. We
present in this section some formalism concerning the defi-
nition of semantic associations by taking into account some
connections types between entities.

Being given an RDF database (Ω). Let Ωp and Ωe two sets
respectively indicating the entities (class instances, literal) and
the properties (predicates) contained in Ω. Each property pi
contained in the Ωp set has Re (pi) range and D(pi) domain.
D(pi) and Re (pi) are obligatorily included in Ωe. A path
(association) in Ω is formed by a sequence of entities contained
in Ωe connected by a sequence of properties included in Ωp.

Definition1: direct association Two entities e0 and en

are semantically connected by a direct association if there
exists a direct path between e0 and en of the following form:
(e0

p1
−→e1

p2
−→e2...

pn−1
−−−→en−1

pn
−→en). Where ei (1≤i≤n) is an

entity of order i and Pj(1≤j≤n) is a property of order j. The
properties set p1, p2,..., pn−1 indicate the sequence of the
properties (PS) which connects the entities sequence ES (e1,
e2,..., en−1, en). The association length is n which represents

Fig. 2. Indirect Association Example.

the number of triplets in association. In this paper we explore
only simple direct associations (the entities which form an
association must be distinct). If an association contained a
repeated entity, then association is complex and can involve
infinite loops (especially if the maximum number of repetition
is not fixed).

Definition 2: indirect association: Two entities e0 and en

are indirectly associated if there exists a semantic connec-
tivity between e0 and en independently of direction of the
properties (arcs carried out by e0 and en). For example,
e0

p1
−→e1

p2
←−e2...

pn
−→en is an example of indirect paths between

the entities e0 and en. In this type of association, we consider
only simple indirect paths.

Definition 3: Two entities e0 and en are semantically asso-
ciated if there exists a direct or indirect path in Ω making it
possible to connect these two entities.

V. ANALYSIS OF SEMANTIC ASSOCIATION QUALITY

In the work of [29], Tartir and Arpinar provide some on-
tology evaluation techniques by using statistics metric related
to the knowledge contained in ontology. The authors divided
their evaluation techniques into two categories: metric based
on schema ontology and metric based on knowledge base
(instances). A semantic association is a path in knowledge base
and thereafter, if the knowledge base evaluation is possible,
then a path in a knowledge base can be also evaluated.
From these intuitions, we can derive our evaluation metric
to evaluate associations based on knowledge base metrics.

A. Association connectivity

As defined in the work of [29], the metric of class connec-
tivity represents an indicator of class importance contained in
ontology while being based on the graph instances paths. This
measure is adopted to measure the class importance compared
to other classes contained in ontology. In a similar manner
to class, it is important to identify association significance in
a knowledge base compared to other associations having the
same source and target entities.

Definition 4: The class connectivity (C(ci)) is defined by
the relationship number of class instances with other classes

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

449

instances (RNCI(Ci)).

C(ci) = |RNCI(Ci)|. (1)

Definition 5: The association connectivity (C(Ai)) is defined
by the average of class connectivity of association entities.

C(Ai) =
∑N

i=1 C(ci)
N

. (2)

Where N represents the entities number contained in as-
sociation. The association connectivity makes it possible to
identify the paths having an important connectivity in a
knowledge base.

B. Association Importance

This metric allows the percentage calculation of the in-
stances contained in a structure of sub-class tree of a well
defined class compared to the full number of instances con-
tained in a knowledge base. This measure is adopted to specify
the focal part of a defined ontology.

Definition 6: The class importance (I(Ci)) contained in
ontology is defined by the ratio of instances number (in (Ci))
contained in subclasses graph of the root Ci and the sum of
instances number of the classes contained in the knowledge
base (B(IC)).

I(Ci) =
In(Ci)
B(IC)

. (3)

Definition 7: The importance of semantic association
(I(Ai)) in a knowledge base is defined by the ratio of class
importance sum of classes (n) relative to association entities
by the number of class instances (B(IC)) contained in a
knowledge base.

I(Ai) =
∑n

i=1 I(Ci)
(B(IC))

. (4)

The association importance can be adopted to identify the most
important path or association in a knowledge base.

C. Association Richness

The class richness measure is important because it makes it
possible to identify how much properties defined for a class
Ci in the schema ontology are used by the instances Ii of Ci

on the level of knowledge base.
Definition 8: The class richness R(Ci) is defined by the

proportion of the properties number used by its instances (P
(Ii, Ij)) divided by the properties number defined for Ci in the
level of the schema ontology PC(Ii, Ij).

R(Ci) =
|P (Ii, Ij)|
|PC(Ii, Ij)|

. (5)

Definition 9: The association richness R(Ai)is defined by
the proportion of classes richness of entities (n entities)
contained in association divided by the number of entities
contained in a defined association (T).

R(Ai) =
∑n

i=1R(Ci)
T

. (6)

The association richness is very important to identify seman-
tically rich path in a knowledge base.

Fig. 3. Exemple 1: identification of frequent entity.

Fig. 4. Exemple2: Association guided by the most frequent entity.

D. Association based entity frequency

Intuition 1: The entity description is made up by the
probability of the properties transmitted by the predecessor
entities.

Example 1: It is a question to identify the research field of
a student through the use of semantic associations.

