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Abstract—The Canadian aerospace industry faces many 

challenges. One of them is the difficulty in estimating costs. In 
particular, the design effort required in a project impacts resource 
requirements and lead-time, and consequently the final cost. This 
paper presents the findings of a case study conducted for recognized 
global leader in the design and manufacturing of aircraft engines. The 
study models parametric cost estimation relationships to estimate the 
design effort of integrated blade-rotor low-pressure compressor fans.  
Several effort drivers are selected to model the relationship. 
Comparative analyses of three types of models are conducted. The 
model with the best accuracy and significance in design estimation is 
retained. 

 
Keywords—Effort estimation, design, aerospace. 

I. INTRODUCTION 
HE Canadian Aerospace industries employed 81,050 
Canadians in 2010[1], and according to [2], 55% of the 

jobs in 2007 were in the province of Quebec. The aerospace 
industry is an important element of the Canadian economy: in 
2010, it generated $21 billion dollars of revenue, and has 
exported over $15 billion dollars [1].  

Estimating the cost is a key element of many engineering 
and managerial decisions [3]. As target costing focuses on the 
product and its characteristics, [4], those characteristics will be 
the basis of estimating the cost. Therefore, in order to develop 
an accurate cost model, the design efforts, i.e. the 
characteristics of the product that will influence the cost [5], 
have to be defined. In a regression based model they are used 
to develop the final target cost model, or the cost estimating 
relationship (CER).  

The target cost of the product can also be broken down into 
design and manufacturing cost. In order to understand the cost 
of design of a product, the time, in person hours, also known 
as design effort, is required. If it can be established within a 
reasonable degree of accuracy, the ability to schedule, 
forecast, conducting trade-offs, amongst others, will become 
much easier, and doing so correctly is critical [5]-[8]. 

The focus of this paper is on the development and 
comparison of parametric CERs to estimate design effort for 
an aerospace component. The methodology can be adapted to 
other domains. 
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II. METHODOLOGY 
Parametric cost estimation is a technique that can be used to 

develop an estimate based on the statistical relationship of the 
input variables [9], [10]. In the context of projects, it 
determines estimates for parameters (e.g. cost or design effort) 
using historical data and/or other variables. It can be used to 
determine the feasibility of a project, to determine a budget, 
and to compare projects (products), among others [11]. The 
input variables, which are the design efforts, will be used to 
formulate the cost model or the cost estimating relation 
(CER). The parametric CERs are commonly utilized to 
estimate the cost during the design phase of a product, when 
only few, yet key design parameters or input variables (in this 
case, design efforts) are known. The generic formula is as 
follows: 

 
CER (y) = f(xi)                           (1) 

 
The CER is a function of its input variable(s) xi. Simple 

CERs depend on a single design effort driver, whereas the 
complex CERs depend on multiple design efforts [10]. By 
identifying the design efforts, parametric models can be 
developed.  

In this paper, two models based on linear regression are 
selected to formulate the CER. The other parametric CER 
studied in this paper is that of a complex non-linear model 
(CNLM), which is also a regression based model.  

A. CER Based Upon Linear Regression 
The simple CER based on a linear regression (LR) model 

can be denoted as following. 
 

ොݕ ൌ ଴ߚ ൅ ଵߚ ଵܺ                                (2) 
 
where ݕො, Predicted design effort; β0, Intercept; β1, Slope; X1, 
Design effort driver. 

As can be seen from (2), there is only one independent 
variable, hence only one design effort driver. However in 
many cases, several design efforts are selected, thus the CER 
will be complex. A more complex form of the CER using 
regression can be denoted by the multiple linear regression 
model (MLRM). The MLRM function is as follows: 

 
ොݕ ൌ ଴ߚ ൅ ଵܺଵߚ ൅ ଶܺଶߚ ൅ ڮ ൅  ௞ܺ௞                (3)ߚ

 
where ݕො, Predicted design effort dependent on k predictor 
values; βj, Regression coefficients; Xk, kth independent 
variable. 
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The regression coefficients are deduced by the method of 
least squares, [12].  

