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Delay-dependent 𝐻∞ performance analysis for
Markovian jump systems with Time-varying delays

Yucai Ding, Hong Zhu, Shouming Zhong, and Yuping Zhang

Abstract—This paper considers 𝐻∞ performance for Markovian
jump systems with Time-varying delays. The systems under consid-
eration involve disturbance signal, Markovian switching and time-
varying delays. By using a new Lyapunov-Krasovskii functional and
a convex optimization approach, a delay-dependent stability condition
in terms of linear matrix inequality (LMI) is addressed, which
guarantee asymptotical stability in mean square and a prescribed 𝐻∞
performance index for the considered systems. Two numerical exam-
ples are given to illustrate the effectiveness and the less conservatism
of the proposed main results. All these results are expected to be of
use in the study of stochastic systems with time-varying delays.

Keywords—𝐻∞ performance; Markovian switching; Delay-
dependent stability; Linear matrix inequality (LMI)

I. INTRODUCTION

STOCHASTIC modeling has come to play an important
role in many branches of science and industry. Markovian

jump systems (MJSs) are a special class of stochastic hybrid
systems. Loosely speaking, a MJS is a hybrid system with
state vector that has two components 𝑥(𝑡) and 𝑟(𝑡). The first
one is in general referred to as the state, and the second
one is regarded as the mode. In its operation, the jump
system will switch from one mode to another in a random
way, based on a Markovian chain with finite state space
𝒮 = {1, 2, ⋅ ⋅ ⋅ , 𝑁} [1]. Many dynamical systems subject to
random abrupt variations can be modeled by MJS such as
a manufacturing system, a networked control system (NCS)
etc. Due to their extensive applications in many files, much
research has investigated such a class of stochastic systems
and lots of significant results have been reported. For more
details on such systems we refer the readers to [2-4] and the
references therein.

With the maturity of 𝐻∞ control theory, many works have
been devoted to 𝐻∞ control of time delayed Markovian jump
linear systems. Based on the stochastic version of bounded
real lemma, sufficient conditions for the existence of 𝐻∞
controllers for continuous stochastic systems were presented
in terms of linear matrix inequalities in the work [5-10].

The stability and stabilization conditions for stochastic
systems classified into two types: the one is delay-independent
conditions which are applicable to delays of arbitrary size; the
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other is delay-dependent conditions which include information
on the size of delays. Since the stability of systems depends ex-
plicitly on the time-delay, the delay-independent conditions are
more conservative, especially for small delays. Compared with
delay-independent conditions, the delay-dependent conditions
are usually less conservative. It is worth pointing out that re-
cent research efforts in the study of delay systems are towards
developing less conservative delay-dependent results. Delay-
dependent stability and 𝐻∞ control results were presented
by resorting to some bounding techniques for some cross
terms and using model transformation to the original delay
system. It is worth pointing out that recent research efforts
in the study of delay systems are towards developing less
conservative delay-dependent results[5]. It has been shown that
the conservatism in the existing delay-dependent results are
mainly caused by using model transformation to the original
delay system or resorting to bounding techniques for some
cross terms. Recently, some new methods have been provided
to reduce the conservative without using model transformation,
such as convex analysis method[11-13], delay decomposition
approach [13,14].

This article deals with the 𝐻∞ performance of Markovian
jump systems with time-varying delays. The method used
is based on Lyapunov-Krasovskii approach. Novel delay-
dependent sufficient conditions are obtained to guarantee the
considered systems are asymptotically stable in mean square
and guarantee a prescribed 𝐻∞ performance index in terms of
linear matrix inequality. The presented results are derived by
exploiting a new Lyapunov-Krasovskii functional and a convex
optimization approach. Two numerical examples are provided
to show the effectiveness of the proposed results.

II. SYSTEM DESCRIPTION AND DEFINITIONS

Consider the following stochastic hybrid systems:
.
𝑥(𝑡) =𝐴(𝑟𝑡)𝑥(𝑡) +𝐴𝑑(𝑟𝑡)𝑥(𝑡− 𝜏(𝑡))

+𝐷1(𝑟𝑡)𝜔(𝑡) (1a)
𝑧(𝑡) =𝐶(𝑟𝑡)𝑥(𝑡) + 𝐶𝑑(𝑟𝑡)𝑥(𝑡− 𝜏(𝑡))