In Figure 3, let us suppose that the entity source of
association is known (S0<rdf:type>student) and that the
target entity is unknown (only the entity type is known:
(?<rdf:type>:ResearchArea)). But, while knowing the prop-

erties predecessors (
CourseIn
−−−−−−→,

CourseIn
−−−−−−→,

HasSubjectArea
−−−−−−−−−−−→)

coming from the entities C02, C01 and P01, we can specify the
target entity. In the case of Figure 2, the entities predecessors
transferred some amount of information (frequency of the
properties) to R01 and R02, for that we can obtain some
knowledge for the choice of the target entity.

In addition to the mentioned descriptions earlier, it is
necessary to formalize these ideas. The probability value of
a defined entity is obtained by the sum of the probabilities
resulting to the properties coming from the predecessors
entities (in Figure 3, P (R01) =0.66, P (R02) =0.33). The
selected entity is the entity which has the maximum value
of probability. In the example of Figure 3, the target entity
became R01 since it represents the most frequent entity.

Example 2: It is a question to identify the expertise field of
a reviewer for a well defined conference through the use of
semantic associations (Figure 4). In this example, the target
entity which must be selected is R03 since it presents a
maximum frequency value.

VI. PMSPARQL LANGUAGE

Being based on the needs remarked on the level of knowl-
edge extraction starting from structured data under format of
a graph or network, such as biological networks or social

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

450

networks, we released some specification for the development
of PmSPARQL language. PmSPARQL is an extension of
SPARQL intended to discover semantic associations located
in a knowledge language (OWL ontology, RDF graph). Our
intuition is to make minimal changes on the level of SPARQL
syntax and semantics. Our approach achieves two fundamen-
tal characteristics. Firstly, PmSPARQL requests are entirely
compatible with SPARQL requests. Secondly, PmSPARQL
request makes possible the semantic associations extraction
based on some specified criteria defined by a request. These
PmSPARQL characteristics facilitate the task of associations
ranking and presentation to a defined user according a spec-
ified criteria. The association extraction through PmSPARQL
is based on the construction of path patterns (triple pattern cre-
ated with the use of a path variable in a place of the property)
including direct or indirect paths. The syntax of PmSPARQL
represents a little modification of the SPARQL language
grammar. The new functionalities added by PmSPARQL make
possible the following operations:

- Find located direct paths between two entities specified
without interest of associations values (the interest is
carried to discover all semantic association without spec-
ification of length or importance).

- Find located paths by associations filtering through reg-
ular expressions relating to associations properties.

- Find located paths with informational content value of a
specified property or entity delimited by a well defined
interval.

- Find located associations by imposing constraint on the
length of path.

- Find all paths which include the presence or the absence
of a property with a defined position in association.

- Find all ordered paths according to the value of an
association with a specified criterion by user.

A. the syntax of a path pattern in PmSPARQL

In this section, we give an algebraic formalization of the
syntax of PmSPARQL over a simple graph RDF, without
RDFS vocabulary and literal Rules (for details on RDF for-
malization see [30], and on RDFS vocabulary see [31]. In
a likewise manner of [32] we denote by IL the union I ∪
L, and by T the union I ∪ B ∪ L. Assume additionally the
existence of an infinite set V of variables disjoint from the
above sets. A tuple from (IL ∪ V)×(I ∪ V)×(IL ∪ V) is a
triple pattern. In a likewise manner, the expression of a path
pattern is similar to the triple pattern described in SPARQL
[32] except that on the level of the property position will be
placed an entity of type path (association expression: <subject:
path: object>). An entity of type path is a sequence of several
RDF entities. The sequence is composed by a not ordered list
of properties connecting the subject and object entities, similar
to the definition of semantic association presented earlier. In a
more formal manner, A path pattern expression could consist
of a SPARQL triple pattern [32] with a path variable in the
predicate position (called a path pattern) and some built-in
path filter conditions. Let RP and PV (regular path and path
variables respectively) two pairwise disjoint set of variables

that are disjoint from (I ∪ L ∪ B). A triple pattern is a tuple
in (IL ∪ RP)×(I ∪ RP)×(IL ∪ RP). To specify a desired path
pattern it will be necessary to exploit regular expression over
triple pattern. If we considers E as a set of regular expressions
and re an expression included in E, then re, re*, re+, re? are
also regular expressions. In a likewise manner, if re1, re2 are
a regular expressions then [re1 AND re2*] and [re1 OR re2*]
are also regular expressions. Let the expression Tre a regular
expression applied to a triple pattern or an extension of regular
expression of the form ([e1*], P, [*en]) where (e1, P, en) is
a triple path pattern. Tre looks for paths including arbitrary
entities whose subject of first triple is e1 and the object of last
triple is en and of which all the properties (predicates) are
represented by P. The * after e1 and before en means all the
intermediate nodes connecting the source and target entities
and all the predicates on the path are represented by P. Let
RT represent the set of extended regular expression over T.
In the following section we provide some developed built-in
path functions:

- PropertyFrequence (PV, Re, interval) −→boolean: is a
Boolean function which indicates if there exist paths in-
cluding a predicate ”Pr”⊂I with a specified informational
contents value.

- Size (PV) −→Number: is a function of type integer
which identifies the size of association path (number of
properties).

- MatchingResource (PV, Re) −→boolean: This function
returns if a resource specified by a regular expression on
a triple is contained in a path or not.

- MatchingPattern (PV, RT) −→boolean.
- MatchingProperty (PV, p, pos) −→boolean:This function

returns if a property is contained in a path at a position
pos.

