
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

632

Optimal Path Planner for Autonomous Vehicles

M. Imran Akram, Ahmed Pasha, and Nabeel Iqbal

Abstract—In this paper a real-time trajectory generation
algorithm for computing 2-D optimal paths for autonomous aerial
vehicles has been discussed. A dynamic programming approach is
adopted to compute k-best paths by minimizing a cost function.
Collision detection is implemented to detect intersection of the paths
with obstacles. Our contribution is a novel approach to the problem
of trajectory generation that is computationally efficient and offers
considerable gain over existing techniques.

Keywords—dynamic programming, graph search, path planning.

I. INTRODUCTION

HE problem of real-time trajectory generation for
autonomous vehicles can be decomposed into determining

paths specified by waypoints and subsequently transforming
the paths into feasible trajectories. By feasible it is implied
that the trajectories generated are smooth and satisfy the
kinematics of the aerial vehicles. In addition to this tactical
constraints imposed on the trajectories must be maintained.
We assume that each vehicle can be modeled as a point mass
and travels at a constant speed and the minimum turn radius of
the vehicle is known. A waypoint is assumed to be position
along the trajectory where a change in vehicle’s heading is
initiated.

The problem of path planning has been addressed in several
works. [1] presents an algorithm that exploits characteristics
of both potential field methods and the Roadmap Algorithm
by an incremental construction of a roadmap of free-space. An
extension of the Roadmap Algorithm is presented in [2]. The
method proceeds in two phases to construct a probabilistic
roadmap in the configuration-space. An optimization of the
running time of the planner by minimizing the number of
collision checks performed during planning is presented in

[3]. Path planners reported in [4]–[8] are based on the
Voronoi method [9] to generate paths to a target.
Computational efficiency is accomplished at the cost of grave
consequences. Optimality in terms of length is lost. This
becomes more pronounced in uncluttered environments where
threats are sparsely distributed. In cluttered environments the

paths are no longer smooth. In comparison, grid based
approaches are time consuming at fine grid spacing. Shifting
to coarser grid results in irregular line segments. A geometric
approach to path planning composed of a set of connected line
segments with a restriction on the maximum turn angle is
presented in [10]. The algorithm is extended in [11] to satisfy
a probability restriction for each leg of a path. An extension to
the algorithm that produces paths for multiple vehicles by
enlarging the obstacles is presented in [12].

Manuscript received November 5, 2004.
M. Imran Akram is with the Center for Advanced Research in Engineering,

Evacuee Trust Complex, Islamabad, Pakistan (phone: +92-333-520-2458; fax:
+92-051-287-4614; e-mail: iakram@carepvtltd.com).

Ahmed Pasha was with Avaz Networks, Software Technology Park, 5-A
Constitutional Avenue, Islamabad, Pakistan. He is now with the Department
of Computer Engineering, CASE, 19 Attaturk Avenue, G-5/1, Islamabad,
Pakistan (e-mail: pahmed@case.edu.pk).

Nabeel Iqbal is with the Center for Advanced Research in Engineering,
Evacuee Trust Complex, Islamabad, Pakistan (e-mail:
nabeel@carepvtltd.com).

The problem of trajectory generation too has been
approached in several works. Spline representations of
trajectories can be found in [13], [14]. The proposed trajectory
in [4], [6] introduces three turns from the time when a vehicle
deviates from the straight-line segment to the time when the
vehicle converges to the adjacent line segment. However, the
paths never traverse the waypoints except at turn angles of
zero. [7] suffers similar shortcomings. [15] generates locally
optimal paths and relies on a-priori information about final
heading towards the target and fly-by points located at
obstacle boundaries.

In this paper we propose a complete solution for successful
planning and computation of collision-free optimal paths from
a launch site to a target satisfying constraints due to vehicle
kinematics and mission strategy. Our real-time trajectory
generation algorithm overcomes the inadequacies of the
former approaches. In section 2 we explain the system
architecture in detail. Experimental results are shown in
section 3. We conclude and discuss some future work in
section 4.

II. SYSTEM ARCHITECTURE

A detailed schematic of the system architecture is shown in
Fig.1. The path planner, path sorter and the trajectory
generator together generate k-best trajectories for the vehicles.
The path planner consists of the graph generator and the
modified k-best paths algorithm. Paths described by straight-
line segments are transformed into feasible trajectories by the
trajectory generator that satisfy the dynamics of the vehicles
and meet other constraints. The path sorter receives paths
from the path planner and maintains a sorted list of the
required number of trajectories generated by the trajectory
generator.

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

633

Figure 1: System Architecture

A. Path Planner

With the foci of an ellipse representing launch and target
sites, a boundary is defined using the two-center bipolar

coordinate equation:
arr 221 (1)

where 2a in fig.2 equals the maximum distance covered by a
vehicle during a flight. The region bounded by the ellipse
defines the mission planning area.

