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Some Geodesics in Open Surfaces Classified by
Clairaut’s Relation

Wongvisarut Khuangsatung and Pakkinee Chitsakul

Abstract—In this paper, we studied some properties of geodesic
on some open surfaces: Hyperboloid, Paraboloid and Funnel Surface.
Geodesic equation in the v-Clairaut parameterization was calculated
and reduced to definite integral. Some geodesics on some open
surfaces as mention above were classified by Clairaut’s relation.
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I. INTRODUCTION

GEODESICS are curves in surfaces that plays a role
analogous to straight line in the plane. Geometrically,

a geodesic in a surface is an embedded simple curve such
that the portion of the curve between any two points is the
shortest curve on the surface. It has been known that great
circles are geodesics on a sphere. A geodesic can be obtained
as the solution of the non-linear system of second-order
ordinary differential equation with the given points and its
tangent direction for the initial conditions. Reference [3] was
shown numerical solution of a geodesic by iterative method.
Generally, the geodesic equations are very complicated for
solving explicitly. However, there are two cases where the
solution can be reduced to definite integral. A solution of
geodesic equation on some surfaces of revolution may be
obtained from the v-Clairaut parameterization by reduced to
compute integrals [5],[8]. Moreover, families of geodesics are
classified by Clairaut’s relation [8]. In this paper, we studied
some properties of geodesic on some open surface: Hyper-
boloid, Paraboloid and Funnel Surface. Geodesic equation is
calculated in the v-Clairaut parameterization form which can
be reduced to definite integral and some geodesics on the open
surfaces are classified by Clairaut’s relation.

II. BASIC THEORY

We begin by recalling the basic theory about surface of
revolution and its geodesic, most of which can be found in
[1], [2], [6], [7], [8], [9] and [11]. Let D denote an open set
in the plane R2 . Typically, the open set D will be an open
disk or an open rectangle. Let

x : D → R3, (u, v) �→ (x(u, v), y(u, v), z(u, v))

denote a mapping of D into 3-space. If we fix v = v0 and
let u vary, then x(u, v0) depends on one parameter, that is
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a curve. It is called a u-parameter curve. Similarly, if we
fix u = u0 , the curve is a v-parameter curve. The tangent
vectors for the u -parameter and v-parameter curves are given
by differentiating the component functions of x with respect
to u and v respectively. For each point on surface S, let Tp(S)
denotes the tangent plane at p . Let α : [a, b] → S be a smooth
curve on a surface S. The first fundamental form for S is

ds2 = Edu2 + 2Fdudv +Gdv2, (1)

where E(u, v) = xu ·xu, F (u, v) = xu ·xv, G(u, v) = xv.·xv .

A. Surface of Revolution
Let I ⊆ R be an interval and let α(v) = (0, f(v), g(v)), v ∈

I be a regular parametrized plane curve with f(v) > 0. Then
the surface of revolution obtained by rotating α about the z-
axis is parametrized by

x = (f(v) cosu, f(v) sinu, g(v)), (2)

where v ∈ I, 0 ≤ u ≤ 2π.
The u-parameter curves are generating curve α called

meridians and The v -parameter curves are circles, called
parallels (Fig.1).

Fig. 1. Surface of revolution [7]

B. Geodesics
Definition 1: Let α : [a, b] → S be a smooth curve on a

surface S . The curve α is called a geodesic on S if α′′(s) is
orthogonal to the tangent space Tα(s)(S) for each s ∈ (a, b) .

That is, the acceleration α′ of a geodesic is orthogo-
nal to Tα(s)(S) , or orthogonal to the velocity α′ of α .
Thus, geodesics have constant speed, since differentiation of
‖α′‖2 = α′ · α′ gives 2α′ · α′′ = 0

Theorem 1: Let α(s) = x(u1(s), u2(s)) be a smooth curve
on a surface S . Then α is a geodesic if and only if α satisfies
the following differential equations

u′′
i (s) +

2∑

j,k=1

Γk
ij(u1(s), u2(s))u

′
j(s)u

′
k(s) = 0, (i = 1, 2).

(3)
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Let u1 = u and u2 = v. That is, the geodesic equations (3)
can be simplified to

u′′ + Γ1
11(u

′)2 + 2Γ1
12u

′v′ + Γ1
22(v

′)2 = 0, (4)

v′′ + Γ2
11(u

′)2 + 2Γ2
12u

′v′ + Γ2
22(v

′)2 = 0, (5)

where the coordinate system (u, v) = (u(s), v(s)) is or-
thogonal, i.e.,F (u, v) = 0 . Then, the Christoffel symbols
Γi
jk(i, j, k = 1, 2) is given by

Γ1
11 =

Eu

2E
,Γ1

12 =
Ev

2E
,Γ1

22 =
−Gu

2E
, (6)

Γ2
11 =

−Ev

2G
,Γ2

12 =
Gu

2G
,Γ2

22 =
Gv

G
. (7)

