International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:10, 2012

An Event based approach to Extract the Run
Time Execution Path of BPEL Process for
Monitoring QoS in the Cloud

Rima Grati, Khouloud Boukadi, and Hanene Ben-Abdallah

Abstract—Due to the dynamic nature of the Cloud, continuous
monitoring of QoS requirements is necessary to manage the Cloud
computing environment. The process of QoS monitoring and SLA
violation detection consists of: collecting low and high level
information pertinent to the service, analyzing the collected
information, and taking corrective actions when SLA violations are
detected. In this paper, we detail the architecture and the
implementation of the first step of this process. More specifically, we
propose an event-based approach to obtain run time information of
services developed as BPEL processes. By catching particular events
(i.e., the low level information), our approach recognizes the run-time
execution path of a monitored service and uses the BPEL execution
patterns to compute QoS of the composite service (i.e., the high level
information).

Keywords—Monitoring of Web service composition, Cloud
environment, Run-time extraction of execution path of BPEL.

|. INTRODUCTION

LOUD computing is increasingly being promoted as the

next-generation of paradigms for hosting and delivering
services over the Internet [1]. In this paradigm, services can be
provided at different layers: Software (Software as a service:
SaaS), Platform (Platform as a Service: PaaS) and
Infrastructure (Infrastructure as a Service: laaS). In fact,
Cloud computing provides users with services to access
software, data and/or hardware without the need to understand
any underlying complexity. In particular, in recent years, SaaS
implementations have become an increasingly popular a way
to let both users manage typical day-to-day tasks and
enterprises make money by arranging an ongoing software
licensing agreement with different businesses.

Despite these advantages, given the complexity of the
Cloud environment, service failures are quite likely and are
the norm rather than the exception. Consequently, Quality of
Service (QoS) degradations may frequently occur at all layers.
When dealing with SaaS applications, QoS monitoring is

Rima Grati is with the Faculty of Economics and Management of Sfax,
Route de I’ Aéroport Km 4 Sfax 3018 (corresponding author to provide phone:
00216 27 525 020; e-mail: rima.grati@gmail.com).

Khouloud Boukadi is with the Faculty of Economics and Management of
Sfax, Route de I’ Aéroport Km 4 Sfax 3018(e-mail:
khouloud.boukadi@fsegs.rnu.tn).

Hanene Ben-Abdallah is with the Faculty of Economics and Management
of Sfax, Route de [I’Aéroport Km 4 Sfax 3018 (e-mail:
hanene.BenAbdallah@fsegs.rnu.tn).

essential for two reasons: on the one hand, to provide Cloud
usage that is “acceptable” to the various clients, and on the
other hand, to spare Cloud providers penalties for not offering
services at a certain level of QoS.

To monitor the QoS of services, most works in the literature
require modification of either the server or the client
implementation code [2, 4, 7]. However, to provide for
independence of any Cloud provider/environment, monitoring
should be performed in a non-intrusive way, i.e., without
modifying the implementation of the deployed Cloud services.
Furthermore, to the best of our knowledge, there is a lack of
approaches dealing with monitoring service composition in a
Saa$S Cloud environment, the focus of this paper.

In our previous work, we proposed a framework for QoS
Monitoring and Detection of SLA Violations (QMoDeSV) [1].
This framework provides for the monitoring of composite
services deployed on the Cloud. It is designed to handle the
complete Web service composition management lifecycle in
the Cloud environment (i.e.,, composite Web service
deployment, resource allocation, monitoring of QoS and SLA
violation detection). In addition, QMoDeSV proposes a non-
intrusive, modular approach for monitoring QoS attributes:
QoS pertinent information is collected by “watching” locally
each service component. Then, based on the composition
pattern of the composite service, the overall QoS information
is computed. This information is used by a separate module in
the QMoDeSV framework to look for potential violations of
SLA pre-agreed upon QoS attributes. The findings of this
module can be very helpful for service providers, who can
then take corrective actions to improve their services.

In this paper, we will put the focus on the RTP Extractor
module which extracts the run time execution path of the
BPEL process. The execution path is then used to calculate the
QoS of a composite service in the Cloud according to its
patterns. These QoS calculated can be compared to agreed-
upon SLA requirements to detect SLA violations.

The remainder of this paper is organized as follows: Section
Il overviews works related to monitoring Web services.
Section 111 briefly reviews the architecture of our QMoDeSV
framework and details the architecture and the implementation
of the RTP Extractor Module. Section IV illustrates the
functionality of the RTP Extractor through an example of a
banking business process. Section VV summarizes the presented
work and highlights its future directions.