Another complex CER will be developed based upon a 
standard non-linear regression model (NLR model). The 
purpose of developing another parametric CER is to use it as a 
comparison mechanism to that based upon the MLRM, in 
terms of accuracy of prediction. In statistics, the NLR is a type 
of regression that utilizes data modeled in the form of non-
linear combinations [13]. Below is the formula for the NLM 
used in this study: 

 
ොݕ ൌ ଴ߚ ଵܺ

ఉభܺଶ
ఉభܺଷ

ఉయ                            (4) 
 

where ݕො, Predicted design effort; Xm, mth independent variable; 
βm, Regression coefficient. 

Since (4) is represented in a non-linear form, it must be 
transformed into a linear model to conduct the regression 
analysis. The linear equation generated is shown below. 

 
ln ොݕ ൌ lnሺߚ଴ሻ ൅ ଵߚ lnሺߚଵሻ ൅ ଶߚ lnሺߚଶሻ ൅  ଷሻ     (5)ߚଷln ሺߚ

 
Thereafter, as the equation is in the standard linear 

regression form, the least squares method will be utilized to 
calculate the regression coefficients. As the models described 
in this section are based upon linear regression, it is important 
that the linearity and normal assumptions are met. 

1.  Linearity Assumption 
In order to determine if the function is linear for a given 

case of the MLRM, scatter plots or residual plots can be made. 
In the case of the scatter plot, the standardized residuals could 
be plotted against the non-standardized predicted value. For a 
linear function, the scatter plot should not have any curvilinear 
patterns. 

Another graphical manner to statistically prove the validity 
of the MLRM is to create statistical process control (SPC) 
charts. In the context of this research, the predicted values 
against the actual values of design effort will are plotted. The 
errors or residuals will be the deviation from the line ln 
(Predicted) = ln (Actual) + ε. The expected error, assuming a 
normal distribution, is zero, i.e. E (ε) =0. Thus, the mean of 
the function f(x), will simply be f(x). The equations for the 
upper control limits (UCL) and lower control limits (LCL) are: 

 
UCLfሺxሻ  ൅  3σ                                (6) 
UCLfሺxሻ െ  3σ                                 (7) 

 
where f(x), Predicted design effort = Actual design effort; σ, 
Standard deviation of the residuals. 

It should be noted that the design effort used in all 
equations above really means masked design effort. A 
masking technique described by [14] was applied to the 
company raw data and will be described in a later section.  

According to [13], if the residuals are within 3σ of the 
expected value of the function, then the function is considered 
to be statistically in control. In other words, the assumption of 
linearity holds.  

2.  Normality Assumption 
The second assumption that must be validated is that the 

error values follow a normal distribution. The test to 
determine error normality requires the coefficient of 
correlation, r.  The value of r is calculated from the following 
equation. 

 
ݎ ൌ േ√ܴଶ                                          (8) 

 
where R2, Coefficient of determination. The value of R2 is 
calculated from the following equation: 
 

ܴଶ ൌ ௌௌோ
ௌௌ்ை

                                         (9) 
 
where SSR, Regression sum of squares; SSTO, Total sum of 
squares. 

This will also involve a hypothesis test in which the critical 
values for the correlation coefficient,ݎ௅ described by [15], are 
to be compared against the resulting correlation coefficient, r, 
from the generated regression model. The Ho assumes that the 
error has a normal behavior. The H1 assumes that the error 
does not have a normal behavior. The outcome of the test is as 
follows:     

 
ݎ ݂݅ ൒ ௟ሺ1ݎ െ  ଴ܪ ݁݀ݑ݈ܿ݊݋ܿ        ሻߙ
ݎ ݂݅ ൏ ௟ሺ1ݎ െ  ଵ                (10)ܪ ݁݀ݑ݈ܿ݊݋ܿ        ሻߙ

 
The value of α, also known as the Type 1 error, is set and is 

the probability to reject H0, given H0 is in fact true [16]. These 
values will be used to fulfill the normality assumption. The 
next model studied is the complex non-linear model 

3.  Analysis of Variance 
ANOVA for an MLRM will help to determine which cost 

drivers have a statistical significance [12]. The ANOVA will 
indicate, with the use of the F-test for linear regression, if the 
CER only contains statistically significant cost drivers [17]. 
According to [12], the p-value, one of the values generated in 
the ANOVA, will indicate the statistical significance of a 
given parameter, which in this case, the cost drivers. The 
following set of equations will be utilized to determine if the 
selected input variables are statistically significant. 