- MatchingProperty (PV, p+) −→boolean:This function re-
turns if a path includes only the property p.

- IndPath(PV,[p1-P2]+)−→boolean:This function returns
indirect path which includes a sequences of pairs of
properties: p1 followed by the inverse of the property
p2.

Definition 10: A Path Pattern Expression (PaP) is defined
recursively as follows:

- A tuple from (IL ∪ PV)×(RP)×(IL ∪PV) called a path
triple pattern is a (PaP).

- If TP is a SPARQL triple pattern and (PaP) is a path
pattern then (TP AND PaP) is a path pattern.

- If PaP is a path pattern and PC is a path built-in
condition, then the expression (PaP PFilter C) is a path
pattern.

Remark: A Path built-in condition is constructed using
elements of the set V∪ IL ∪ PV, logicalconnectives(¬, ∧),
inequality symbols (≤,≥, <, >), equality symbol (=) and path
built-in functions in the following manner: Given a variable
path @P (a name beginning with the @ caracter), a constant
c, i⊂I, Tre a regular expression, the following are path built-in
conditions:

1. PropertyFrequence (@P, Re)= c, Size(@P)= c, Match-
ingResource(@P, Re), MatchingPattern (@P, RT) and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

451

MatchingProperty (@P, p, pos),MatchingProperty (PV,
p+), IndPath(@P,[p1-P2]+).

2. If PC1 and PC2 are path built-in conditions, then (¬ PC1)
and (PC1 ∧ PC2) are path built-in conditions.

B. Semantics of path Queries in PmSPARQL

In [32] the semantics of graph pattern expressions is defined
as a function [[.]] which takes a pattern expression and returns
a set of mappings μ. A mapping μ is defined as a partial
function from RP to T defined earlier. The function dom(μ)
is used to define the subset of RP in which μ is defined. This
definition will be used as an extension of PmSPARQL’s path
patterns.

Let X the set of possible triple from T. We introduce the
notion of pmapping(path mapping) ω as a function from (RP
∪ PV) to (X ∪ T) such that ω(pv ∈ PV)=p ∈ X and ω(rp
∈ RP)=X. Then, let pt a path triple pattern and ω(pt) the
tuple obtained by remplacing any variable rp ∪ pv in pt
according to ω. The dom of ω is the subset of PV ∪ RP
in which ω is defined and is denoted by dom(ω). In addition,
the compatibility used in [32] will be extended, in this paper,
to include compatibility between a mapping μ and pmapping
ω. When for all x ∈ dom(μ) ∩ dom(ω), we have μ(x) ∈ ω(x),
then μ and ω are compatible. After that, the join defined in
[32] will be extended as the join between a set of mappings
Υ and a set of pmappings Ψ in the following manner:

Υ��Ψ={μ ∪ ω | μ ∈ Υ , ω ∈Ψ are compatible}.
We are ready to define the semantics of path triple pattern

expressions as a function [[]]D which takes a pattern expres-
sion and returns a set of pmappings.

Definition11: Let D be an RDF dataset over T, pt a path
triple pattern whose variables are defined by var(pt) and GP
a graph pattern. The solution of a path pattern PaP over D,
obtained by [[]]D is defined recursively as follows:

1. [[pt]]D={ω| dom(ω)=var(pt) forms a path in D}.
2. [[PaP AND GP]]D = [[PP]]D��[[GP]]D.
For the path patterns with PFILTER expressions, we say

that a pmapping ω satisfies a built-in condition BC or ω|=BC
if given I’ a subset of I (set of IRIs) and tr a tp-regular
expression,

1. BC is MatchingResource(@P, I’) and @P ∈ dom(ω) and
I’ ∩ ω(@P) �=∅.

2. BC is MatchingPattern(@P, I’) and @P ∈ dom(ω) and I’ ⊆
ω(@P).

C. PmSPARQL Query Examples

This section gives a feel of PmSPARQL Query examples:
Query1 (Simple Path Query): The following select path

query, involves the extraction of all possible associations with
two fixed path pattern (two authors):

SELECT @P WHERE
{<http://dblp.uni-trier.de/rec/bibtex/books/aw/AbiteboulHV95>

@P <http://dblp.uni-trier.de/rec/bibtex/conf/vldb/AroraC78>};
By default, the matched paths must be directed. The variable

@P is bound to the located path, represented as a properties
sequence and the connecting resources specified by the re-
quest.

Query2 (Path Query With Single Resource): Find all
paths connecting the resource s=”AbiteboulHV95” of type
”Publication” with any other resources/entities:

SELECT @P WHERE
{<http://dblp.uni-trier.de/rec/bibtex/books/aw/AbiteboulHV95>

@P ?x};
The following single source SELECT query locates associ-

ations reachable from resource s. The analogous form of the
above query relies on the inverse path pattern of the form
{?x @P <r>}. This pattern matches all paths from which the
resource r is reachable.