1216

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:10, 2012

Il. RELATED WORK

Most works in the literature are centered on the Web service
monitoring [2, 3, 4, 5]; less effort has been invested in Cloud
monitoring [6, 7, 8, 9, 10].

A. Web Service Monitoring

Thio et al. [2] propose a QoS monitoring framework for
Web service based applications. It extends the SOAP
implementation API, both for the client and the server, to
measure and log QoS parameter values. This enables the user
to perform automated performance measurements. An
experiment is described running more than 200 services
requests per day during 6 days and measuring the response
time. The approach depends on the used SOAP
implementation, and the required QoS monitoring extensions
have to be deployed into the SOAP implementation used by
the provider. This solution modifies the SOAP
implementation.

Ben-Halima et al. [3] propose a QoS-Oriented Self-Healing
middleware (QOSH) for Web service monitoring. QOSH
monitors response time parameters of Web services. It is
based on the interception of SOAP headers. Since this
approach enriches SOAP messages with QoS information.
QOSH modifies both the client and the server implementation
to allow QoS parameter evaluation.

Haiteng et al. [4] propose a solution to the problem of
monitoring Web services described as BPEL processes. The
solution introduces Monitor Broker into traditional Web
services architecture to access Web service runtime state
information and calculate the QoS values. Monitor Broker
architecture use Aspect Oriented Programming (AOP) that
allows for a clear separation of the service business logic from
the monitoring functionality. The initial implementation and
experiment with a travel reservation service example shows
that this approach is feasible and the monitoring cost is
affordable.

Sun et al. [5] propose a monitoring approach based on AOP.
Their goal is to check business process conformance with the
requirements that are expressed using WS-Policy. The
properties (e.g., temporal or reliability) of a Web service are
described as Extended Message Sequence Graph (EMSG) and
Message Event Transferring Graph (METG). A runtime
monitoring framework is then wused to monitor the
corresponding properties that are then analyzed and checked
against the METG graphs. This work is also based on AOP
approach.

B. Cloud Service Monitoring

Shao et al. [6] propose a Runtime Model for Cloud
Monitoring (RMCM). RMCM uses interceptors (as filters in
Apache Tomcat and handlers in Axis) for service monitoring.
It collects all Cloud layer performance parameters. In the SaaS
layer, RMCM monitors applications while taking into account
their required constraints and design models. To do so, it
converts the constraints to a corresponding instrumented code
and deploys the resulting code at the appropriate location of
the monitored applications. Thus, it modifies the source code

of the applications.

Cao et al. [7] propose a monitoring architecture for Cloud
computing. It describes a QoS model that collects QoS
parameter values such as response time, cost, availability,
reliability and reputation. Their architecture is interesting, but
has not been implemented yet.

Clayman et al. [8] present Lattice framework for Cloud
service monitoring in the RESERVOIR EU project. It is
capable of monitoring physical resources, virtual machines
and customized applications embedded with probes.
Compared to our approach, the Lattice framework doesn’t
consider the detection of SLA violations to avoid SLA
penalties.

Rak et al. [9] propose Cloud application monitoring using
the mOSAIC approach. In a first step, the authors describe the
development of customized applications using mOSAIC API
to be deployed on Cloud environments. For these applications,
they propose in a second step some monitoring techniques.
Their interest is only to gather information that can be used to
perform manual or automatic load-balancing,
increase/decrease the number of virtual machines or calculate
the total cost of application execution. Their approach does
not consider the detection of SLA violations to avoid SLA
penalty cost and moreover, it is not generic since it monitors
only applications developed using the mOSAIC API.

Mdhaffar et al. [10] propose an approach called AOPACSM
(Aspect-Oriented Programming For Cloud Service
Monitoring) which is based on aspect-oriented programming
and monitors quality-of service parameters of the Software-as-
a-Service layer. The use of AOPACSM is exemplified in the
context of fault tolerance. Its installation does not need any
access to the source code of the service and the client. It has
been implemented within Axis (both Axisl and Axis2).

In summary, we note that several monitoring works used
the AOP approach. These works treated either the Web service
monitoring or the Cloud monitoring. In our research, we chose
the event-based approach since it provides more efficient
results. In fact, the AOP approach is based on the concept of
proxy. The class of BPEL engine that will make an
appropriate treatment according to the BPEL process instance
will be enclosed by a proxy object that can perform processing
before or after the invocation of the method in the BPEL
engine class. As shown in Fig. 1, when a method (modeled by
the orange bubble) is called, the proxy object notifies that the
method was called and may indicate the invocation time
(which is slightly greater than the real invocation time).
However, in the event-based approach, the class of the BPEL
engine is responsible for launching event (with information
about the type of processing performed by the BPEL engine in
real time as well as the execution time). Hence, the event
based approach is slightly better in point of view precision and
performance than the AOP approach.