 
If  ݌௜ ൒ 1 െ  ݈݁ݒ݁ܮ ݂݁ܿ݊݁݀݅݊݋ܥ

then Factor is statistically significant     (11) 
 

If  ݌௜ ൏ 1 െ  ݈݁ݒ݁ܮ ݂݁ܿ݊݁݀݅݊݋ܥ
then Factor is not statistically significant    (12)   

 
For the purpose of this study, the selected confidence level, 

which would relate to the reliability of the estimate, is set at 
75%. It should be noted that the subscript, i for the term, pi 
represents the ith cost drivers, as several cost are considered in 
the complex CER. 

After creating the regression model and computing the 
ANOVA, if there is a single value of pi> 0.25, the regression 
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analysis will have to be repeated by eliminating the selected 
cost driver with the greatest value of pi. This procedure is 
repeated until all the values of pi ≥ 0.25. The resultant 
equation will be utilized to predict the target cost solely upon 
statistically significant cost drivers at a specified confidence 
level, 75% in this case.  

B. CER Based Upon a Complex Non-Linear Model 
The CNLM used in this study has the following notation. 
 

ොݕ ൌ ܽ଴ݔଵ
௕బ ൅ ܽଵݔଶ

௕భ ൅ ܽଶݔଷ
௕మ ൅ ܿ଴ݔଵ

ௗబݔଶ
ௗభ ൅ ܿଵݔଵ

ௗమݔଷ
ௗయ 

൅ܿଶݔଶ
ௗరݔଷ

ௗఱ ൅ ݁଴ݔଵ
௙బݔଶ

௙భݔଷ
௙మ                    (13) 

 
As was the case in the regression models, the terms xi 

represent the design effort drivers, and remaining terms are the 
constants. As this equation is not in the form of a regression 
model, the constants will have to be determined analytically. 
The manner is determining the constants will be using the 
gradient descent algorithm (GDA). The GDA is an 
optimization tool to find the local minima of a function [18]. 
In order to determine the constants, the function to be 
minimized is the square error of the predicted versus the actual 
costs (i.e. ∑ሺݕ െ  for each of the ׏ ,ොሻଶ). The gradientݕ
constants will calculate the amount the constant has to be 
changed (ie. delta) in order to minimize the function, the 
square error. Furthermore, the value of the constant will be 
adjusted by multiplying it by a step rate, η. Each of the 
constants will be adjusted each iteration until the specified 
stopping criterion (i.e. acceptable change in error) is fulfilled.  

III. CASE STUDY 
Pratt and Whitney Canada (PWC) is renowned a global 

leader in the design and manufacture of jet engines. For this 
specific case, parametric CERs are developed, to estimate the 
required effort (in terms of person-hours) in order to design, a 
compressor fan. The specific fan of interest in this case is the 
integrated blade-rotor low-pressure compressor (IBR LPC) 
fan.  

A. Compressor Fan  
The design of the CF is a complex process which involves 

expertise in several domains. However, there are four 
departments, which together carry out the majority of the 
effort to design the CF:  design, aerodynamics, structures 
(analytical), and drafting departments. The design department 
is responsible for ensuring that all components mesh well with 
the rest of the engine. In order to estimate the design effort, 
the principal factors that potentially may have significant 
effect on design effort estimation, known as the design effort 
drivers, must be identified. Upon conducting extensive 
interviews key experts and discussions with managers, 
designers, and project engineers at PWC, the following four 
factors were identified as the effort drivers to be used for this 
model: Type of design (TD); Degree of change (DC); 
Experience of departmental personnel (DE) and Concurrency 
(Con). 

It should be noted that even though, concurrency was 
initially selected as a design effort driver, our research for this 
case, indicates it not to be a significant factor, and will 
therefore not be considered [19]. 

1. Type of Design  
The effort required in designing a component will vary 

depending on the type of design (TD). As can easily be 
understood, the effort required from an initial design will not 
be similar to that of as a redesign. Therefore, for each of the 
design jobs (DJs), they were assigned one of the following 
attributes. 
1. Initial Design  1 
2. Redesign  2 

It should be noted, that the redesign can be further divided 
based upon its degree of change.  