Figure 2: Mission Planning Area

Waypoints located outside the mission planning area do not
contribute to graph construction. In contrast to the approach in
[10] which can be applied exclusively to convex regions we
maintain a general approach that can be applied to convex as

well as concave regions, modeling the obstacles as n-sided
polygons. The polygons are enlarged to account for
localization errors due to GPS/INS. The enlarged polygons
extending outside the mission planning area are clipped. The
vertices of the polygons that remain contribute to graph
generation.

B. Graph Generator

The filtering employed in the path planner reduces the
complexity of the graph. The nodes of the graph comprise of
waypoints and vertices of the enlarged polygons that are
retained by the path planner. The nodes are arranged in order

of increasing distance from a reference that satisfies a

set of three equations. Let

yx,

11
,1 FF yxF represent the launch

site and
22

,2 FF yxF the target,

1
2

2

2

2

b

y

a

x
 (2)

12

1

12

1

FF

F

FF

F

xx

xx

yy

yy
 (3)

cyyxx FF
22

11
 (4)

The construction of the directed graph is trivial. A node is
connected to all subsequent nodes in the list.

C. Modified k-best Paths

The modified k-best paths graph search algorithm based on
Epstein’s algorithm [16] is O (m + n log n) where m is the
number of edges in the graph and n is the number of nodes,
minimizes a cost function in place of edge lengths. The cost
function is defined in terms of path length, node cost, and
number of waypoints in a path. A node cost is the cost of
inserting the node. A node whose origin is not a waypoint may
have a higher cost than a node whose origin is a waypoint.
The total cost of traversing an edge of the graph is expressed
as:

iwaypoinodeilengthi JJJJ int,,, (5)

D. Path Sorter

The path sorter maintains the trajectories generated by the
trajectory generator. With each new trajectory that is
generated the cost of the trajectory is calculated in order to
grade it. In case of path failures due to constraint violation the
trajectory is rejected and additional paths are requested from
the path planner to make up for the deficiency.

E. Trajectory Generator

The trajectory generator runs iteratively until the required
number of trajectories is generated or the list of paths
specified by straight-line segments is exhausted. In order to
transform a path into a trajectory, two successive turns as
opposed to three proposed in [4]–[7] are computed at each
waypoint. The first turn is in the direction of the next
waypoint. The second turn forces the trajectory to the original
straight-line path connecting the current waypoint to the next
waypoint.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

634

As depicted in fig.3 (a) and fig.3 (b) the two cases need to
be considered separately. With P as the current waypoint the
locations of Q and R need to be determined.

Case 1: Absolute difference between current and next heading

is less than
2

Let minimum turn radius, O1PS, SO1T

Consider O1PS, O1ST and O2RT in fig.3 (a).

cosPS (6)

sin1SO (7)

tansintan1SOST (8)

cosTR (9)

sincos11 TOSO (10)

2
cos

1TO (11)

2

sin1
cos 1 (12)

)costansin(cosPR

TRSTPSPR
 (13)

Using the great distance formula, R is recovered. Since O2R
is perpendicular to PS and O1 is perpendicular to the current
leg at a distance from P, O1 and O2 are also obtained.
Obtaining Q becomes trivial. The vehicle heading at Q is,

2
____ 1 headingQOQatheadingVehicle (14)

Figure 3(a): Change in heading less than
2

Case 2: Absolute difference between current and next heading

is greater than
2

Let

SOO

headingcurrentheadingnextPTO

12

1
2

__

)sin1(2SO (15)

2

sin1
sin 1 (16)

cos21SOTR (17)

R is recovered from
cos2PR (18)

Since, O2R is perpendicular to PR and has length , O2 is
obtained. The heading at Q becomes:

headingnextheadingQO

headingnextheadingPO

__

_

1

_1
 (19)

2
____ 1 headingQOQatheadingvehicle (20)

Figure 3(b): Change in heading greater than
2

F. Collision Detector

In order to fully ascertain safety of the vehicle the corridor
along the trajectory must be safe to account for the
localization errors due to GPS/INS This involves the
computationally demanding polygon-polygon overlap

algorithm. Alternatively, the polygons can be enlarged to
compensate for the error in localization. This involves the
much cheaper line-polygon intersection algorithm. The
straight-line segment and the subsequent turns are tested for
intersection with the polygons. The straight-line segment is
tested for intersection with the sides of the polygons.
Incremental steps along the turns are tested for intersection
with the sides of polygons. In case of an occurrence of an
intersection the path is rejected.