1217

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:10, 2012

Aspect Approach

Event Approach

Time Line

Fig. 1 Comparison between the event-driven approach and the AOP
approach

Extractor Module

BPEL Equation

e

BPEL RT
Equations

=

| qoscaleutaror |«—] Lozt o convertor

[| Design Phase

Run Time

g
LE
2
g
2
E

r

QoS Violation Detector

Note that, to the best of our knowledge, none of the
discussed approaches deals with monitoring Web service
composition in the Cloud using an event driven approach.

I1l. THE QMODESV: THE RTP- EXTRACTOR MODULE

This section presents the QMoDeSV framework which
provides for the monitoring of composite services deployed on
the Cloud. As shown in Fig. 2, the QMoDeSV framework
covers the design phase (the Extractor Module) and the
deployment/run-time phase of a service. In the design phase,
the Extractor Module determines the design execution patterns
which influence the QoS attributes of the composite service.
In the run-time phase, the QMoDeSV framework deploys in
parallel five modules: the RTP Extractor, the QoSCalculator,
the Local Host Monitor, the Lo2Hi QoS Convertor, and the
QoS Detector Violation. Once a Web service is executed, the
run time modules run in parallel with the BPEL instance to
detect possible SLA violations.

Q Saa$ Customer

Monitoring
Reguirements

CUIMEL T BPEL Process | Process Instances

pMiddelware TSN

os

Deployed & Configured on

esource Pool Resource Pool

Cloud Provider

Fig. 2 The QMoDeSV framework overview

QMoDeSV proposes a non-intrusive, modular approach for
monitoring QoS attributes: QoS pertinent information is
collected by “watching” locally each service component; this
is the role of the RTP Extractor. Then, based on the
composition pattern of the composite service, the overall QoS
information is computed; this is the role of the QoSCalculator.
This information is used by the QoS Detector Violation
module to look for potential violations of SLA pre-agreed
upon QoS attributes. The findings of this module can be very

helpful for service providers, who can then take corrective
actions to improve their services.

In our previous work, we presented the design phase
module of our framework; for more details the reader can refer
to [1]. The remainder of this paper describes the RTP
Extractor and we will detail its architecture as well as its
implementation. We illustrate its functionality though an
example and in the case of response time.

1218

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:10, 2012

F“
=
ATALCHE ! =
L)
a8 .
R
g T G .
Smart Listener © =
s — ma_| —
@ @ BPEL
|
Evant listanars
(Fichier. properties)
Y
BPEL @ @ Weh senvice
Equations —T RTP-Extractor i
® k= |
e
BREL AT [____;’
Equations

Fig. 3 Conceptual architecture of the RTP-Extractor Module

* Problems @ lavadoc [, Declarstion emale 13 6 Servers - "

The role of the RTP-Extractor Module is to detect the
services invoked in run time as well as the patterns used by
these services. In addition, it extracts the execution path of the
BPEL process and the execution time of each elementary
service. As shown in Fig. 3, this module contains a sub-
module called Smart Listener. This latter has three
components namely the Catch component, the Filter
component and the Storage component. We will explain later
the role of these components.

Once the BPEL process starts its execution, the BPEL
engine will look for the listener connected to it (Fig. 3, step 1).
In our case we use Apache ODE (Orchestration Director
Engine). Apache ODE is an open source and it executes
business processes written following the WS-BPEL standard
[11].

When starting the execution of BPEL process, the BPEL
engine will generate progressively events with the execution
of BPEL process. The BPEL engine having our Smart listener
that has registered its events on startup it will launch the
generated events.