+𝐷2(𝑟𝑡)𝜔(𝑡) (1b)
𝑥(𝑡) =𝜙(𝑡), 𝑡 ∈ [−𝜏2, 0], (1c)

where 𝑥(𝑡) ∈ R𝑛 is the state vector; 𝜔(𝑡) is the noise signal
which is assumed to be an arbitrary signal in ℒ2[0 ∞); 𝜙(𝑡) is
a compatible vector-valued initial function defined on [−𝜏2, 0];
𝐴(𝑟𝑡), 𝐴𝑑(𝑟𝑡), 𝐷1(𝑟𝑡), 𝐶(𝑟𝑡), 𝐶𝑑(𝑟𝑡) and 𝐷(𝑟𝑡) are real
constant matrices with appropriate dimensions. {𝑟𝑡, 𝑡 ⩾ 0}
is a continuous-time Markovian process with right continuous
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trajectories and taking values in a finite set 𝒮 = {1, 2, ⋅ ⋅ ⋅ , 𝑁}
with transition probability matrix Π = 𝜋ij given by

𝑃𝑟{𝑟𝑡+ℎ = 𝑗∣𝑟𝑡 = 𝑖} =

{
𝜋𝑖𝑗ℎ+ 𝑜(ℎ), 𝑖 ∕= 𝑗,

1 + 𝜋𝑖𝑖ℎ+ 𝑜(ℎ), 𝑖 = 𝑗,

where ℎ > 0 and lim
ℎ→0

𝑜(ℎ)

ℎ
= 0; 𝜋𝑖𝑗 ⩾ 0 for 𝑖 ∕= 𝑗 is the

transition rate from mode 𝑖 at time 𝑡 to mode 𝑗 at time 𝑡+ ℎ

and 𝜋𝑖𝑖 = −
𝑁∑

𝑗=1,𝑗 ∕=𝑖
𝜋𝑖𝑗 . In system (1), 𝜏(𝑡) denotes the time-

varying delay when the mode is in 𝑟𝑡 and satisfies

0 ⩽ 𝜏(𝑡) ⩽ 𝜏,
.
𝜏(𝑡) ⩽ 𝜇 < 1, (2)

where 𝜏1 and 𝜏2 are the time delay lower and upper bounds,
respectively.

For simplicity, for each possible 𝑟𝑡 = 𝑖, 𝑖 ∈ 𝒮 , a matrix
𝑅(𝑟𝑡) will be denoted by 𝑅𝑖, for example, 𝐴(𝑟𝑡) is denoted
by 𝐴𝑖, 𝐴𝑑(𝑟𝑡) is denoted by 𝐴𝑑𝑖, and so on.

III. MAIN RESULTS

1) Stability analysis: In this section, We first propose a
delay-dependent sufficient condition for stability of system
(1𝑎) with 𝜔(𝑡) = 0.

Theorem 1. Given scalars 𝜏 , 𝜇, the free nominal system (1𝑎)
is asymptotically stable in mean square for any time delay
𝜏(𝑡) satisfying (2), if there exist symmetric positive-definite
matrices𝑃𝑖, 𝑄1𝑖, 𝑄2, 𝑄3, 𝑅 and such that for every 𝑖 ∈ 𝒮,

Φ11 =

[
Φ1 − 𝜏

2𝑁∗ −( 𝜏2 )
2𝑄2

]
< 0, (3a)

Φ12 =

[
Φ1 − 𝜏

2𝐿∗ −( 𝜏2 )
2𝑄2

]
< 0, (3b)

Φ21 =

[
Φ2 − 𝜏

2𝑈∗ −( 𝜏2 )
2𝑄3

]
< 0, (3c)

Φ22 =

[
Φ2 − 𝜏

2𝑉∗ −( 𝜏2 )
2𝑄3

]
< 0, (3d)

𝑁∑
𝑗=1

𝜋𝑖𝑗𝑄1𝑗 < 𝑅, (3e)

[
𝑋11 𝑋12

∗ 𝑋22

]
> 0, (3f)