Query3 (Path Query including a specified resource):
matches any semantic path between the resources x and y,
provided the path which includes the resource e. For example,
find any associations including a biologic molecule BAND-OF
the molecule ”cbo.400.8q21.1”:

SELECT @P WHERE {?x @P ?y
?e cbo:BAND-OF <cbo.400.8q21.1>
PFilter (MatchingResource(@P,?e)
};
Query4 (Path Query including the specified entity with a

max frequency): Matches the association having the entity with
the maximum incoming predicate frequency. For example, find
the path and the appropriate research area of specified reviewer
(Reviewer1):

SELECT @P, ?y WHERE {<Reviewer1> @P ?y
?x Has-Subject-Area ?y
PFilter (Max(PropertyFrequence (@P, ?y))
};
Query5 (Path Query extracting ranked association ac-

cording to the Richness value): Matches ordered associations
according the richness value defined earlier. For example, find
all ranked associations reachable between source and target
entities s and t according to the ordered richness values(desc
or asc):

SELECT @P WHERE {< s > @P < t >
PFilter (RichnessRanking(@P, asc/desc))
};
If the ranked associations concern only a specified fixed

number of best or bad associations, it will be necessary to
include the number of associations to return like this expres-
sion (PFilter(RichnesRanking(@P, n, asc/desc))). In a likewise
manner of the richness function, the expression of association
ranking query according to the connectivity, the importance
and the uncertainty functions are similar to the query 5.
The PFilter condition is defined, respectively as follows:
ConnectivityRanking(@P, asc/desc), ImportanceRanking(@P,
asc/desc) and UncertaintyRanking(@P, asc/desc).

Query6 (Path Query with Path length constraint):Find all
associations between the publication 0-201-53771-0 and all
publication having cited AptBW88 with a length <5 hop
(predicates):

SELECT @P WHERE {?x @P ?y
?x pub:isbn <0-201-53771-0>
?y pub:cites <http://dblp.uni-

trier.de/rec/bibtex/books/mk/minker88/AptBW88>
PFilter (Size(@P)<5)
};
Query7 (Path Query with path pattern constraint): Find

existing social relationships between SarahWhite and Zackary-
Black:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

452

SELECT @P WHERE {?x @P ?y
?x foaf:name ”SarahWhite”
?y foaf:name ”ZackaryBlack”
PFilter(MatchingPattern (@P,[?x*] foaf:ElectedLeader [?y*])
};
Query8 (Path Query including predicate at a specific

positions): Matches all semantic paths between two resources
r1 and r2, provided the path including a property p in a position
i:

SELECT @P WHERE {<r1> @P ?y <r2>
PFilter(MatchingProperty (@P, p, i))
};
Query9 (Path Query including a single repetitive property):

Matches all semantic paths between two resources r1 and r2,
provided the path including a unique property ”cbo:BandOf”:

SELECT @P WHERE
{<r1> @P ?y <r2>
PFilter(MatchingProperty (@P, ”cbo:BandOf+”))
};
Query10 (Path Query including indirect associations): The

located paths may not be fully directed, but guided by specified
individual properties. This may be requested by a suitable path
expression, as in the query example:

SELECT @P WHERE
{<r1> @P ?y <r2>
PFilter(size(@P)>=6 AND size(@P)<=8 AND IndPath(PV,[p1-

P2]+))
};

D. Prototype Implementation of PmSPARQL Language

The implementation of PmSPARQL uses Powl 2, the Web
based platform for collaborative semantic Web development
as our RDF storage system. Our prototype implementation is
based on low Powl’s level API to iterate over triples (subject,
predicate, object) with several criteria. Each graph pattern is
obtained by a path iterator, according to a specific query. The
developed path iterator, useful for path and pattern matching,
has been implemented based on Bidirectional breadth-first
search (BBFS) strategy. In [17], the authors show that a
bidirectional breadth-first search strategy is the most efficient
method in practice for finding all simple paths up to some hop
limits. The path search uses the steps from BBFS to recursively
find the entities used for the path construction. For the research
of indirect path, it will be necessary to use two paths iterator.
A forward path iterator which locates a path (P1) from the
source resource frontier (r1) and a backward path iterator
which loactes a path (P2) from the target resource frontier (r2).
A candidate indirect path between r1 and r2 is located when
an entity from the forward frontier matches an entity from
the backward frontier. Figure 5 shows our system for multi-
paradigme RDF querying useful for pattern matching and path
queries. The first step in our prototype is to load RDF graph
into our Powl RDF data store. Then, according to a paradigm
request different processing steps are performed on the data
which produces appropriate data stores on the result of each
paradigm. The result of pattern matching request is stored in
Pattern Store, the result of path matching request is stored in
path store and the result of top K-ranked paths is stored in a

2http://powl.sourceforge.net/swc

rank store. Our different storage layer uses adoDB [33] data
storage system compatible with any relational databases.

E. Path Query Processing in PmSPARQL

Algorithm Path-Finder (Node r, Node s, Paths[])
i=0, Nbhop=0, HopMax=value, j=0;

Begin
ListNode[i]=r;
ConstructPath[i]=r;
ListHop[i]=0;

While(!empty(Head(ListNode)))
Nbhope= ListHop[i];

Begin
r=Head(ListNode);
if(!empty(triple-finder(r))
listp(r, p’, s’)←−triple-finder (r);
else
Delete(ListNode[i]);
if(!empty(listp))

foreach r, p’, s’ ⊂ listp
Begin
Nbhop=Nbhop+1;
ConstructPath[i] = ConstructPath[i] ∪ p’ ∪ s’

if(s’=s or HopMax=Nbhop)
Begin
Paths[j]=ConstructPath[i];
j=j+1;
End
else
Begin
i=i+1;
InsertNode(ListNode, HeadPos, s’);
ListHop[i]=Nbhop;
End