Fig. 4 shows the list of the listeners registered for events in
the Apache ODE. In our case, we have only one listener
(Smart Listener) who is registered from the start of Apache
ODE. Fig. 5 illustrates an example of starting the Smart
Listener.

| ode-axis2 - Bloc-notes . » |

[Fichier Edition Format _Affichage 1
ode-axis2.event. 1isteners=com. bpel.rima. event. 1isteners.ProcessstarteventListener

o5

Fig. 4 The list of listeners registered in the Apache ODE

o parcavw. e (21 jusl. 2012 11:53:26)

y [Bpelserverinpl] BPEL Server S
[SystemSchedule
[Deploym 1
ODFServer | t palling started on path D:\SOKLapache - tamcat =T, 8. 8 mebapps),
11:53:48,829 TNEO [00EServer] 00F Service Engine has been started.

ration: D:\SDK\apache-toncat-7.8. 28 webapps \ude

Fig. 5 The start of Smart Listener

This listener is an intelligent listener because it can cover
and catch all the information generated by the BPEL process
(Fig. 3, step2, the Catch component). In addition, it can
retrieve events and filter them according to the needs and
accurate information mentioned by the developer (Fig. 3,
step3, the Filter component). When the listener detects an
event that is part of the needs, it stores it in form of objects in
memory; if the event is not needed, than it neglects it (Fig. 3,
step 4, the Storage component). The display of the
desired/needed events is in the form of a log file (Fig. 3, step
5). Table I shows a list of desired events. Multiple events are
generated by the BPEL engine and the Filter allows to
distinguish the events described below:

TABLE|
EXAMPLE OF DESIRED EVENTS
Event Description

ProcessCompletionEvent The end of the instance of the BPEL

process
ScopeStartEvent Launching the execution of a Scope
ScopeCompletionEvent End of Scope
ActivityExecEndEvent The end of the activity (invoke,

reply,...)

ProcessMessageExchangeEvent The instance of the BPEL process
received a message from a Partner
Link

Fig. 6 shows the results of steps 1, 2, 3 and 4 that run in
parallel with the execution of BPEL process.

1219

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:10, 2012

Qde vl.x Server at localhest [Generic Server] C:\Program Files\Javaljre7'\bin\javaw.exe (21 juil. 2012 11:53:26)
I'm the scope _ PROCESS_SCOPE:monProcess

My parent scope is null

My scope ID is 14251

My Scope Declaration ID is 3

My scope Name is _ PROCESS_SCOPE:monProcess

My Process Instance Id is 14201

My Process Id is {http://myBpelProcess}monProcess-24
My Process Name is {http://myBpelProcess}monProcess
My Time Stamp is Sat Jul 21 11:57:52 CEST 2812

I'm the scope Invoke

My parent scope is 14251

My scope ID is 14252

My Scope Declaration ID is 185

My scope Name is Invoke

My Process Instance Id is 14281

My Process Id is {http://myBpelProcess}monProcess-24
My Process Name is {http://myBpelProcess}monProcess
My Time Stamp is Sat Jul 21 11:57:52 CEST 2812

m

this is the partner link name {http://webServiceS1}CustomerAppliesForRealEstateCreditilebServicePortType

CustomerAppliesForRealEstateCreditiebService
11:57:54,114 INFO [ExternalService] Response:
<?xml version="1.8" encoding="UTF-8"?>

(messagE)<parameter's)<Customer‘App1155Fcr'RealEstate(rElﬁtRespcnse xmlns="http://webService51” xmlns:ns="http://webService51” xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope,
//webServicesl}CustomerAppliesForRealEstateCreditilebServicePortType

this i
HHHIH\HIHH\HIHH\HIHH\HH\HHIH\HIHH\HIHHHHHHHHHHHHH

the activity Inveke is finished at Sat Jul 21 11:57:54 CEST 2012

Fig. 6 Display of Web Service execution monitoring log file

Mapping Event/event handler

Handle Event

| Event

Event A

ProcessCompletionEvent W

EventB

ScopeStartEvent

ScopeCompletionEvent

PartnerLinkModification
Event

Catch event

Event |
Handler

Handler A I
Handler B .

1
Filter and assign job to handler

Fig. 7 The architecture of the Smart Listener

To accomplish its mission, the Smart Listener is designed
according the architecture illustrated in Fig. 7. Once the Web
Service Log is produced by the Smart Listener, it is used by
the RTP Extractor Module to determine the appropriate
response time equation of the BPEL process. For this, the
BPEL equations determined by the Extractor Module (see Fig.
2) are used along with the information in the Web Service Log
provided by Smart Listener. These two information pieces are
confronted in a mapping phase to obtain the actual BPEL RT
equation (Fig. 3, step6, 7 and 8). Once the overall final
equation is determined, the relevant information (names of
invoked services, used patterns and the response time of each
elementary service) are saved (Fig. 3, step 9). This
information will be used for monitoring the QoS of the
composite Web Service.