where

Φ1 =

⎡
⎢⎢⎢⎢⎣

Π11
1 Π12

1 Π13
1 𝐿𝑇4 Π15

1

∗ Π22
1 Π23

1 Π24
1 Π25

1

∗ ∗ Π33
1 Π34

1 −𝑁𝑇
5

∗ ∗ ∗ −𝑋22 −𝑄3 0
∗ ∗ ∗ ∗ Π55

1

⎤
⎥⎥⎥⎥⎦

Φ2 =

⎡
⎢⎢⎢⎢⎣

Π11
2 Π12

2 Π13
2 −𝑈1 Π15

2

∗ Π22
2 Π23

2 Π24
2 Π25

2

∗ ∗ Π33
2 Π34

2 𝑉 𝑇
5

∗ ∗ ∗ Π44
2 −𝑈𝑇

5

∗ ∗ ∗ ∗ Π55
2

⎤
⎥⎥⎥⎥⎦

Π11
1 =𝑃𝑖𝐴𝑖 +𝐴𝑇𝑖 𝑃𝑖 +

𝑁∑
𝑗=1

𝜋𝑖𝑗𝑃𝑗 +𝑋11 +𝑄1𝑖 + 𝜏𝑅

+𝐴𝑇𝑖 𝑇
𝑇
1𝑖 + 𝑇1𝑖𝐴𝑖 + 𝐿1 + 𝐿𝑇1 ,

Π12
1 =𝑃𝑖𝐴𝑑𝑖 + 𝑇1𝑖𝐴𝑑𝑖 +𝑁1 − 𝐿1 + 𝐿𝑇2 ,

Π13
1 =𝑋12 −𝑁1 + 𝐿𝑇3 , Π

15
1 = 𝐴𝑇𝑖 𝑇

𝑇
2𝑖 + 𝐿𝑇5 − 𝑇1𝑖,

Π22
1 =− (1− 𝜇)𝑄1𝑖 − 𝐿2 − 𝐿𝑇2 +𝑁2 +𝑁𝑇

2 ,

Π23
1 =−𝑁2 − 𝐿𝑇3 +𝑁𝑇

3 , Π24
1 = 𝑁𝑇

4 − 𝐿𝑇4 ,

Π25
1 =𝐴𝑇𝑑𝑖𝑇

𝑇
2𝑖 +𝑁𝑇

5 − 𝐿𝑇5 ,

Π33
1 =𝑋22 −𝑋11 −𝑁3 −𝑁𝑇

3 −𝑄3,

Π34
1 =−𝑋12 −𝑁𝑇

4 +𝑄𝑇
3 ,

Π55
1 =(

𝜏

2
)2(𝑄2 +𝑄3)− 𝑇2𝑖 − 𝑇𝑇2𝑖 ,

Π11
2 =𝑃𝑖𝐴𝑖 +𝐴𝑇𝑖 𝑃𝑖 +

𝑁∑
𝑗=1

𝜋𝑖𝑗𝑃𝑗 +𝑋11 +𝑄1𝑖 + 𝜏𝑅

+𝐴𝑇𝑖 𝑇
𝑇
1𝑖 + 𝑇1𝑖𝐴𝑖 −𝑄2,

Π12
2 =𝑃𝑖𝐴𝑑𝑖 + 𝑇1𝑖𝐴𝑑𝑖 + 𝑈1 − 𝑉1,

Π13
2 =𝑋12 + 𝑉1 +𝑄2, Π

15
2 = 𝐴𝑇𝑖 𝑇

𝑇
2𝑖 − 𝑇𝑇1𝑖 ,

Π22
2 =− (1− 𝜇)𝑄1𝑖 + 𝑈2 + 𝑈𝑇

2 − 𝑉2 − 𝑉 𝑇
2 ,

Π23
2 =𝑈𝑇

3 + 𝑉2 − 𝑉 𝑇
3 , Π24

2 = −𝑈2 − 𝑉 𝑇
4 + 𝑈𝑇

4 ,

Π25
2 =𝐴𝑇𝑑𝑖𝑇

𝑇
2𝑖 + 𝑈𝑇

5 − 𝑉 𝑇
5 ,

Π33
2 =𝑋22 −𝑋11 + 𝑉3 + 𝑉 𝑇

3 −𝑄2,

Π34
2 =−𝑋12 − 𝑈3 + 𝑉 𝑇

4 ,

Π44
2 =−𝑋22 − 𝑈4 − 𝑈𝑇

4 ,

Π55
2 =(

𝜏

2
)2(𝑄2 +𝑄3)− 𝑇2𝑖 − 𝑇𝑇2𝑖 ,

Proof. Consider a Lyapunov-Krasovskii functional
candidate for the free nominal system as

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 + 𝑉5 (5)

where

𝑉1 =𝑥𝑇 (𝑡)𝑃 (𝑟𝑡)𝑥(𝑡),

𝑉2 =

∫ 𝑡

𝑡−ℎ
2

[
𝑥(𝑠)

𝑥(𝑠− ℎ
2 )

]𝑇 [
𝑋11 𝑋12

∗ 𝑋22

] [
𝑥(𝑠)

𝑥(𝑠− ℎ
2 )

]
d𝑠,

𝑉3 =

∫ 𝑡

𝑡−𝜏(𝑡)
𝑥𝑇 (𝑠)𝑄1(𝑟𝑡)𝑥(𝑠)d𝑠,

𝑉4 =
𝜏

2

∫ 0

− 𝜏
2

∫ 𝑡

𝑡+𝜃

.
𝑥
𝑇
(𝑠)𝑄2

.
𝑥(𝑠)d𝑠d𝜃,

+
𝜏

2

∫ − 𝜏
2

−𝜏

∫ 𝑡

𝑡+𝜃

.
𝑥
𝑇
(𝑠)𝑄3

.
𝑥(𝑠)d𝑠d𝜃,

𝑉5 =

∫ 0

−𝜏

∫ 𝑡

𝑡+𝜃

𝑥𝑇 (𝑠)𝑅𝑥(𝑠)d𝑠d𝜃.

