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Abstract—A known iterative computational procedure is used for 

internal normal ball loads calculation in statically loaded single-row, 
angular-contact ball bearings, subjected to a known thrust load, 
which is applied in the inner ring at the geometric bearing center line. 
Numerical aspects of the iterative procedure are discussed. 
Numerical examples results for a 218 angular-contact ball bearing 
have been compared with those from the literature. Twenty figures 
are presented showing the geometrical features, the behavior of the 
convergence variables and the following parameters as functions of 
the thrust load: normal ball loads, contact angle, distance between 
curvature centers, and normal ball and axial deflections between the 
raceways. 
 

Keywords—Ball, Bearing, Static, Load, Iterative, Numerical, 
Method.  

I. INTRODUCTION 
ALL and roller bearings, generically called rolling 
bearings, are commonly used machine elements. They are 

employed to permit rotary motions of, or about, shafts in 
simple commercial devices such as bicycles, roller skates, and 
electric motors. They are also used in complex engineering 
mechanisms such as aircraft gas turbines, rolling mils, dental 
drills, gyroscopes, and power transmissions. 

The standardized forms of ball or roller bearings permit 
rotary motion between two machine elements and always 
include a complement of ball or rollers that maintain the shaft 
and a usually stationary supporting structure, frequently called 
a housing, in a radially or axially spaced-apart relationship. 
Usually, a bearing may be obtained as a unit, which includes 
two steel rings each of which has a hardened raceway on 
which hardened balls or rollers roll. The balls or rollers, also 
called rolling elements, are usually held in an angularly 
spaced relationship by a cage, also called a separator or 
retainer. 

There are many different kinds of rolling bearings. This 
work is concerned with single-row angular-contact ball 
bearings (Fig. 1) that are designed to support combined radial 
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and thrust loads or heavy thrust loads depending on the 
contact angle magnitude. The bearings having large contact 
angle can support heavier thrust loads. Fig. 1 shows bearings 
having small and large contact angles. The bearings generally 
have groove curvature radii in the range of 52-53% of the ball 
diameter. The contact angle does not usually exceed 40o.  
 

 

 

 

 

 

 

 
Fig. 1 Angular-contact ball bearing 

 
This work is devoted to study of the internal loading 

distribution in statically loaded ball bearings. Several 
researchers have studied the subject as, for example, Stribeck 
[1], Sjoväll [2], Jones [3] and Rumbarger [4]. The methods 
developed by them to calculate distribution of load among the 
balls and rollers of rolling bearings can be used in most 
bearing applications because rotational speeds are usually 
slow to moderate. Under these speed conditions, the effects of 
rolling element centrifugal forces and gyroscopic moments are 
negligible. At high speeds of rotation these body forces 
become significant, tending to alter contact angles and 
clearance. Thus, they can affect the static load distribution to a 
great extension. 

Harris [5] described methods for internal loading 
distribution in statically loaded bearings addressing pure 
radial; pure thrust (centric and eccentric loads); combined 
radial and thrust load, which uses radial and thrust integrals 
introduced by Sjoväll; and for ball bearings under combined 
radial, thrust, and moment load, initially due to Jones. 

There are many works describing the parameters variation 
models under static loads but few demonstrate such variations 
in practice, even under simple static loadings. The author 
believes that the lack of practical examples is mainly due to 
the inherent difficulties of the numerical procedures that, in 
general, deal with the resolution of several non-linear 
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algebraic equations, which must to be solved simultaneously. 
In an attempt to cover this gap studies are being developed 

in parallel [6]-[12]. Particularly, in this work a known iterative 
computational procedure (see [5], p. 245) is used to obtain 
internal normal ball loads in statically loaded single-row, 
angular-contact ball bearings, subjected to a known thrust 
load, which is applied in the inner ring at the geometric 
bearing center line. Although the method is well known, 
aspects of the numerical procedure and the behavior of the 
variables under convergence haven’t been sufficiently 
explored in the literature. So, numerical aspects of the iterative 
procedure are discussed and numerical examples results for a 
218 angular-contact ball bearing have been compared with 
those from the literature. Twenty figures are presented 
showing the geometrical features, the behavior of convergence 
variables and the following parameters as functions of the 
external thrust load: normal ball loads, contact angle, distance 
between curvature centers, and normal ball and axial 
deflections. 

