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Nonparametric Control Chart using Density
Weighted Support Vector Data Description

Myungraee Cha, Jun Seok Kim, Seung Hwan Park, and Jun-Geol Baek

Abstract—In manufacturing industries, development of measure-
ment leads to increase the number of monitoring variables and
eventually the importance of multivariate control comes to the fore.
Statistical process control (SPC) is one of the most widely used as
multivariate control chart. Nevertheless, SPC is restricted to apply in
processes because its assumption of data as following specific distri-
bution. Unfortunately, process data are composed by the mixture of
several processes and it is hard to estimate as one certain distribution.
To alternative conventional SPC, therefore, nonparametric control
chart come into the picture because of the strength of nonparametric
control chart, the absence of parameter estimation. SVDD based
control chart is one of the nonparametric control charts having the
advantage of flexible control boundary. However,basic concept of
SVDD has been an oversight to the important of data characteristic,
density distribution. Therefore, we proposed DW-SVDD (Density
Weighted SVDD) to cover up the weakness of conventional SVDD.
DW-SVDD makes a new attempt to consider dense of data as
introducing the notion of density Weight. We extend as control
chart using new proposed SVDD and a simulation study of various
distributional data is conducted to demonstrate the improvement of
performance.

Keywords—Density estimation, Multivariate control chart, One-
class classification, Support vector data description (SVDD)

I. INTRODUCTION

ADVANCEMENT in scientific technology leads to the

development of collecting information so that it could be

possible to manufacture more technology-intensive products.

However, as the amount of data increase, monitoring a number

of variables simultaneously has been a trouble in production

management. To improve performance of quality control in

process, the univariate control chart has been extended to the

multivariate control chart. As representative, Statistical Process

Control (SPC) is commonly used multivariate control chart

method. SPC has the advantage of cost saving because of its

fast construction of chart. However, there is the weakness of

SPC. Usually SPC demand data distributional assumption. As

a typical example of SPC, Hotelling T2 chart is one of the

typical multivariate control charts in statistical process control

(SPC) [1]. Hotelling suggest T2 as the monitoring statistic and

integrate variables as a statistic. As monitoring one statistic,

more less computational complexity makes T2 chart have

merit of classifying in-control data and out-of-control data

fast. Nevertheless, the application of T2 is restricted because
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of the assumption that process data is following a multivariate

normal distribution. In case of non-normal process data, the

performance of the control chart to monitoring variable will

decrease [2].

Unfortunately, most of modern industries manufacture a

complex product throughout various stages of processes. That

is why most data are not only non-normal but also the mixture

of data having different distributional parameters respectively

[3]. Thus, parametric control charts requiring distributional

assumption is restricted their applications in processes so that

the demand of nonparametric control chart has risen as an

alternative of parametric control chart [4].

One-class classification (OCC) based control chart is one

of the nonparametric control charts. One-class classification

algorithm aims to classify one class from all other class and

when all other class are recognized as outlier, it called as

outlier detection method. In order to distinguish one class from

all others, OCC method learns using only one target class like

Phase I in control chart. For such a reason, Studies about OCC

based control chart have been conducted.

Especially, in OCC method, control chart based on SVDD

algorithm is widely used for their flexibility [5]. SVDD algo-

rithm is basically one of the one-class classification methods.

The objective of SVDD is to find optimal sphere classifying

whether data is normal or outlier. As control chart, SVDD

has strong point that it can construct flexible in-control region

no matter how target data distributed. As mentioned before,

process data are the mixture of processes and its distributional

formation is not deterministic. Therefore, SVDD which can

develops a flexible control boundary is effective as nonpara-

metric control chart.

Although SVDD has strengths to reflect target data char-

acteristics, the limitation of applied characteristic is exist.

For calculating abnormality, SVDD considers only a distance

between sphere and data not distribution of data [6]. When

SVDD decides optimal sphere using support vectors without

considering density distribution, there is great likelihood to

ignore a dense area. Hence, the efficiency of control chart

based on SVDD will be decreased.

To improve SVDD performance, we proposed new SVDD

reflected density distribution. By introducing density weight

into learning, we look forward to find optimal sphere and

reduce error rate as control chart.

The structure of this paper is organized as follows. In section

II, we briefly mention about conventional SVDD and next

section III will be introduction of new SVDD suggested by

this research. Moreover, in section IV, we present how new

SVDD works as control chart and in order to demonstrate
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improvement of conventional SVDD, we experiment various

type of data distribution in section V. Final comments are

presented in section VI.