IV. EXAMPLE

To illustrate the functions of our RTP-Extractor module of
our QoS monitoring framework, let us consider a simplified
business process in a bank designed as a BPMN process (Fig.
8). When a customer applies for a real-estate credit, the
customer’s credit rating, the real estate construction documents
and the land register record are checked. All these activities are
done in parallel; therefore an AND-gateway is used in the
model. As the result of those assessments, the application either
will be rejected or the contract is to be prepared. The XOR
gateway means that only one of the activities “Reject
Application” and "Prepare Contract” can take place. After the
contract has been prepared, the process either can end or the
bank might offer additional products: loan protection insurance
and residence insurance. Whether loan protection insurance,
residence insurance or both are offered, has to be decided case-
by-case. The OR-gateway shows that only one of the activities
or both of them (in parallel) can take place.

1220

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:10, 2012

Check Credit
rating

Check real
estate
construction

Customer
. applies for real
estate credit
documents

Process 1

Check land
register record

Prepare

Reject
application

Offer loan
protection
insurance

Offer residence
Insurance

Fig. 8 BPMN representation of the example

First, we need to implement this BPMN representation to
obtain a BPEL process. Secondly, we deployed the resulting
BPEL process in Jelastic Cloud [12]. Once deployed, the
Extractor Module parsed the BPEL process to obtain
automatically a design time equation (the BPEL equation); for
more detail on the parsing algorithm, see [1]. For our running
example, Fig. 9 represents the BPEL equation which contains
the name of the services and the design patterns of the
composite service. In the remainder of this section, we adopt
the following notation for the various paths in the example:

e S1: Customer applies for real estate credit;
S21: Check Credit rating;
S22: Check real estate construction documents;
S23: Check land register record,;
S31: Reject application;
S32: Prepare contract;
S41: Offer loan protection insurance; and

e S42: Offer residence insurance.

Sequence (51, flow (sequence(521), sequence (522],
sequence (S23]) If (sequence (532,if (sequence
(flow(sequence(541),5equence (5421)111])

Fig. 9 BPEL Equation obtained during the design phase

Thanks to the Smart Listener (Sub Module of the RTP
Extractor Module), we obtain the Web Service Log (Fig. 11).
This log contains the names of invoked Web Services in run
time and the response time of each service. We consider only
the metric of response time for space limitation. From Fig. 10
we conclude that the service CheckLandRegisterRecord is
invoked in run time with a response time equal to 1s (My
Time Stamp — Finish Time).

Ode vl.x Server at localhost [Generic Server] C\Program Files'Java\jrelbin'javaw.exe (8 aodt 2012 11:45:47)

this is the partner link name {http://webService522}CheckLandRegisterRecordiebServicePortType

I'm the scope Invokel

My Time Stamp is Wed Aug 88 11:46:36 GMT+El:88 2812

Fig. 11 Extract from the Web Service Log

Finally, the Web Service Log will be provided to The RT
Extractor with the BPEL equation (obtained in the design
phase) to obtain the equation in run time (BPEL RT equations)
thanks to the mapping phase. Fig. 11 shows the BPEL RT
Equation of the running example.

Sequence (51, flow (sequence (S21), sequence (S22),
sequence [523)], sequence (S31))

Fig. 11 Equation obtained in Run Time

Once the BPEL RT equation is obtained, the QoS
Calculator Module computes the response time of the
composite web service. This calculation is based on formulas
that depend on the used patterns. Table Il shows the formulas
for calculations according to the used patterns considered in
our work.

1221

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:10, 2012

TABLE Il
RESPONSE TIME FOR COMPOSED WEB SERVICES
Patterns
Sequence Flow Switch Pick Loop Multi choice
Metrics
n n n
Reﬁfﬂ‘;gse Z RT(s) max{RT(s,)} Z RT(s) Z RT(s) n X RT max(RT(s,)}
t=1 t=1 t=1

For example, for the sequential pattern, the response time is
defined as the sum of the response times of the constituent
Web services. For the flow pattern (which includes parallel,
synchronization and simple merge pattern), the response time
is defined as the maximum response time of the constituent
Web services.

The values calculated for the composite Web service will be
compared with the agreed-upon SLA (see extract of SLA, Fig.
13) to detect any potential violation. Such violation can be
signaled to the Cloud provider in order to intervene with the
necessary corrective measures. In the running example, the
shown execution of our running example respects the agreed-
upon SLA.