II. SYMBOLS 
a Semimajor axis of the projected contact, m 
A Distance between raceway groove curvature centers 

at unloaded position, m 
b Semiminor axis of the projected contact, m 
B fo + fi – 1, Total curvature 
d Raceway diameter, m 
da Bearing outer diameter, m 
db Bearing inner diameter, m 
de Bearing pitch diameter, m 
D Ball diameter, m 
E Modulus of elasticity, N/m2 

E′ Effective elastic modulus, N/m2 
E Elliptic integral of second kind 
f, fs Raceway groove radius ÷ D; shock factor 
F Applied load, N 
k a/b 
K Load-deflection factor, N/m3/2 
K Elliptic integral of first kind 
Pd Diametral clearance, m 
Pe Free endplay, m 
Q Ball-raceway normal load, N 
r Raceway groove curvature radius; solids curvature 

radius, m 
s Distance between loci of inner and outer raceway 

groove curvature centers, m 
R Curvature radius, m 
Z Number of rolling elements 
β, β’, β” Contact angle, rad, o 
βf Free contact angle, rad, o 
γ D cos β / de 

Γ Curvature difference 
δ Deflection or contact deformation, m 
Δψ Angular spacing between rolling elements, rad,o 
υ Poisson’s ratio 

φ Auxiliary angle 
ψ Azimuth angle, rad, o 
 
Subscripts: 
 
a Refers to solid a or axial direction 
b Refers to solid b 
x,y Refers to coordinate system 
i Refers to inner raceway 
j Refers to rolling element position 
n Refers to direction collinear with normal load 
o Refers to outer raceway 

III. GEOMETRY OF BALL BEARINGS 
In this section, the principal geometrical relationships for an 

unloaded ball bearing are summarized. The radial cross 
section of a single-row ball bearing shown in Fig. 2 depicts 
the diametral clearance and various diameters. The pitch 
diameter, de, is the mean of the inner- and outer-race 
diameters, di and do, respectively, and is given by 

 

( )oie ddd +=
2
1 .        (1) 

 
Fig. 2 Radial cross section of a single-row ball bearing 

 
The diametral clearance, Pd, can be written as 
 

DddP iod 2−−= .         (2) 
 
Race conformity is a measure of the geometrical conformity 

of the race and the ball in a plane passing through the bearing 
axis (also named center line or rotation axis), which is a line 
passing through the center of the bearing perpendicular to its 
plane and transverse to the race. Fig. 3 depicts a cross section 
of a ball bearing showing race conformity, expressed as 

 
Drf /= .            (3) 
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Fig. 3 Cross section of a ball and an outer race showing race 

conformity 
 
Radial bearings have some axial play since they are 

generally designed to have a diametral clearance, as shown in 
Fig. 4(a). Fig. 4(b) shows a radial bearing with contact due to 
the axial shift of the inner and outer rings when no measurable 
force is applied. The radial distance between the curvature 
centers of the two races are the same in the Figs. 4(a) and (b). 
Denoting quantities referred to the inner and outer races by 
subscripts i and o, respectively, this radial distance value can 
be expressed as A – Pd/2, where A = ro + ri – D is the 
curvature centers distance in the shifted position given by Fig. 
4(b).  

Using (3) we can write A as 
 

A = BD,                  (4) 
 

where B = fo + fi – 1 is known as the total conformity ratio and 
is a measure of the combined conformity of both the outer and 
inner races to the ball. 