II. SUPPORT VECTOR DATA DESCRIPTION (SVDD)

Assume that a data set contains l one target class data

objects {xi, i = 1, . . . , l}. Objective of SVDD is to find an

optimal sphere with minimum volume containing all possible

target data. Objective function expressed as follows

min R2 + C

l∑
i

ξi

s.t. ‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i (1)

The objective of SVDD is composed by relationship between

volume of sphere and the number of data in sphere. SVDD

Boundary attempts to decrease volume of sphere to minimize

objective function. However, when the sphere is small, the

number of slack variables leaving out of sphere is increasing.

Therefore, objective function is also influenced by the slack

variables and this relationship is key factor to determine

volume of sphere. To adjust the effect of slack variable, we

could set the penalty C in (1). When penalty is relatively high

value, out-of-sphere data is critical to objective function and

to minimize function, it makes to cover all of data in boundary

to get rid of the influence of out-of-sphere data. Thus, penalty

C play a key role in adjusting the volume of sphere[7]. To

solve maximize problem, Lagrange multiplier method is used

and Lagrange function is

L (R,a, αi, γi, ξi) = R2 + C
l∑
i

ξi

−
l∑
i

αi

{
R2 + ξi − ‖xi − a‖2

}
−

l∑
i

γiξi (2)

With constraint Lagrange multiplier αi ≥ 0, γi ≥ 0 , Lagrange

function constructs to dual problem with new constraints.

L =
∑
i

αiK (xi · xi)−
∑
i,j

αiαjK (xi · xj)

s.t. 0 ≤ αi ≤ C
∑
i

αi = 1 (3)

Using kernel trick, data are mapping to high-dimensional

space. There are various kernel tricks such as Linear, Poly-

nomial, RBF (Radial basis function) and usually RBF are

used [8]. Boundary of SVDD will be determined by optimal

value of Lagrange multiplier with solving (3) and which data

having optimal Lagrange multiplier value are called as support

vectors.

K (xi · xj) = 〈xi · xj〉 = exp

(
−‖xi − xj‖

σ2

)
(4)

III. DENSITY WEIGHTED SVDD (DW-SVDD)

As we mentioned in section II, in SVDD algorithm, the

criteria of abnormality is setting by distance from center of

sphere to data. Only taking distance between two points into

account as abnormal criteria is possible to be hesitated the

consideration about density. To improve the performance of

ordinary SVDD algorithm, therefore, we suggest considering

density distribution of data set. To applying the concept of

our idea, we introduce the notion of density weight. Density

weight is expressed using k nearest neighbor (k-NN) algorithm

[9]. k-NN helps to get a distance between x and kth nearest

neighbor from x and it expressed as d
(
xi, x

k
i

)
which xk

i

represents the kth nearest neighbor from xi. When data is

located in comparatively dense area, local density is smaller

than low dense area. After collecting the information about

local density, we designate the density weight as

ρ (xi) = 1− d
(
xi, x

k
i

)
maxi∈l d

(
xi, xk

i

) (5)

The distance of each data indicates local density of area data

exist in real space not feature space. There is other way to

consider data density in feature space. However, there might

be the possibility of distortion caused by mapping data into

feature space and the reflection of density in kernel space is

might be a lack skill at reflecting real data characteristic of

density. To apply the effect of density weight on SVDD, it

replaces established penalty denoted by C in previous section.

Reformed objective function of New SVDD is

min R2 + C
l∑
i

ρ (xi) ξi

s.t. ‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i (6)

In the same tale with conventional SVDD, Lagrange multi-

plier method is used and new formulated Lagrange function

is

L (R,a, αi, γi, ξi) = R2 + C
l∑
i

ρ (xi) ξi

−
l∑
i

αi

{
R2 + ξi − ‖xi − a‖2

}
−

l∑
i

γiξi (7)

By partial differentiation is 0, new equation and constraints

set down as follows.

L =
∑
i

αiK (xi · xi)−
∑
i,j

αiαjK (xi · xj)

s.t. 0 ≤ αi ≤ ρ (xi)C
∑
i

αi = 1 (8)

As result, constraint is change by the effect of density weight.

In step of determining support vector, density weight will be

influence on the choice of giving constraints. As smaller the

density weights are, the effect of slack variable presenting

distance from center of sphere to data is reduced. As a

result of density weight, each of data has different penalty

depending on density unlike conventinal SVDD which have
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the same penalty to all of data. Hence, by applying density

weights in algorithm, we can get normal space boundary

more influenced by density distribution.

IV. CONSTRUCTING CONTROL CHART

On account of the advantage of nonparametric control chart,

recently several studies have implemented about control chart

based on SVDD. Sun and Tsung suggested K chart which

consisted of statistic K, distance from center of optimal sphere

to data and control limit as radius of sphere [10]. Robust K

chart using normalized kernel distance is proposed by Kumar

et al. [11].