III. EXPERIMENTAL RESULTS

The results of three test cases generated are shown in the
figures that follow. Test case one has three circular obstacles
of varying radii. Test case two has five obstacles composed of
a combination of three convex polygons and two circular
obstacles of varying radii and test case three has four obstacles
composed of a set of two convex polygons, one concave
polygon and one circular obstacle. The test cases generated
are similar in complexity to the test problems 1-8 in [10].

Fig.4 (a) displays four from a total of sixty-nine trajectories
that were generated. The time to generate sixty-nine
trajectories was less than thirty-seven seconds on a P4 2.5

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

635

GHz system. The average time to generate one trajectory is
0.536 seconds in contrast to less than one minute for [10].
Fig.4 (b) shows four trajectories from a total of sixty-four
trajectories generated and fig.4 (c) shows five from a total of
eighty-nine trajectories. For all three test cases the trajectory
in red is the optimal trajectory. The remaining trajectories
were randomly selected. Also shown along the trajectories are
their respective INS corridors.

Figure 4(a): Test case 1

Figure 4(b): Test case 2

Figure 4(c): Test case 3

IV. CONCLUSION

This paper presents an algorithm to automatically generate
smooth trajectories for autonomous aerial vehicles that avoid
collisions with obstacle modeled as n-sided polygons. Several
trajectories have been planned and further experiments are
planned to evaluate the algorithm. One extension to the
algorithm can be the generation of 3-D optimal trajectories for
low-flying autonomous aerial vehicles.

REFERENCES

[1] J. F. Canny and M. C. Lin, “An opportunistic global path planner,”
Algorithmica, vol. 10, 1993, pp 102–120.

[2] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars.
“Probabilistic roadmaps for path planning in high-dimensional
configuration space,” IEEE Trans. on Robotics and Automation, 12(4):
1996, pp. 566–580.

[3] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in
Proceedings of the International Conference on Robotics and

Automation, vol. 1, 2000, pp 521–528.
[4] R. W. Beard, T. W. McLain, M. Goodrich, and E. P. Anderson,

“Coordinated target assignment and intercept for unmanned air
vehicles,” IEEE Transactions on Robotics and Automation, vol. 18,
December 2002, pp. 911–922.

[5] T. McLain and R. Beard, “Cooperative rendezvous of multiple
unmanned air vehicles,” in Proc. AIAA Guidance, Navigation and

Control Conf., Denver, CO, Aug. 2000, AIAA Paper 2000–4369 (CD-
ROM).

[6] W.B. Randal, W. M. Timothy, “Coordinated target assignment and
intercept for Unmanned Air Vehicles,” in proceedings of the 2002 IEEE

International Conference On Robotics & Automation, Washington, DC.
May 2002.

[7] E. P. Anderson, R.W. Beard, “An algorithmic implementation of
constrained extremal control for UAVs,” AIAA Guidance, Navigation,

and Control Conference and Exhibit 5-8 August 2002, Moneterey,
California.

[8] P. Chandler, S. Rasumussen, and M. Pachter, “UAV cooperative path
planning,” in Proc. AIAA Guidance, Navigation, and Control Conf.,
Denver, CO, Aug. 2000, AIAA Paper 2000–4370.

[9] R. Sedgewick, Algorithms, 2nd ed. Reading, MA: Addison-Wesley,
1988.

[10] R. V. Helgason, J. L. Kennington, K. R. Lewis, “Cruise missile mission
planning: A heuristic algorithm for automatic path generation,” Journal

of Heuristics, vol. 7, 2001, pp. 473–494.
[11] R. Helgason, J. Kennington, and K. Lewis. (1997a), “Cruise missile

mission planning with a probability side constraint,” Technical Report
97-CSE-3, Department of Computer Science and Engineering, SMU,
Dallas, TX 75275-0122.

[12] R. Helgason, J. Kennington, and K. Lewis. (1997a), “Cruise missile
strike planning: Automatic multiple path generation,” Technical Report
97-CSE-24, Department of Computer Science and Engineering, SMU,
Dallas, TX 75275-0122.

[13] M. B. Milam, K. Mushambi, and R. M. Murray, “A computational
approach to real-time trajectory generation for constrained mechanical
systems,” in Proc. IEEE Conf. Decision and Control, Sydney, Australia,
2000, pp. 845–851.

[14] S. Sun, M. B. Egerstedt, and C. F. Martin, “Control theoretic smoothing
splines,” IEEE Trans. Automat. Contr., vol. 45, Dec. 2000, pp. 2271–
2279.

[15] G. Yang, V. Kapila, “Optimal path planning for unmanned air vehicles
with kinematic and tactical constraints”, Proceedings of the 41st IEEE

Conference on Decision and Control Las Vegas, Nevada USA,
December 2002.

[16] D. Eppstein, “Finding the k shortest paths,” SIAM Journal of

Computing, vol. 28, no. 2, 1998, pp. 995–1020.