The contact angle, β, is defined as the angle made by a line, 
which passes through the curvature centers of both the outer 
and inner raceways and that lies in a plane passing through the 
bearing rotation axis, with a plane perpendicular to the bearing 
axis of rotation. The free-contact angle, βf, (Fig. 4(b)) is the 
contact angle when the line also passes through the points of 
contact of the ball and both raceways and no measurable force 
is applied. From Fig. 4(b), the expression for the free-contact 
angle can be written as 

 
(a)            (b) 

 
Fig. 4 Cross section of a radial ball bearing showing ball-race 

contact due to axial shift of inner and outer rings. (a) Initial position. 
(b) Shifted position 

 

A
PA d

f
2/cos −

=β .                  (5) 

 
From (5), the diametral clearance, Pd, can be written as 
 

( )fd AP βcos12 −= .           (6) 

 
Free endplay, Pe, is the maximum axial movement of the 

inner race with respect to the outer when both races are 
coaxially centered and no measurable force is applied. Free 
endplay depends on total curvature and contact angle, as 
shown in Fig. 4(b), and can be written as 

 
fe AP βsin2= .         (7) 

 
Considering the geometry of two contacting solids 

(ellipsoids a and b) in a ball bearing we can arrive at the two 
quantities of some importance in the analysis of contact 
stresses and deformations: The curvature sum, 1/R, and 
curvature difference, Γ, which are defined as 

 

yx RRR
111

+= , 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=Γ

yx RR
R 11 , 

where 

bxaxx rrR
111

+= , 

byayy rrR
111

+= , 

 
with rax, rbx, ray and rby, being the radii of curvature for the 
ball-race contact. 

A cross section of a ball bearing operating at a contact 
angle β is shown in Fig. 5. Equivalent radii of curvature for 
both inner- and outer-race contacts in, and normal to, the 
direction of rolling can be calculated from this figure. 
Considering x the direction of the motion and y the transverse 
direction the radii of curvature for the ball-inner-race contact 
are 

2/Drr ayax == , 

β
β

cos2
cosDdr e

bx
−

= , 

iiby rDfr −=−= . 

 
The radii of curvature for the ball-outer-race contact are 
 

2/Drr ayax == , 

β
β

cos2
cosDdr e

bx
+

−= , 
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ooby rDfr −=−= . 

 
Fig. 5 Cross section of a ball bearing 
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for the ball-inner-race contact, and 
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for the ball-outer-race contact. 

IV. CONTACT STRESS AND DEFORMATIONS 
When two elastic solids are brought together under a load, a 

contact area develops, the shape and size of which depend on 
the applied load, the elastic properties of the materials, and the 
curvatures of the surfaces. For two ellipsoids in contact the 
shape of the contact area is elliptical, with a being the semi-
major axis in the y direction (transverse direction) and b being 
the semi-minor axis in the x direction (direction of motion). 

The elliptical eccentricity parameter, k, is defined as 
 

k = a/b. 

 
From [5], k can be written in terms of the curvature 

difference, Γ, and the elliptical integrals of the first and 
second kind, K and Ε, as 

 

( ) ( )
( )Γ−

Γ+−
=

1
12

E
EKkJ , 

where 

∫
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=

2/

0

2/1
2

2 sin111
π

ϕϕ d
k

K , 

∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=

2/

0

2/1
2

2 sin111
π

ϕϕ d
k

E . 

 
A one-point iteration method, which has been used 

successfully in the past [13], is used here, where 
 

kn+1 = J(kn). 
 
When the ellipticity parameter, k, the elliptic integrals of 

the first and second kinds, K and Ε, respectively, the normal 
applied load, Q, Poisson’s ratio, ν, and the modulus of 
elasticity, E, of the contacting solids are known, we can write 
the semi-major and -minor axes of the contact ellipse and the 
maximum deformation at the center of the contact, from the 
analysis of Hertz [14], as 

 
3/126
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where 

b

b

a

a

EE

E 22 11
2

υυ −
+

−
=′ . 