2. Degree of Change 
This purpose of this factor is to attribute a value for the 

level of rework created from the initial design to a redesign, or 
from a redesign to a second redesign. If a major change or 
degree of change (DC) is required from to the initial design, 
the amount of rework generated would be expected to be 
different (greater) than if only a minor change is required. The 
values attributed to the designs are shown below. 
1. Initial design  1   
2. Redesign with minor modifications  2 
3. Redesign with major modifications  3 

3.  Experience of Departmental Personnel 
The amount of experience an individual has will also play a 

major role when determining the time they require in order to 
complete their work. This may be contrasted to the notion of 
the learning curve. The learning curve was first introduced by 
[20]. The following attributes for the degree of experience 
(ED) is assigned. 
1. 0-2 years of experience  1 
2. 3-4 years of experience  2 
3. 5 + years of experience  3 

As the effort required for a department may be divided into 
several personnel, the experience level for the job will be 
determined as the weighted average of experience from all the 
individuals working on the job. The formula used to calculate 
the degree of experience is as follows: 

 
ܦܧ ൌ ∑ ሺ% hours of iሻ כ ሺexperience of iሻ௡

௜ୀଵ       (14) 

IV. RESULTS AND ANALYSIS 
As mentioned in the previous section, three design effort 

drivers were identified for the CF: type of design (TD), degree 
of change (DC), and degree of experience (ED). Table I 
presents the masked data obtained from PWC. 

As can be seen from Table I, the term “masked design 
effort” is used, as discussed in Section II A 1 to maintain 
confidentiality. From this point forward, it will simply be 
referred to as “design effort.” 
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TABLE I 
HISTORICAL DATAFOR VARIOUS DESIGN JOBS 

DJ X1:TD X2:DC X3:ED y: Masked Design Effort 
A 1 1 3 259.07 
B 2 2 3 121.39 
C 2 3 3 288.73 
D 1 1 3 249.98 
E 2 2 2.25 462.65 
F 2 3 2.65 480.04 
G 1 1 2.44 734.14 

 
where Xn: design effort drivers; y: masked design effort  

The regression models are developed using the method of 
least squares. As there are a total of seven design job, the 
models are developed containing the full data set (Trial 0). 
Two more trials are conducted where one job is randomly 
removed and used to validate the results. The first sub-sample 
removed DJC, and is referenced as Trial 1 from this point 
forward. Similarly, another sub-sample was created, namely 
Trial 2, which omitted DJ E. The following analysis presented 
in that of the linear regression based CER. 

A. Linear Regression Based CER 
The resulting equation for the three trials based upon the 

linear regression based CER are as follows: 
 

ො௅ோ,்଴ݕ ൌ 2389.84 െ 454.48ܺଵ ൅ 215.83ܺଶ െ 617.35ܺଷ (15) 
ො௅ோ,்ଵݕ ൌ 2416.37 െ 443.98ܺଵ ൅ 203.67ܺଶ െ 626.19ܺଷ(16) 
ො௅ோ,்ଶݕ ൌ 2772.61 െ 271.64ܺଵ ൅ 125.40ܺଶ െ 786.25ܺଷ(17) 
 
The normality plot showed no patterns, and the R2 values 

seen below, were both above the critical values specified by 
[15], thus confirming the data to be normal. 

 
TABLE II 

 R2 FOR LR BASED CER 
Trial R2 

Trial 0 0.9206 
Trial 1 0.9195 
Trial 2 0.9808 

 
None of the p-values from the ANOVA are greater than 

0.25, therefore all the selected design effort drivers have 
statistical significance. The resulting errors for a sample trial 
are as follows: 

 
TABLE III 

ERRORS FOR LR BASED CER (TRIAL 0) 
DJ Error (%) 
A 15.47 
B 50.15 
C 4.29 
D 19.67 
E 13.16 
F 2.58 
G 12.16 

 
The analysis of this model is complete; the next CER 

developed is that of a regression based non-linear model. 