End
else
Begin

DeleteNode (ListNode, HeadPos);
DeletePath (ConstructPath, HeadPos);

End
End

return Paths;
End

The path extraction in PmSPARQL is based on the Path Iter-
ator which returns a final path expressions (fp-expression) by a
decomposition process of successively retrieved relevant path
expression (p-expression) from disk. The Path Iterator uses the
following Path Finder algorithm. The Path Finder algorithm
begins by initializing a set of variables. The Path Query
algorithm returns a list of fp-expression (Paths[]) depending
on the subgraph in which the source and the target node (r
and s) of the query is located. The Path Finder algorithm
needed to process recursively over rdf graph having a root
node r and a leaf node s. This algorithm looks to construct all
possible fp-expressions (Paths) having a maximum length size

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

453

Fig. 5. Prototype Architecture.

equal to HopMax by a union operator of existing p-expression
(listp (r, p’ , s’)) obtained from a triple-finder function begin
with the source (r) up to the destination (s’), p-expression
(obtained by triple-finder) are prepended to the fp-expression
in ConstructPath[i] ∪ p’ ∪ s’. The variable i represents the
current fp-expression index currently in construction. Our
Path-Finder algorithm operates over the head of three lists:
ListNode, ConstructPath and ListHope. The first list is used
to stores the last node (at the head) that will be used in
a possible decomposition process of the last fp-expression
of the second list (at the head) and the Listhop store the
last length of the last fp-expression of the second list. For
example, if the last fp-expression (Head of the ConstructPath
list) is represented by the expressions ([r,p,r’],p’,s’],p1,s1]),
then the last node (Head) stored in ListNode is s1 and the
value stored in the head of the ListHope is the number
of predicates=|p,p’,p1|=3. If fp-expression is terminal (the
last node in ListNode=s or HopMax=Head(ListHope)) then
the decomposition process is stopped and the current fp-
expression in the head of ConstructPath will be stored in the
final path list (Paths[]), else the process of path constrcution
will be continued. A similar solution is used for path patterns
with other paradigms but using a minimal modification.

VII. EXPERIMENTAL DESIGN AND EVALUATION

In this section, we describe our implementation of
PmSPARQL by an empirical evaluation of our query pro-
cessing approach and the performance evaluation of multi-
paradigm queries.

TABLE I
PROPERTIES OF THE DATASETS AND KNOWLEDGE BASES.

Dataset Number Number Number disk
and of RDF of of relat- file

kBase Statement Classes ionships size
SwetoDBLP-Aug-2007 305000 21 22 25M

CBO 31893 4069 8463 3.02M
GlycO-0-9-full-enzyo 15259 338 81 1.25M

SwetoDBLP-apr-2008-p1 610360 21 22 50M

A. Implementation

Our tests are performed on machine with Intel(R) Core(TM)
2 Duo 2.2GHZ CPUs and 3GB memory. We used Powl, an
efficient and easy platform for collaborative semantic Web
development as our RDF main-memory storage. We imple-
mented our algorithms using php 5.

B. Data Sets

We used a real world SwetoDBLP-August-2007 dataset,
SwetoDBLP-april-2008-part1 dataset 3, an extract of CBO
dataset 4, GlycO-0-9-full-enzyo dataset 5.

Table 1 above shows the properties of the datasets and
knowledge bases. Glyco knowledge base represents informa-
tion about glycans and includes a comprehensive schema as
well as instances and is loaded in disk from owl file. Currently,
the ontology has 338 classes and 81 specialized properties.

3http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
4http://clinbioinformatics.org/cbopublic
5http://lsdis.cs.uga.edu/projects/glycomics/2006/GlycO-0-9-full-enzyo.Owl

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

454

Fig. 6. Number of publications in SwetoDBLP-april-2008-part1 starting from
year 1970 and sizes of used subsets in datasets.

The CBO dataset (Clinical Bioinformatics Ontology) is a
semantically structured controlled vocabulary for molecular
diagnostics that addresses the need for consistent representa-
tion of clinically relevant molecular biological and cytogenetic
entities. To test the scalability of our experiments it is useful to
use a much bigger data set. For this purpose we use two ver-
sions of DBLP ontology generated from the data available in
SwetoDBLP-August-2007 and SwetoDBLP-april-2008-part1.
The data contains information about authors, published papers,
articles, year of publication, etc. The property cites is useful to
derive associations (paths), but it is assigned to few documents
(3067 occurrences), rendering this set unsuitable for scalability
test purposes.

To be able to search for long and meaningful associations,
we have added to the SwetoDBLP-april-2008-part1 dataset
a new list of randomly created citations (1 to 12 random
citations to papers selected randomly from some previous
years in the knowledge base, using a normal distribution). The
total number of randomly inserted citations in the full dataset
reached almost 1000000 statements. The SwetoDBLP-april-
2008-part1 dataset contains over 80657 publications with some
publish year. To test the scalability of our algorithm, we used
some publications between 1980 and 2008. It contains 78080
publications subdivided into 28 subset, each one includes pub-
lications starting with 2008 and ending with 1980 (the smallest
subset included only 2008 publications (20 publications) and
the largest one included publications from years 1980-2008
(77830 publications)). Figure 6 presents numbers of publica-
tions in SwetoDBLP-april-2008-part1 datasets (starting from

Fig. 7. Number of found paths in SwetoDBLP-april-2008-part1 and execution
time for single source path query.

year 1970) and sizes of all used subsets in datasets (starting
from 1980).