However, control chart using SVDD has weakness for

constructing control limit. D2 chart compensates the statistical

weakness of K chart by using Bootstrap method [12]. They

expected to build a nonparametric control limit using bootstrap

method which widely used to estimate statistical variable when

population distribution is hard to know [13]. Mentioned in

previous section, the learning algorithm is important to set up

a control chart and to improve performance of control chart

based on SVDD, we proposed density-weighted SVDD (DW-

SVDD). Based on DW-SVDD, we construct control chart.

Statistic is equal to K chart in (9) and it represents the distance

between the center of optimal sphere and new data z.

‖z− a‖2 = (z · z)− 2
∑
i

αi (z · xi) +
∑
i,j

αiαj (xi · xj) (9)

In addition, control limit is derived from R2 indicating radius

of optimal sphere and calculated by the distance between

support vectors[7].

R2 = (xk · xk)− 2
∑
i

αi (xi · xk) +
∑
i,j

αiαj (xi · xj) (10)

V. EXPERIMENT

A. Simulation Setup

We conduct to simulation study to investigate the im-

provement and analyze the adjustment of new SVDD in

control chart. Bivariate normal, banana-shaped and gamma

distribution is generated for testing the performance. We set

the parameter of each distribution as Table I. To test the

TABLE I
PARAMETER OF SIMULATING DATA SET

Distribution Parameter Parameter value

Gamma Shape, Scale [1,1]

Bivariate normal μ0,Σ0 [0,0],
[ 1 .35

.35 1

]
Banana-shaped Standard deviation 1

performance of chart respectively, we generate out-of-control

data which chart should detect. out-of-control data so-called as

fault data are defined as data generated in mean shifted process

and the shifted mean size of fault data is based on λ indicating

the magnitude of non-centrality. There are three type of λ as

λ1, λ2, λ3. In case of bivariate normal distribution, shifted

mean as fault is μ1 = μ0 + δ and the relationship between δ
and λ is introduced by Kim [12].

Simulation scenarios are composed by 200 in-control data

as train data set for construction of control chart (Phase I) and

one thousand test data containing 900 in-control data and 100

out-of-control data for monitoring the performance of chart

(Phase II).

For SVDD algorithm, the parameter of penalty C in for-

mulation of sphere and variance σ in RBF kernel trick are

important factors to the performance. To compare error rate

of each chart, we use 5 cross-validation method to optimize

the value of parameter C and σ for each chart in range of

from 2−8 to 28 respectively.

B. Performance Measurement

TABLE II
DEFINITION OF TERMINOLOGY

Actual value

Normal Fault

Prediction outcome
Normal True positive(TP) False Positive(FP)

Fault False Negative(FN) True Negative(TN)

In order to evaluate each control chart performance, we

select true positive rate (TPR), true negative rate (TNR) and

accuracy [14] as performance measurement. As you see in

Table II, the measurement is derived following as

True Positive Rate (TPR) =
TP

TP+FN
(11)

True Negative Rate (TNR) =
TN

FP+TN
(12)

Accuracy =
TP+TN

(TP+FN)+(FP+TN)
(13)

Considering three terms simultaneously is helpful to com-

pare the performance of control chart. If fault detection accu-

racy is only performance measurement, the control boundary

will be made as smaller as they could in order to raise fault

detection rate giving up the target accuracy. Therefore, to

prevent the situation, we decide to handling conflicting rate,

TPR and TNR. Also higher score of accuracy means optimal

solution of control chart because it is the point that TPR and

TNR both are highest.

C. Comparison Results

Afterward the construction of control chart, we compare

the performance with conventional SVDD [5] and another

SVDD introduced by Liu et al.[15]. They suggest the different

notion of penalty and proved the effect of proposed SVDD

as novelty detection algorithm using UCI repository data. To

compare the effectiveness of each SVDD as control chart, we

also construct a control chart. Statistic and control limit of all

control charts using the performance comparison are under the
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TABLE III
EXPERIMENTAL RESULT

T2 SVDD Liu et al.[15] Density-Weighted SVDD

TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy

Gamma

λ1 0.7878 0.8308 0.8093 0.9067 0.8933 0.9000 0.9023 0.8698 0.8860 0.9111 0.9040 0.9075

λ2 0.8698 0.9463 0.9081 0.9796 0.9810 0.9803 0.9574 0.9840 0.9707 0.9843 0.9837 0.9840

λ3 0.9450 0.9688 0.9569 0.9800 0.9998 0.9899 0.9779 0.9916 0.9848 0.9797 0.9991 0.9894

Banana-shaped

λ1 0.5830 0.4822 0.5326 0.7220 0.4934 0.6077 0.7178 0.4934 0.6056 0.7161 0.4999 0.6080

λ2 0.8067 0.3683 0.5875 0.8717 0.5854 0.7285 0.7043 0.7412 0.7227 0.8663 0.6591 0.7627