Let ℒ be the weak infinitesimal generator of the random
process {𝑥𝑡, 𝑟𝑡}. Then, for each 𝑖 ∈ 𝒮 , we have

ℒ𝑉 = ℒ𝑉1 + ℒ𝑉2 + ℒ𝑉3 + ℒ𝑉4 + ℒ𝑉5, (6)

where

ℒ𝑉1 =2𝑥𝑇 (𝑡)𝑃𝑖(𝐴(𝑡, 𝑟𝑡)𝑥(𝑡) +𝐴𝑑(𝑡, 𝑟𝑡)𝑥(𝑡− 𝜏(𝑡)))

+ 𝑥𝑇 (𝑡)

⎛
⎝ 𝑁∑
𝑗=1

𝜋𝑖𝑗𝑃𝑗

⎞
⎠𝑥(𝑡),
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ℒ𝑉2 =

[
𝑥(𝑡)

𝑥(𝑡− 𝜏
2 )

]𝑇 [
𝑋11 𝑋12

∗ 𝑋22

] [
𝑥(𝑡)

𝑥(𝑡− 𝜏
2 )

]

−
[

𝑥(𝑡− 𝜏
2 )

𝑥(𝑡− 𝜏)

]𝑇 [
𝑋11 𝑋12

∗ 𝑋22

] [
𝑥(𝑡− 𝜏

2 )
𝑥(𝑡− 𝜏)

]
,

ℒ𝑉3 ≤
∫ 𝑡

𝑡−𝜏(𝑡)
𝑥𝑇 (𝑠)

⎛
⎝ 𝑁∑
𝑗=1

𝜋𝑖𝑗𝑄1𝑗

⎞
⎠𝑥(𝑠)d𝑠+ 𝑥𝑇 (𝑡)𝑄1𝑖𝑥(𝑡)

− (1− 𝜇)𝑥𝑇 (𝑡− 𝜏(𝑡))𝑄1𝑖𝑥(𝑡− 𝜏(𝑡)),

ℒ𝑉4 =(
𝜏

2
)2
.
𝑥
𝑇
(𝑡)(𝑄2 +𝑄3)

.
𝑥(𝑡)− 𝜏

2

∫ 𝑡

𝑡− 𝜏
2

.
𝑥
𝑇
(𝑠)𝑄2

.
𝑥(𝑠)d𝑠

− 𝜏

2

∫ 𝑡− 𝜏
2

𝑡−𝜏

.
𝑥
𝑇
(𝑠)𝑄3

.
𝑥(𝑠)d𝑠,

ℒ𝑉5 =𝜏𝑥𝑇 (𝑡)𝑅𝑥(𝑡)−
∫ 𝑡

𝑡−𝜏
𝑥𝑇 (𝑠)𝑅𝑥(𝑠)d𝑠

≤𝜏𝑥𝑇 (𝑡)𝑅𝑥(𝑡)−
∫ 𝑡

𝑡−𝜏(𝑡)
𝑥𝑇 (𝑠)𝑅𝑥(𝑠)d𝑠.

To obtain the main results, we consider the following two
cases: 0 ≤ 𝜏(𝑡) ≤ 𝜏

2 and 𝜏
2 ≤ 𝜏(𝑡) ≤ 𝜏 .

When 0 ≤ 𝜏(𝑡) ≤ 𝜏
2 , we have

− 𝜏

2

∫ 𝑡− 𝜏
2

𝑡−𝜏

.
𝑥
𝑇
(𝑠)𝑄3

.
𝑥(𝑠)d𝑠

≤ −
[
𝑥(𝑡− 𝜏

2
)− 𝑥(𝑡− 𝜏)

]𝑇
𝑄3

[
𝑥(𝑡− 𝜏

2
)− 𝑥(𝑡− 𝜏)

]
,

and

− 𝜏

2

∫ 𝑡

𝑡− 𝜏
2

.
𝑥
𝑇
(𝑠)𝑄2

.
𝑥(𝑠)d𝑠

= −𝜏

2

∫ 𝑡−𝜏(𝑡)