C. Performance Test on SwetoDBLP-april-2008-part1 dataset

We evaluate the performance of the techniques by observing
1) the size of the returned associations i.e. the number of
fp-expressions brought into memory from disk and 2) the
query processing time including the time of fp-expression
construction. In order to test the scalability of our algorithm,
we randomly chose two papers published in 2008 and executed
single specified resource query to find all paths leading to
papers they cited, using the relation/property ”cites”. We
present in the following paragraph an example of PmSPARQL
query with single resource:

SELECT @P WHERE
{<http://dblp.uni-trier.de/rec/bibtex/books/sp/Helmert2008> @P
?x
PFilter(Size(@P)<=28 AND MatchingProperty(@P,

”opus:cites+”))
};
Our tests use queries performed on increasingly larger

datasets, starting with publications in 2008 and ending with
publications during 2008-1980. The result of those queries is
presented by the plot in Figure 7 which includes the execution
time for all queries for each dataset and the number of located
paths. In the obtained results, the number of paths increased
exponentially as the publications from the previous years were
added. The execution time presented in the Figure 7 also
followed the exponential growth, but even for the longest path
(length=28) did not exceed 81 minutes to generate 184320
paths.

We compare the execution time of our performed tests with
the tests described in [9] on query applied to articles published

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

455

Fig. 8. Execution Time Comparaison between SPARQeL and PmSPARQL

only in 2006 and ending with articles published during 1981-
2006. The maximum of path count in each test is equal to 6.
The plot in Figure 8 gives information about our algorithm
performance.

In addition to the tests applied to requests with single
source, we perform some experimentation for finding semantic
associations between two specified entities (source and target
entities). An example of PmSPARQL Query with two specified
entities is given below:

SELECT @P WHERE

{<http://dblp.uni-trier.de/rec/bibtex/books/infix/Makoui2007>
@P

<http://dblp.uni-trier.de/rec/bibtex/books/sp/Wood80>

PFilter(Size(@P)<=28 AND MatchingProperty(@P,
”opus:cites+”))

};

We identify 4 target entities for each of the two starting
entities from the year 2008. These 4 entities are chosen
as target entities for path queries between two resources.
The queries were performed on increasingly larger dataset
having a length increases from 1 to 28. For each query
execution we specify the source entity s=”http://dblp.uni-
trier.de/rec/bibtex/books/infix/Makoui2007” and the target en-
tity (r) applied for a given year which has a path from s to
r. For the year 1980, as mentioned in the above query the
entity r=”http://dblp.uni-trier.de/rec/bibtex/books/sp/Wood80”.
The plots in Figure 9 present the execution time and number
of located paths which represents the case of two specified
entities path query.

In the performed experimentations, the search space was
become larger than the search request for single source queries.
But, the execution time did not exceed the 19 seconds, which
represents an indicator of a good result for path extraction
with 27 hops length. The results represent a good proof for
the usability of our PmSPARQL language for a large and
long path extraction. This results of our scalability experiments
demonstrate that in some practical cases, path extraction can be
returned with a reasonable time execution, even for specified
long paths.

Fig. 9. Number of found paths and execution time in SwetoDBLP-August-
2007-part1 for Simple path Query Request

D. Ranking Association based on connectivity measure

Ranking associations are inherently different from ranking
documents. There exist several ways to measure and rank
relevance of association. To relevantly rank the resulting
associations, it will be necessary to define a flexible query
for association evaluation. In our context an association rank
is a function of specified criteria. Due to the space limitations
here, we will only discuss the association rank which takes into
account the association connectivity contained in association
(defined above). The Queries performed to ranking associa-
tions are applied to the SwetoDBLP-april-2008-part1 dataset.
An example of PmSPARQL Query for ranking associations is:

SELECT @P WHERE
{<http://dblp.uni-trier.de/rec/bibtex/books/ws/BMW07-

papers/BandyopadhyaySMM07> @P ?t
PFilter (ConnectivityRanking(@P, desc) and MatchingProp-

erty(@P, ”opus:cites+”) AND Size(@P)=3)

};
To be able to search for meaningful ranked paths, we have

created a list of randomly citations between the publications
of the years 2008 (of type Book-Chapter) and the publications
of the year 2007 (of type Scientific-Publication). In a likewise
manner, we have created a list of randomly citations between
the 2007 publications (of type scientific-publication) and some
2006 publications (of type Book-Chapter). Finally, we have
created a list of randomly citations between the 2006 publica-
tions (of type Book-Chapter) and a mixed 2005 publications
(of type scientific-publication and Book-Chapter). The result
of the performed tests is presented in the plot of Figure 10.
The results in the Figure 10 represent the connectivity of
some classes contained in the SwetoDBLP-april-2008-part1
dataset and the ranked associations of the returned paths
with length 3. The intuition behind ranking associations is to
provide measurable and quantifiable associations which can be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

456

Fig. 10. The classes connectivity contained in Sweto-DBLP ontology
and query results applied to ranked associations based on the association
connectivity

classified to the end-user according to the rank value. In the
case of the SWETO ontology the results of ranked associations
return the most connected associations in the ontologies, it can
be seen that the results also include good information about
publications paths other than publications paths.