B. Non-Linear Regression Based CER 
The resulting equation for the three trials based upon the 

non-linear regression model based CER are as follows: 
 
ොே௅ோ,்଴ݕ݈݊ ൌ 10.81 െ 3.21 ݈݊ ଵܺ ൅ 2.08 ݈݊ ܺଶ െ 4.77 ݈݊ ܺଷ                (18) 
ොே௅ோ,்ଵݕ݈݊ ൌ 10.88 െ 3.11 ݈݊ ଵܺ  ൅ 1.98 ݈݊ ܺଶ െ 4.85 ݈݊ ܺଷ               (19) 
ොே௅ோ,்ଶݕ݈݊ ൌ 10.95 െ 3.10 ݈݊ ଵܺ  ൅ 2.03 ݈݊ ܺଶ െ 4.91 ݈݊ ܺଷ               (20) 

 
The models in the standard form presented in (4) will be the 

following: 
 

ොே௅ோ,்଴ݕ ൌ 49281.89 ଵܺ
ିଷ.ଶଵܺଶ

ଶ.଴଼ܺଷ
ିସ.଻଻                     (21) 

ොே௅ோ,்ଵݕ ൌ 53191.85 ଵܺ
ିଷ.ଵଵܺଶ

ଵ.ଽ଼ܺଷ
ିସ.଼ହ                     (22) 

ොே௅ோ,்ଶݕ ൌ 56781.45 ଵܺ
ିଷ.ଵ଴ܺଶ

ଶ.଴ଷܺଷ
ିସ.ଽଵ                     (23)        

 
In this model, the normality plot also showed no patterns, 

and the R2 values seen below, were also both above the critical 
values specified by [15], thus confirming the data to be 
normal. 

 
TABLE IV 

R2FOR NLR BASED CER 
Trial R2 

Trial 0 0.9959 
Trial 1 0.9978 
Trial 2 0.9963 

 
Similarly to the case of the CER based upon LR, none of 

the p-values from the NLR ANOVA are greater than 0.25, 
therefore all the selected design effort drivers have statistical 
significance. The resulting errors for one trial are as follows: 

 
TABLE V 

ERRORS FOR THE NLR BASED CER (TRIAL 0) 
DJ Error (%) 
A 0.67 
B 1.71 
C 4.09 
D 4.33 
E 1.74 
F 4.26 
G 4.79 

 
The analysis for this model is complete; the final CER 

developed is that of complex non-linear model. 
 

TABLE VI 
 ERRORS FOR THE NLR BASED CER (TRIAL 2) 

DJ Error (%) 
A 0.05 
B 0.00 
C 0.89 
D 0.60 
F 0.81 
G 0.46 
E 1.21 
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C. Complex Non-Linear Based CER 
The CNLM selected to model the design effort presented in 

Section II B is shown below is used to model this relationship. 
 

ොݕ ൌ ܽ଴ݔଵ
௕బ ൅ ܽଵݔଶ

௕భ ൅ ܽଶݔଷ
௕మ ൅ ܿ଴ݔଵ

ௗబݔଶ
ௗభ ൅ ܿଵݔଵ

ௗమݔଷ
ௗయ

൅ ܿଶݔଶ
ௗరݔଷ

ௗఱ ൅ ݁଴ݔଵ
௙బݔଶ

௙భݔଷ
௙మ 

 
It should be noted the values of input and cost data are 

normalized, with the following equations, to facilitate in the 
convergence of the model.  

 
௡ݔ ՜ ௡ሺ௢௥௜௚௜௡௔௟ሻݔ 10⁄                 (24) 

ݕ ՜ ሺ௢௥௜௚௜௡௔௟ሻݕ 1000⁄                         (25) 
 

As mentioned in Section II B the gradient descent algorithm 
(GDA) is used to determine the coefficients of the model. For 
the same threetrials, using the GDA, the models converged 
and resulted in the following equations. 