V. STATIC LOAD DISTRIBUTION UNDER CENTRIC THRUST 

LOAD 
Methods to calculate distribution of load among the balls 

and rollers of rolling bearings statically loaded can be found in 
various papers, [15]. The methods have been limited to, at 
most, three degrees of freedom in loading and demand the 
solution of a simultaneous nonlinear system of algebraic 
equations for higher degrees of freedom. Solution of such 
equations generally necessitates the use of a digital computer. 
In certain cases, however – for example, applications with 
pure radial, pure thrust or radial and thrust loading with 
nominal clearance – the simplified methods will probably 
provide sufficiently accurate calculational results. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:3, 2010

317

 

 

Having defined a simple analytical expression for the 
deformation in terms of load in the previous section, it is 
possible to consider how the bearing load is distributed among 
the rolling elements. Most rolling-element bearing 
applications involve steady-state rotation of either the inner or 
outer race or both; however, the speeds of rotation are usually 
not so great as to cause ball or roller centrifugal forces or 
gyroscopic moments of significant magnitudes. In analyzing 
the loading distribution on the rolling elements, it is usually 
satisfactory to ignore these effects in most applications. In this 
section the load deflection relationships for ball bearings are 
given, along with a specific load distribution consisting of a 
centric thrust load of statically loaded rolling elements. 

A. Load-Deflection Relationships for Ball Bearings 
From (14) it can be seen that for a given ball-raceway 

contact (point loading) 
 

2/3δKQ = ,         (15) 
where 

39
2
K
EREkK ′= π . 

 
The total normal approach between two raceways under 

load separated by a rolling element is the sum of the 
approaches between the rolling element and each raceway. 
Hence 

oin δδδ += . 
Therefore, 

2/3

3/23/2 /1/1
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

oi
n KK

K  

and 
2/3

nnKQ δ= .        (16) 

B. Ball Bearings under Centric Thrust Load 
Let a ball bearing with a number of balls, Z, symmetrically 

distributed about a pitch circle according to Fig. 6, to be 
subjected to a centric thrust load. Then, a relative axial 
displacement, δa, between the inner and outer ring raceways 
may be expected. 

Fig. 7 shows the positions of ball center and raceway 
groove curvature centers at any angular position ψ, before and 
after loading, whereas the curvature centers of the raceway 
grooves are fixed with respect to the corresponding raceway. 

From Fig. 7 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
= −

n

d

A
PA
δ

β
2/

cos 1          (17) 

and 
    ( ) fna AA ββδδ sinsin −+= .        (18) 

 
From (5) and (17), the total normal approach between two 

raceways at any angular position ψ, after the thrust load has 
been applied, can be written as 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1

cos
cos

β
β

δ f
n A .      (19) 

 

 
Fig. 6 Ball angular positions in the radial plane that is perpendicular 

to the bearing’s axis of rotation, Δψ = 2π/Z, ψj = 2π/Z(j−1) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Positions of ball center and raceway groove curvature centers 

at angular position ψ, with and without applied load 
 
From Fig. 7 and (19) it can be determined that s, the 

distance between the curvature centers of the inner and outer 
ring raceway grooves at any rolling element position ψ, is 
given by 

β
β

δ
cos

cos f
n AAs =+= .      (20) 

 
From (18) and (20) yields 

 

βf 

Initial position, inner 
raceway groove 
curvature center 
 

A 

Final position, 
inner raceway 
groove 
curvature center 

δa  

s = A + δn 
β 

A − Pd/2 
Outer raceway groove 
curvature center, fixed 
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δ f
a A .     (21) 

 
From (16) and (19) yields 

 

    
2/3

2/3 1
cos

cos
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

β
β f

n AKQ .    (22) 

 
If the external thrust load, Fa, is applied at the bearing’s axis 

of rotation then, for static equilibrium to exist 
 

    βsinQZFa = .          (23) 
 

Substitution of (22) into (23) yields 
 

    01
cos

cos
sin

2/3
2/3 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

β
β

β f
na KZAF .   (24) 

 
Equation (24) is a nonlinear equation with unknown β. 

Since Kn is a function of final contact angle, β, the equation 
must be solved iteratively to yield an exact solution for β.  

Taking Kn as a constant (24) may be solved numerically by 
the Newton-Raphson method. The equation to be satisfied 
iteratively is well know [5] 
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Equation (25) is satisfied when β’ – β is essentially zero. 