<SLA name="SLA-WSC'">

Eeputation=>3

E.Tmin= 8ms /‘minirnum values of responses Times
ETmax=10ms 'maximum values ofresponses Times
Cost="50.1"

Min Availability= 90%

Fig. 12 Extract of SLA

V. CONCLUSION

Monitoring Web service composition deployed in the Cloud
based on the patterns used in BPEL process remains an open
research issue. In this paper we presented in detail a module
of our framework QMoDeSV responsible of monitoring and
detecting SLA violations in Cloud Computing environment.
This framework covers both the design and execution phases
of Web services. The module presented in this paper is the RT
Extractor Module which is a run time module. It extracts an
equation containing the names of invoked services and the
actual execution path of BPEL processes forming a composite
Web service. To do so, the RT extractor contains a smart
listener sub-module composed of three components (Catch,
Filter and Storage). The Catch component captures in a non-
intruding way all the events produced by the BPEL engine
during the execution of a BPEL process. The Filter component
filters these events to keep only those events pertinent to the
agreed-upon SLA requirements. Finally, the Storage
component saves information related to the filtered events in a
Web Service Log (hames of invoked services and the response
time of each elementary service). In its second sub-module,
the RT Extractor confronts the information of the saved Web
Service Log to the BPEL design-determined equations to

determine the actual, run-time equation of the service. This
final equation will be used to calculate the QoS of the
composite service thanks to formulas based on the
composition patterns. Finally, the composite QoS can be
compared to the agreed-upon SLA to detect any potential
violation.

In our future work, we will focus on the LHM (Local Host
Monitor) and Lo2Hi modules responsible for managing the
mapping of resource metrics gathered from Cloud
environment to obtain SLA parameters.

REFERENCES

[1] R. Grati, K. Boukadi and H. Ben-Abdallah “A QoS Monitoring
Framework for Composite Web services in the Cloud”, In The Sixth
International Conference on Advanced Engineering Computing and
Applications in Sciences (Advcomp’12). In press

[2] N. Thio and S. Karunasekera, “Automatic Measurement of a QoS Metric
for Web Service Recommendation,” in Proceedings of the Australian
conference on Software Engineering (ASWEC’05). IEEE Computer
Society, 2005, pp. 202-211.

[31 R. Ben-Halima, K. Drira, and M. Jmaiel, “A QoS-Oriented
Reconfigurable Middleware for Self-Healing Web Services,” in
Proceedings of the IEEE International Conference on Web Services
(ICWS’08). IEEE Computer Society, 2008, pp. 104-111.

[4] Zhang Haiteng, Shao Zhiging , Zheng Hong “Runtime monitoring Web
services implemented in BPEL”, in Proceedings of the IEEE
International Conference on Uncertainty Reasoning and Knowledge
Engineering (URKE’ 11). IEEE Computer Society, 2011, pp. 228 - 231.

[5] Mingjie Sun; Bixin Li; Pengcheng Zhang “Monitoring BPEL-Based
Web Service Composition Using AOP”, in Proceedings of the IEEE
International Conference on Computer and Information Science
(ICIS’09).IEEE computer Society, 2009, pp. 1172 - 1177.

[6] J. Shao, H. Wei, Q. Wang, and H. Mei, “A Runtime Model Based
Monitoring Approach for Cloud,” in Proceedings of 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD 2010), I. C.
Society, Ed. Miami, Florida: IEEE Computer Society, 2010, pp. 313-
320.

[7] B.-Q. Cao, B. Li, and Q.-M. Xia, “A Service-Oriented Qos-Assured and
Multi-Agent Cloud Computing Architecture,” in Proceedings of the 1st
International Conference on Cloud Computing (CloudCom’09). Berlin,
Heidelberg: Springer- Verlag, 2009, pp. 644-649.

[8] S. Clayman, A. Galis, C. Chapman, M. L.R, L. M. Vaquero, K. Nagin,
B. Rochwerger, and G. Toffetti. “Monitoring future internet service
clouds” In towards the Future Internet - A European Research
Perspective book, April 2010.

[91 M. Rak, S. Venticinque, T. a. M andhr, G. Echevarria, and G. Esnal.
“Cloud application monitoring: The mosaic approach”. In Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third
International Conference on, pages 758 —763, 29 2011-dec. 1 2011.

[10] Afef Mdhaffar, Riadh Ben Halima, Ernst Juhnke, Mohamed Jmaiel and
Bernd Freisleben. In Proceedings of the IEEE International Conference
on Computer and Information Technology (CIT’ 11).

[11] Apache ODE http://ode.apache.org/. 2012

[12] Jelastic “http://jelastic.com/.” 2012.

1222