λ3 0.8439 0.4388 0.6414 0.8689 0.7388 0.8039 0.8745 0.7410 0.8078 0.8642 0.7541 0.8091

Normal

λ1 0.7518 0.5474 0.6496 0.7224 0.5211 0.6217 0.7300 0.5032 0.6166 0.7498 0.5095 0.6297

λ2 0.8384 0.8769 0.8577 0.8554 0.8118 0.8336 0.7024 0.8606 0.7815 0.9369 0.7644 0.8507

λ3 0.9661 0.9627 0.9644 0.9700 0.9775 0.9738 0.9536 0.9875 0.9706 0.9750 0.9935 0.9842

same conditions. Also, we compare with Hotelling T2 chart,

most commonly used multivariate control chart.

As you see in Table III, density-weighted SVDD has good

performance for data following gamma distribution having

small size of λ. In case of shift size is λ1, accuracy of

T2 chart is 80.93%, Liu et al. suggesting SVDD has 88.6%
accuracy. Next higher accuracy is SVDD and DW-SVDD

having 90% and 90.75% respectively. In median shift in

gamma distribution, the ranking is represented as T2, SVDD

proposed Liu, SVDD and DW-SVDD having 90.81%, 97.07%,

98.03%, 98.40%. However, in case of large shift, λ3 in gamma

distribution dataset, conventional SVDD has highly efficient.

The reason is that when DW-SVDD implements the learning

with data having differential density distribution, DW-SVDD

tends to construct boundary more intensively into dense area. It

is natural effect of density weight and it causes target accuracy

lower. Therefore, DW-SVDD might be more sensitive to

density distribution of data than standard SVDD and SVDD

suggested by Liu et al. So, DW-SVDD is more proper to treat

or monitoring dataset which needs to handle more carefully

because it is more customized to detect small shift. Generally

fault data with small shift is hard to be detected. Therefore, tt is

meaningful improvement that DW-SVDD is strong at detecting

smaller shift data than conventional SVDD.

Also, in Banana-shaped distribution, Proposed SVDD is

outstanding in performance without reference to how much

data are shifted. In smaller fault shift λ1,accuracy is 60.8%
in DW-SVDD. λ2 and λ3 are 76.27%, 80.91% respectively

and this accuracy is the highest score comparing with other

algorithms.

As against other experimental scenario, in normal distribu-

tion, T2 chart works well more than other algorithms in small

shift and medium shift. The reason is that T2 chart has the

advantage of controlling data as following normal distribution.

In case of λ2, the highest accuracy is 85.77% in T2 and the

next is DW-SVDD as 85.07%. Comparing with conventional

SVDD which has 83.36%, it is enough to insist that for normal

distributional data DW-SVDD is useful more than SVDD

based control chart. Even in case of large mean shift case,

DW-SVDD has the best performance having 98.42% accuracy

much higher than T2. It is meaningful to us that SVDD we

proposed have efficient as control chart more than control chart

based on SVDD and SVDD proposed by Liu et al.

Therefore, we conclude that DW-SVDD is competitive

nonparametric control chart not only in non-normal data but

normal distributional data. Introducing the notion of density

weight in SVDD learning step, DW-SVDD is improved the

performance of SVDD as control chart. DW-SVDD is efficient

to increase the true negative rate as keeping the true positive

rate high which is in inverse proportion to true negative rate.

VI. CONCLUSION

In this paper, we introduce the notion of density weight

to reflect the density data description in SVDD. Density

weight is composed of local density rate from k-NN method.

Using distance between data and kth nearest neighbor of

data, we estimate local density of data and ratio of maximum

distance of kth nearest neighbor to distance of each data from

kth neighbor define density weight. As applying the notion

in conventional SVDD, we proposed a new SVDD method

named DW-SVDD. As well as proposing new SVDD, we

also contribute to monitoring field introducing control chart

based on DW-SVDD. As control chart, weakness of SVDD

is stand out. Conventional SVDD tends to decide the data as

outliers only considering how far the data are. However, the

inclination of SVDD is restrict its application and capacity

as control chart. To improve performance of control chart

based on SVDD, we proposed control chart based DW-SVDD

and we demonstrate that the reflection of density has a good
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influence on performance of control chart regardless of data

description. In addition to prove the performance of control

chart based on DW-SVDD, we are planning to verify the

performance of DW-SVDD as outlier detection method or

one-class classification method using data from real research

data. Furthermore, when using k-NN method as estimator of

local density, the value of k has effect on the performance of

classification. To optimize the value of k, various optimization

method can be used such as Tabu search, Genetic algorithm

and so on. In the future research, therefore, application of

optimization of parameter and variables will be translated into

action.
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