By replacing (6) into (4) and (7) into (5) , a geodesic can be
calculated by the system of non-linear differential equations :

u′′ +
Eu

2E
(u′)2 + 2

Ev

2E
u′v′ − Gu

2E
(v′)2 = 0, (8)

v′′ − Ev

2G
(u′)2 + 2

Gu

2G
u′v′ +

Gv

G
(v′)2 = 0, (9)

C. Clairaut Parametrization

The main classical tool used to get qualitative information
about geodesics on surface of revolution is the Clairaut’s
relation. We say that an orthogonal patch x(u, v) is a v -
Clairaut parametrization if Eu = Gu = 0 Thus, the geodesic
equation with v-Clairaut parametrization is the system

u′′ +
Ev

2E
u′v′ = 0, (10)

v′′ − Ev

2G
(u′)2 +

Gv

G
(v′)2 = 0, (11)

Theorem 2: (Clairaut’s relation) Let x : D → S be v-
Clairaut parametrization and let α(s) = x(u(s), v(s)) be a
geodesic on S . If θ is the angle from xu to α′ , then

√
E cos θ = c, (12)

where c is called Clairaut’s constant.
In general, the geodesic equation is difficult to solve explic-

itly. However, there are important cases where their solutions
can be reduced to definite integrals. Thus, Geodesics equation
for v-Clairaut parametrization with single integral is

u(v) = ±
∫ v

v0

c
√
G√

E
√
E − c2

dv. (13)

We now recall two important classes of geodesics on surface
of revolution.

Theorem 3: For a surface of revolution having
parametrization x(u, v) = (f(v) cosu, f(v) sinu, g(v)),
any meridian is a geodesic and a parallel is a geodesic if
and only if f ′(v0) = 0.

In other words, a necessary condition for a parallel of a
surface of revolution to be a geodesic is that such a parallel
is generated by the rotation of a point on the generating curve
where the tangent is parallel to the axis of revolution. (Fig.2)

Fig. 2. Some properties of geodesic on surface of revolution [7]

III. THE MAIN RESULTS

A. Geodesic on Hyperboloid

The Hyperboloid [12] (also called a ”Hyperboloid of one
sheet”) is a surface of revolution that can be obtained by
rotating a hyperbola around an z-axis. Hyperboloid can be
written in parameterization by

x(u, v) = (a
√

1 + v2 cosu, a
√

1 + v2 sinu, bv), (14)

where u ∈ [0, 2π), v > 0 and a > 0. The coefficients E, F
and G of the first fundamental form are given by

E = a2(1 + v2), F = 0, G =
a2v2

1 + v2
+ b2, (15)

So that the first fundamental form of Hyperboloid is

ds2 = a2(1 + v2)du2 + (
a2v2

1 + v2
+ b2)dv2. (16)

Note that Eu = Gu = 0 . Surfaces giving by parametrization
with these properties are v-Clairaut parametrization. From (10)
and (11), geodesic equation on Hyperboloid with v-Clairaut
parametrization is satisfied by the following differential equa-
tions:

u′′ +
2v

1 + v2
u′v′ = 0, (17)

v′′− a2v(1 + v2)

a2v2 + b2(1 + v2)
u′2+

a2v

(1 + v2)(a2v2b2(1 + v2))
v′2 = 0.

(18)
From (13), we obtain a single integral which serves to char-

acterize geodesies for a v-Clairaut parametrization. Thus, the
geodesics equation on Hyperboloid for v-Clairaut parametriza-
tion with single integral may obtain from the following equa-
tion

u(v) = ±
∫ v

v0

c
√

a2v2

1+v2 + b2

√
a2(1 + v2)

√
a2(1 + v2)− c2

dv. (19)

Hence, we classify some geodesics on the Hyperboloid by
using Clairaut’s relation and Theorem 3, thus

a
√

(1 + v2) cos θ = c. (20)

By assuming that v is very small number, therefore we will
consider into 3 cases:
1. Meridians on the Hyperboloid are geodesic which satisfies
c = 0.

Let α(s) = x(u(s), v(s)) be a meridian on the Hyperboloid.
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Since θ is the angle from xu to α′ , then θ = π/2 . By
putting the meridian θ = π/2 in Clairaut’s relation, we have
a
√

(1 + v2) cos(π/2) = c. Since (Theorem 3.) any meridian is
a geodesic, meridians on the Hyperboloid are geodesic (Fig3).

Fig. 3. Meridians on the Hyperboloid are geodesic.

2. Parallel on Hyperboloid at v0 = 0 is geodesic which
satisfies c = a .
Let α(s) = x(u(s), v(s)) be a parallel on the Hyperboloid.
Since θ is the angle from xu to α′ , then θ = 0 . We
obtain the parallel θ = 0 in Clairaut’s relation, we have
c = a

√
1 + v2 Moreover, (Theorem 3.) a parallel is a geodesic

if and only if f ′(v0) = 0 Since f(v) = a
√
1 + v2 then

f ′(v) = 2av/
√
1 + v2. Thus f ′(v0) = 0 where v0 = 0.