In addition to the tests applied to SwetoDBLP-april-2008-
part1 dataset, we have performed some tests applied to the
glyco ontology for ranking pathways based on some criteria.
To avoid the complexity of presentation, the results of the
performed tests are not presented here

E. PmSPARQL Test in the Biomedical domain

Our tests are performed on a wide set of RDF base to
evaluate the functionality of PmSPARQL for finding long and
complex paths. Among those tests, we choose to discuss a
representative query in the biomedical domain, which try to
finding reactions in the Glycan biosynthesis pathway. We pro-
pose in this query test to search reactions between N-Glycan-
G00020 and N-Glycan-G00022. An example of PmSPARQL
Query is presented in this example:

SELECT @P WHERE
{<glyco:N-Glycan-G00020> @P ?y <r2>
PFilter(size(@P)<=8 AND IndPath(PV,[has-product-has-

reactant]+))
};
The glycan N-Glycan-G00020 is a predecessor of N-

Glycan-G00022. These entities are semantically associated,
even though there is no direct path connecting them. In
fact, the entire pathway links the starting N-Glycan-G00020

substance and the final product, N-Glycan-G00020, using a
sequence of reactions returned by the request. This query
locates a pathway of length 8, consisting of several reac-
tions contained in the GlycO-0-9-full-enzyo dataset. This
test’s results demonstrated the effectiveness of the proposed
PmSPARQL language.

VIII. CONCLUSION

This paper addresses the issue of providing support for asso-
ciation identification and evaluation queries in RDF databases.
For this task, we have presented PmSPARQL, an extension
of SPARQL language designed for finding associations with
several paradigms dependant to user needs, and describes its
syntaxic and semantic implementation. The inclusion of path
pattern queries in our experimentations has demonstrated the
powerful results of PmSPARQL queries, its effectiveness for
finding results in a reasonable time execution. In addition to
finding long associations, our implementations demonstrate the
importance of the evaluation measure to rank associations ac-
cording to some new defined measures (richness, connectivity,
importance,...). For the reason that the timing for query results
is good, we think to optimize the PmSPARQL queries for path
extraction which is very important for practical use of this
language. The presented measures for associations evaluation
are important, because the same query with different measures
should returned different results and consequently should
provided a different association classification.

REFERENCES

[1] B. Aleman-Meza, C. Halaschek, B. Arpinar, and A. Sheth, Context-
aware semantic association ranking. In First International Workshop
on Semantic Web and Databases,in First International Workshop on
Semantic Web and Databases, Berlin, Germany, September 2003, p.
33–50.

[2] K. Anyanwu, A. Maduko, and A. Sheth, Sem-rank: Ranking complex
relationship search results on the semantic web, in International World
Wide Web Conference, 14, ACM, Chiba, Japan, 2005, p. 117–127.

[3] B. Aleman-Meza, C. Halaschek-Wiener, I. Budak Arpinar, C. Ramakr-
ishnan, and A. Sheth, Ranking complex relationships on the semantic
web, in IEEE Internet Computing, 03, 2005, p. 37–44.

[4] B. Aleman-Meza, P. Burns, M. Eavenson, D. Palaniswami, and A. Sheth,
An ontological approach to the document access problem of insider
threat. IEEE International Conference on Intelligence and Security
Informatics. Atlanta, Georgia, USA, 2005, p. 486–491.

[5] K. Anyanwu and A. Sheth, The rho operator: Computing and ranking
semantic associations in the semantic web. SIGMOD Record, 2002.

[6] A. Seaborne, RDQL A Query Language for RDF, WWWConsortium,
Member Submission SUBM-RDQL-20040109, 2004.

[7] E. Prud’hommeaux and A. Seaborne, SPARQL:Query Language for
RDF, 2005.

[8] A. Kemafor, M. Angela, and S. Amit, SPARQ2L: Towards support for
subgraph extraction queries in rdf databases, in WWW 2007, Banff,
Alberta, Canada, 2007, p. 797– 806.

[9] J. Krys and Maciej.J, SARQLeR: Extended sparql for semantic associ-
ation discovery, in 4 th European Semantic Web Conference. Innsbruck,
Austria, 2007.

[10] A. Helenius and M. Aebi, Roles of n-linked glycans in the endoplasmic
reticulum, in Annual Review of Biochemistry, 73 , 2004, p. 1019–1049.

[11] H. Donninger, T. Bonome, M. Radonovich, Pise-Masison, C. A., J. H.
Brady, J.and Shih, J. Barrett, and M. J. Birrer, Whole genome expres-
sion profiling of advance stage papillary serous ovarian cancer reveals
activated pathways. Oncogene 23, 8065, 8077 (2004).

[12] T. Miki, S. Nomura, and T. Ishida, Semantic web link analysis to
discover social relationships in academic communities. Symposium on
Applications and the Internet, 2005.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

457

[13] A. Sheth, B. Aleman-Meza, I. Arpinar1, C. Halaschek, C. Ramakrish-
nan1, C. Bertram, Y. Warke, D. Avant, F. S. Arpinar, K. Anyanwu,
and K. K., Semantic association identification and knowledge discovery
for national security applications. Special Issue of Journal of Database
Management on Database Technology for Enhancing National Security,
L. Zhou and W. Kim (Eds.) 16, 33-53 (2005).