For each new value β, a new value Kn must be obtained, until 
there is no measurable difference in the Kn value. This can be 
achieved through an outer loop where the goal is to do the 
difference β” – β vanish, where β”, as well as β’, is an 
auxiliary variable. 

VI. NUMERICAL RESULTS 
The Newton-Rhapson method was chosen to solve the 

nonlinear equation (24). Chosen the rolling bearing, as input 
must be given the geometric parameters: di, do, D, Z, ri and ro, 
in accordance with the Figs. 2 and 4, and the elastic properties 
Ea, Eb, νa and νb. Next, the following parameters must be 
obtained: fi, fo, B, A, E’, de, Pd and βf. 

The interest here is to observe the behavior of an angular-
contact ball bearing under a known thrust load, which is to be 
applied statically to the geometric bearing centerline. Let Fa 
ranges from zero up to the last valid value in Newtons. 

Initially the values for β, β’ and β” were adopted as being 
equal βf. Then, for each new value of Fa ranging from zero, do 
β = fsβ, where fs is the shock factor. While the outer loop 
difference β”– β is greater than a minimal error, do β” = β and 
calculate the values: 1/R|i, 1/R|o, Γi, Γo, ki, ko, Ki, Ko, Ei, Eo, Ki, 
Ko and Kn in according to previous sections. Do β = fsβ. If the 

difference β”– β is lesser than the minimal error, a new thrust 
load value is acquired and the procedure is repeated up to the 
last valid thrust load value, when the program ends. 

For each iteration in the outer loop a new value for β’ is 
obtained in the inner loop. The new β’ value is compared with 
the old β and if the difference β’– β is greater than a minimal 
error a new iteration in the inner loop occurs. If the difference 
β’– β is lesser than the minimal error, the inner loop ends. 

To show an application of the theory developed in this 
work a numerical example is presented here. It was chosen the 
218 angular-contact ball bearing, which was also used by 
Harris [5]. Thus, the results generated here can be compared 
to a certain degree with the Harris results. The input data for 
this rolling bearing were the following: 
 

Inner raceway diameter,   di = 0.10279 m 
Outer raceway diameter,   do = 0.14773 m 
Ball diameter,       D = 0.02223 m 
Ball number,       Z = 16 
Inner groove radius,    ri = 0.01163 m 
Outer groove radius,   ro = 0.01163 m 
Modulus of elasticity for both balls and races, 

E = 2.075 × 1011 N/m2 
Poisson’s ratio for both balls and races,  υ = 0.3 

 
The remaining parameters has been calculated, yielding 
 
Inner race conformity,    fi = 0.523166891587944 
Outer race conformity,    fo = 0.523166891587944 
Total conformity ratio,    B = 0.046333783175888 
Initial curvature centers distance,    A = 0.00103 m 
Effective elastic modulus,  E´ = 228021978021.978 N/m2 

Bearing pitch diameter,   de = 0.12526 m 
Diametral clearance,     Pd = 0.00048 m 
Free-contact angle,     βf = 39.915616407992260o 

 
The initial estimates were the following: 

 
Contact angle,       β = β’ = β” = βf. 
 
Since it is the qualitative behavior of solutions that is the 

interest, the results are presented here in graphical form. 
The Fig. 8 shows the normal ball load, Q, as a function of 

the external thrust load, Fa. For a 17,800 N external thrust 
load Harris found the magnitude of 1,676 N for all balls (p. 
249). This work found the magnitude of 1,681.663561507027 
N for all balls for the same external thrust load. Assuming 
correct the results of this work, this means that Harris made an 
error of about –0.34% in the normal ball load determination. 