 
ො஼ே௅ெ,்଴ݕ ൌ  െ3.94ݔଵ

ଵ.ଵ଼ ൅ ଶݔ1.65
ଶ.଴଺ ൅ ଷݔ0.72

ି଴.ସଽ

൅ ଵݔ0.72
ି଴.଴଺ݔଶ

ଵ.଻ଽ െ ଵݔ0.31
ସ.ଵଶݔଷ

ିସ.ଷସ

െ ଶݔ6.09
ି଴.ସଵݔଷ

ଶ.଼ହ 
െ3.36ݔଵ

ି଴.ହହݔଶ
଴.ଵଽݔଷ

ଶ.଻ସ                      (26) 
 

ො஼ே௅ெ,்ଵݕ ൌ  െ1.78ݔଵ
଴.଻଻ ൅ ଶݔ0.75

ଵ.ଵଶ ൅ ଷݔ0.71
ି଴.଼ଷ

൅ ଵݔ0.28
଴.ହ଴ݔଶ

଴.଼଻ െ ଵݔ1.48
଴.ଽଽݔଷ

ି଴.ଽ଼

െ ଶݔ0.53
ି଴.ଽ଺ݔଷ

ଵ.ଷହ 
൅0.30ݔଵ

଴.ହଽݔଶ
଴.଻ଷݔଷ

଴.ହ଼  (27) 
 

ො஼ே௅ெ,்ଶݕ ൌ  െ1.42ݔଵ
ି଴.ଵଵ ൅ ଶݔ0.97

଴.଻଺ ൅ ଷݔ0.65
ିଵ.ଵହ

൅ ଵݔ049
଴.ସ଺ݔଶ

଴.଻଴ െ ଵݔ1.11
଴.଺଺ݔଷ

ିଵ.଴ସ

൅ ଶݔ0.48
଴.ସଵݔଷ

଴.଺଺ 
൅0.65ݔଵ

଴.ଷ଻ݔଶ
଴.଺଴ݔଷ

଴.ହ଻  (28) 
 

The resulting errors for one trial are as follows: 
 

TABLE VII 
ERRORS FOR THE CNLM BASED CER (TRIAL 0) 

DJ Error (%) 
A 1.92 
B 0.64 
C 0.26 
D 1.64 
E 0.00 
F 0.00 
G 0.00 

 
Now that all models are developed, they can be compared. 

D. Comparative Analysis 
The following table displays one trial of the errors, their 

maximum, minimum, and average, for all the developed 
CERs. 

 
 
 
 
 

TABLE VIII 
COMPARISON OF THE CERS (TRIAL 0) 

Error (%) 
DJ LR NLR CNLM 
A 15.47 0.67 1.92 
B 50.15 1.71 0.64 
C 4.29 4.09 0.26 
D 19.67 4.33 1.64 
E 13.16 1.74 0.00 
F 2.58 4.26 0.00 
G 12.16 4.79 0.00 

MAX 50.15 4.79 1.92 
MIN 2.58 0.67 0.00 
AVG 16.78 3.09 0.64 

 
As can be seen from Table VIII, the CNLM is the best is 

terms of all the errors. However, when the other trials are 
examined it has different results. The reason for this is due to 
the fact of the modeling of the equation. As the CNLM is 
solved analytically based upon the maximum error, it can 
theoretically result in a model with zero error, which has its 
own implications, such as over fitting. The notion of over 
fitting can be seen, where the errors of the model are 
acceptable, yet when used to predict for the omitted program, 
the resulting error is high.  

In trials 1 and 2, the non-linear regression based CER, 
performs the best in terms of prediction for the omitted 
program, and in terms of average error. Moreover, a statistical 
test (t-test), which can be found in [16], comparing the means 
of the errors, with a 95% confidence interval also confirms 
that the non-linear based CER, both outperforms the linear 
regression and complex based CER in terms of accuracy. A 
sensitivity analysis is now conducted on the NLR model to see 
the impact that each factor has on the estimate of design effort. 

E. Sensitivity Analysis 
Sensitivity analysis was performed on the impact that TD 

has on design effort. It confirmed the intuition related to the 
selected factors. It was deduced that the effort would be more 
for an initial design than of a redesign. Similarly, the degree of 
changes increases from minor to major, the corresponding 
effort will also increase. Finally, as the experience of the 
individual/team increases, the required effort will reduce. 

V. CONCLUSION 
This study uses the development of parametric based cost 

estimating relations to estimate the design effort. The analysis 
supports, the significant design effort drivers to estimate the 
design effort. The design effort drivers are the type of design, 
degree of change, and experience of departmental personnel.    

The models are used to estimate the design effort for the 
integrated blade-rotor low-pressure compressor fan for seven 
design jobs at Pratt & Whitney Canada. The non-linear 
regression based CER performed best when compared to the 
other models.   
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