[14] S. Mukherjea and B. Bamba, Biopatentminer: An information retrieval
system for biomedical patents. Thirtieth International Conference on
Very Large Data Bases. VLDB, Toronto, Canada, 2004, p. 1066–1077.

[15] I. Arpinar, A. Sheth, C. Ramakrishnan, E. Usery, M. Azami, and M.
Kwan, Geospatial ontology development and semantic analytics, in
Handbook of Geographic Information Science., 4, edited by J. P. Wilson
and A. S. F. E. vol 10. Blackwell Publishing, 2004.

[16] S. Lin and H. Chalupsky, Unsupervised link discovery in multirelational
data via rarity analysis. ICDM 2003, 2003, p. 171–178.

[17] M. Janik and K. Kochut, A work-bench rdf store and high performance
memory system for semantic association discovery. 4th International
Semantic Web Conference. Galway, Ireland, 2005.

[18] W. Milnor, C. Ramakrishnan, M. Perry, A. Sheth, J. Miller, and K.
Kochut, Discovering informative subgraphs in rdf graphs. Technical re-
port, LSDIS Lab, Computer Science,University of Georgia, CS Technical
Report 05-001.

[19] V. Paliwal, N. R. Adam, H. Xiong, and C. Bornhovd, Web service
discovery via semantic association ranking and hyperclique pattern
discovery, in wi, IEEE/WIC/ACM ,IEEE Computer Society, 2006, p.
649–652.

[20] H.-J. Chu and R. Chow, Reaching semantic interoperability through
semantic association of domain standards, in 11th IEEE International
Workshop on Future Trends of Distributed Computing Systems (FT-
DCS07), ISSN:1701-0483, 0-7695-2810-4, IEEE Computer Society,
Washington, DC, USA, 2007.

[21] I. Cruz, A. Mendelzon, and P. Wood, A graphical query language
supporting recursion. in acm sigmod international conference on man-
agement of data, in ACM SIGMOD International Conference on Man-
agement of Data, San Francisco, California, United States, 1987, p. 323–
330.

[22] I. Cruz, A. Mendelzon, and P. Wood, G+: Recursive queries without
recursion. 2nd International Conference on Expert Database Systems,
1988, p. 355–368.

[23] M. Consens and A. Mendelzon, Graphlog: a visual formalism for real
life recursion. ACM Symposium On Principles of Database Systems.
1990, p. 404–416.

[24] J. Broekstra and A. Kampman, SERQL: A second generation rdf query
language. In SWAD-Europe Workshop on Semantic Web Storage and
Retrieval. SWAD-Europe Workshop on Semantic Web Storage and
Retrieval, 2003.

[25] M. Sintek and S. Decker, Triple - an rdf query, inference, and transfor-
mation language. In Deductive Databases and Knowledge Management.
Tokyo, Japan, 2001.

[26] U. Ogbuji, RDF Query using Versa Thinking XML: Basic XML and RDF
techniques for knowledge management, Part 6, 10 April 2002.

[27] A.Souzis, RxPath specification proposal. http://rx4rdf. liminal-
zone.org/RxPathSpec., 2004.

[28] L. Sam, L. yang, L. Jianrong, C. Friedman, and Y. Lussier, Triple -
an rdf query, inference, and transformation language. In 12me Pacific
Symposium on Biocomputing. 2007, p. 76-87.

[29] T. Samir and I. Budak Arpinar, Ontology evaluation and ranking
using ontoqa. The first IEEE International Conference on Semantic
Computing. Irvine, California, USA, September 17-19, 2007, p. 185-
192.

[30] C. Gutierrez, C. Hurtado, and A. Mendelzon., Foundations of Semantic
Web Databases. Foundations of Semantic Web Databases. In PODS
2004, p. 95106., 2004.

[31] D. Marin, Rdf formalization. Technical report, Santiago de Chile.
TR/DCC-2006-8. http://www.dcc.uchile.cl/ cgutierr/ftp/draltan.pdf.

[32] P. Jorge, A. Marcelo, and G. Claudio, Semantics and complexity of
sparql. International Semantic Web Conference. Athens, GA, US, 2006.

[33] J. Lim, ADOdb Library for PHP, http://php.weblogs.com/ADODB.,
2007.

Thabet Slimani Received his Master
degree in Computer Sciences from the
High School of Management (HIM),
University of Tunisia, Tunisia 2003.
He is currently member of LARODEC
Laboratory and a PHD student at the same
school working on Semantic Web. His
research interest Data Mining: Association
Rule Mining, Data Warehouse, Semantic
Associations, Similarity measures and ontology
alignment/merging.

Boutheina Ben Yaghlane Doctor in Computer Science Applied to
Management. She is currently an assistant Professor at the Institute of High
Commercial studies (IHEC Carthage) and member of LARODEC Laboratory.
Her research interests include, Uncertainty Management, Semantic Web,
Data Mining and learning under uncertainty. She has published research
papers at international journals and conference proceedings.

Khaled Mellouli Received his PHD in management from the School of
Business, University of Kansas USA. He is currently a full professor at the
Institute of High Commercial studies (IHEC Carthage) and he’s the director
of LARODEC Laboratory of HIM institute (Tunisia University). His research
interests are related to Uncertainty Management, Decision problem analysis,
Semantic Web, classification, learning under uncertainty and operational
research and their application. He is author of a great deal of research studies
published at national and international journals, conference proceedings as
well as chapters of books.