The Fig. 9 shows the contact angle, β, as a function of the 
external thrust load, Fa. While Harris has been found a contact 
angle magnitude of 41.6o for all balls and for a 17,800 N 
external thrust load (p. 249), this work found the magnitude of 
41.417986227161386o for all balls for the same external thrust 
load. This represents an error of about 0.44% in the contact 
angle determination. 
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The Fig. 10 shows the relative axial displacement between 
inner and outer ring raceways, δa, as a function of the external 
thrust load, Fa. While Harris has been found an axial 
displacement magnitude of 0.0386 mm (p. 249), this work 
found the magnitude of 0.0360110954004549 mm for the 
same external thrust load. This represents an error of about 
7.19% in the relative axial displacement determination. 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Thrust load,  Fa  [N]

N
or

m
al

 B
al

l L
oa

d,
    

Q
  [

N
]

Centric Thrust Load - 218 Angular-contact Ball Bearing

Ricci
1,682 N

Harris(2001)
1,676 N

 
Fig. 8 Normal ball load, Q, as a function of the thrust load, Fa. 
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Fig. 9 Contact angle, β, as a function of the thrust load, Fa 
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Fig. 10 Axial deflection, δa, as a function of the external thrust load, 

Fa 
 
The Figs. 11 and 12 show the distance between curvature 

centers, s, and the total ball deflection, δn, as functions of the 
external thrust load, Fa, respectively. The total normal ball 
deflection can be obtained by summing the maximum normal 

elastic compressions on the inner and outer races, δi and δo, or 
by subtracting A from s, once δn = s – A. 

The Figs. 13 and 14 show the behavior of the contact angle 
β and the outer loop auxiliary variable β” during the outer 
loop numerical procedure. The shock factor adopted was 
1.001 and every level, shown in detail, represents a constant 
value of the external thrust load. The procedure demanded 
814 outer loop iterations to cover the range from zero to 
20,000 N for the external thrust load, with steps of 100 N. The 
Figs. 15 and 16 show the behavior of the difference between 
the outer loop auxiliary variable β” and the contact angle β. 
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Fig. 11 Distance between curvature centers, s, as a function of the 

external thrust load, Fa 
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Fig. 12 Total ball deflection, δn, as a function of the external thrust 

load, Fa 
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Fig. 13 Convergence procedure of the contact angle β and the outer 

loop auxiliary variable β” 
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Fig. 14 Convergence procedure of the contact angle β and the outer 

loop auxiliary variable β” (detail) 
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Fig. 15 Convergence procedure of the difference between the outer 

loop auxiliary variable β” and the contact angle β 
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Fig. 16 Convergence procedure of the difference between the outer 

loop auxiliary variable β” and the contact angle β (detail) 
 

The Figs. 17 and 18 show the behavior of the contact angle 
β and the inner loop auxiliary variable β’ during the inner loop 
numerical procedure. The shock factor adopted was 1.001 and 
every level, shown in detail, represents a constant value of the 
external thrust load. The procedure demanded 3,879 inner 
loop iterations to cover the range from zero to 20,000 N for 
the external thrust load, with steps of 100 N. The Figs. 19 and 
20 show the behavior of the difference between the inner loop 
auxiliary variable β’ and the contact angle β. 

VII. CONCLUSION 
A known iterative computational procedure was used to 

internal normal ball loads calculation in statically loaded 
single-row, angular-contact ball bearings, subjected to a 
known thrust load which is applied in the inner ring at the 
geometric bearing center line. Aspects of the numerical 
procedure and the behavior of the convergence variables were 
discussed. Results for a 218 angular-contact ball bearing were 
compared with literature data. Precise applications, as for 
example, space applications, require a precise determination 
of the static loading. Models available in literature are 
approximate and often are not compatible with the desired 
degree of accuracy. This work can be extended to determine 
the loading on high-speed bearings where centrifugal and 
gyroscopic forces do not be discarded. The results of this 
work can be used in the accurate determination of the friction 
torque of the ball bearings, under any operating condition of 
temperature and speed. 
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Fig. 17 Convergence procedure of the contact angle β and the inner 

loop auxiliary variable β’ 
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Fig. 18 Convergence procedure of the contact angle β and the inner 

loop auxiliary variable β’ (detail) 
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Fig. 19 Convergence procedure of the difference between the inner 

loop auxiliary variable β’ and the contact angle β 
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Fig. 20 Convergence procedure of the difference between the inner 

loop auxiliary variable β’ and the contact angle β (detail) 
 

 