Therefore, the parallel on Hyperboloid at is geodesic which
satisfies c = a (Fig4).

Fig. 4. Parallel on Hyperboloid at v0 = 0 is geodesic which satisfies c=a.

3. Other geodesics satisfy |c| < |a| .
In this case, the geodesic is not perpendicular to any meridians
which satisfy a

√
(1 + v2) cos θ = c. It is implies that |c| <

|a| . We show geodesics curve on a Hyperboloid by using
MATLAB [4], [10]. For example (Fig5), the starting point
(u, v) and the direction (du/ds, dv/ds) are given.

Fig. 5. Some geodesics on Hyperboloid.

With similarity to Hyperboloid, Paraboloid and Funnel
surface are considered.

B. Geodesic on Paraboloid
The Paraboloid [12] is a surface of revolution which is an

open surface where the generating curve intersects the axis of
rotation. A Paraboloid can be parameterized by

x(u, v) = (av cosu, av sinu, v2), (21)

where u ∈ [0, 2π), v > 0 and a > 0. The coefficients E, F
and G of the first fundamental form are given by

E = a2v2, F = 0, G = a2 + 4v2, (22)

So that the first fundamental form of Paraboloid is

ds2 = a2v2du2 + (a2 + 4v2)dv2. (23)

Note that Eu = Gu = 0 . Surfaces giving by parametriza-
tion with these properties are v-Clairaut parametrization. From
(10) and (11), geodesic equation on Paraboloid with v-Clairaut
parametrization is satisfied by the following differential equa-
tions:

u′′ +
2

v
u′v′ = 0, (24)

v′′ − a2v

a2 + 4v2
u′2 +

4v

a2 + 4v2
v′2 = 0. (25)

Geodesics equation on Paraboloid for v-Clairaut
parametrization with single integral may obtain from
the following equation

u(v) = ±
∫ v

v0

c
√
a2 + 4v2

av
√
a2v2 − c2

dv. (26)

Clairaut’s relation of Paraboloid is

av cos θ = c. (27)

By assuming that v is very small number, therefore we will
consider into 3 cases:

1. Meridians on the Paraboloid are geodesics which satisfies
c = 0.

Fig. 6. Meridians on the Paraboloid are geodesics.

2. Parallel on Paraboloid at v0 = 0 is not geodesic which
satisfies c = a since f ′(v0) = a 	= 0 . 3. Other geodesics
satisfy |c| < |a| .

Fig. 7. Meridians on the Paraboloid are geodesics.
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C. Geodesic on Funnel Surface

The Funnel Surface [12] is a surface of revolution of the
curve ln v which is an open surface where the generating curve
do not intersect the axis of rotation. A Funnel Surface can be
parameterized by

x(u, v) = (av cosu, av sinu, ln v), (28)

where u ∈ [0, 2π), v > 0 and a > 0. The coefficients E, F
and G of the first fundamental form are given by

E = a2v2, F = 0, G = a2 +
1

v2
, (29)

So that the first fundamental form of Funnel Surface is

ds2 = a2v2du2 + (a2 +
1

v2
)dv2. (30)

Note that Eu = Gu = 0 . Surfaces giving by parametriza-
tion with these properties are v-Clairaut parametrization. From
(10) and (11), geodesic equation on Funnel Surface with v-
Clairaut parametrization is satisfied by the following differen-
tial equations:

u′′ +
2

v
u′v′ = 0, (31)

v′′ +
a2v3

a2v2 + 1
u′2 − 1

v(a2v2 + 1)
v′2 = 0. (32)

Geodesics equation on Funnel Surface for v-Clairaut
parametrization with single integral may obtain from the
following equation

u(v) = ±
∫ v

v0

c
√
a2v2 + 1

av2
√
a2v2 − c2

dv. (33)

Clairaut’s relation of Funnel Surface is

av cos θ = c. (34)

By assuming that v is very small number, therefore we will
consider into 3 cases:

1. Meridians on the Funnel Surface are geodesics which
satisfies c = 0.

Fig. 8. Meridians on the Funnel Surface are geodesics.

2. Parallel on Funnel Surface at v0 = 0 is not geodesic
which satisfies c = a since f ′(v0) = a 	= 0 .
3. Other geodesics satisfy |c| < |a| (Fig.9).

Fig. 9. Some geodesics on Funnel.

IV. CONCLUSION

We show how to compute the geodesics on some given
surfaces for v-Clairaut parametrization in definite integral. We
find that if there exists a point on the surface that cut the
rotating exist (Paraboloid) or almost cut the rotating exist
(Funnel Surface), then all parallels are not geodesic as shown
in TABLE I.

TABLE I
THE CLASSIFICATION OF GEODESIC BY CLAIRAUT’S RELATION

Surface of Revolution Meridian Parallel Other geodesics
Hyperboloid c = 0 c = a |c| < |a|
Paraboloid c = 0 - |c| < |a|

Funnel Surface c = 0 - |c| < |a|
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