𝑡− 𝜏
2

.
𝑥
𝑇
(𝑠)𝑄2

.
𝑥(𝑠)d𝑠

− 𝜏

2

∫ 𝑡

𝑡−𝜏(𝑡)

.
𝑥
𝑇
(𝑠)𝑄2

.
𝑥(𝑠)d𝑠

≤ −𝜏

2

(𝜏
2
− 𝜏(𝑡)

)
𝑓𝑇1 (𝑡)𝑄2𝑓1(𝑡)− 𝜏

2
𝜏(𝑡)𝑔𝑇1 (𝑡)𝑄2𝑔1(𝑡).

where

𝑓1(𝑡) =
1

𝜏
2 − 𝜏(𝑡)

∫ 𝑡−𝜏(𝑡)

𝑡− 𝜏
2

.
𝑥(𝑠)d𝑠,

𝑔1(𝑡) =
1

𝜏(𝑡)

∫ 𝑡

𝑡−𝜏(𝑡)

.
𝑥(𝑠)d𝑠

It is easy to see lim
𝜏(𝑡)→ 𝜏

2

𝑓1(𝑡) =
.
𝑥(𝑡− 𝜏

2
), lim
𝜏(𝑡)→0

𝑔1(𝑡) =
.
𝑥(𝑡).

Adding the following terms to (6)

0 =2𝜉𝑇 (𝑡)𝑁
[
𝑥(𝑡− 𝜏(𝑡))− 𝑥(𝑡− 𝜏

2
)− (

𝜏

2
− 𝜏(𝑡))𝑓1(𝑡))

]
,

0 =2𝜉𝑇 (𝑡)𝐿 [𝑥(𝑡)− 𝑥(𝑡− 𝜏(𝑡))− 𝜏(𝑡)𝑔1(𝑡))] ,

0 =2
[
𝑥𝑇 (𝑡)𝑇1𝑖 +

.
𝑥
𝑇
(𝑡)𝑇2𝑖

] [− .
𝑥(𝑡) +𝐴𝑖𝑥(𝑡)

+𝐴𝑑𝑖𝑥(𝑡− 𝜏(𝑡))] ,

where

𝜉𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡− 𝜏(𝑡)) 𝑥𝑇 (𝑡− 𝜏

2
) 𝑥𝑇 (𝑡− 𝜏)

.
𝑥
𝑇
(𝑡)],

𝑁 = [𝑁𝑇
1 𝑁𝑇

2 𝑁𝑇
3 𝑁𝑇

4 𝑁𝑇
5 ]𝑇

𝐿 = [𝐿𝑇1 𝐿𝑇2 𝐿𝑇3 𝐿𝑇4 𝐿𝑇5 ]
𝑇

Hence, we can obtain

ℒ𝑉 ≤ 𝜁(𝑡)𝑇Φ𝜁(𝑡)

where

Φ =

⎡
⎣ Φ1 −( 𝜏2 − 𝜏(𝑡))𝑁 −𝜏(𝑡)𝐿

∗ − 𝜏
2 (
𝜏
2 − 𝜏(𝑡))𝑄2 0

∗ ∗ − 𝜏
2 𝜏(𝑡)𝑄2

⎤
⎦ ,

𝜁𝑇 (𝑡) = [𝜉𝑇 (𝑡) 𝑓𝑇1 (𝑡) 𝑔𝑇1 (𝑡)].

It is easy to see Φ11 and Φ12 result from Φ𝜏(𝑡)→0 and
Φ𝜏(𝑡)→ 𝜏

2
, respectively, where we have deleted the zero row

and the zero column. Denoting: 𝜁𝑇1 (𝑡) = [𝜉𝑇 (𝑡) 𝑓𝑇1 (𝑡)] and
𝜁𝑇2 (𝑡) = [𝜉𝑇 (𝑡) 𝑔𝑇1 (𝑡)]. The LMIs (3𝑎) and (3𝑏) imply Φ < 0
because
𝜏
2 − 𝜏(𝑡)

𝜏
2

𝜁𝑇1 (𝑡)Φ11𝜁1(𝑡) +
𝜏(𝑡)
𝜏
2

𝜁𝑇2 (𝑡)Φ12𝜁2(𝑡) = 𝜁𝑇 (𝑡)Φ𝜁(𝑡).

and Φ is convex in 𝜏(𝑡) ∈ [0 𝜏
2 ].

When 𝜏
2 ≤ 𝜏(𝑡) ≤ 𝜏 , we have

−𝜏

2

∫ 𝑡− 𝜏
2

𝑡−𝜏

.
𝑥
𝑇
(𝑠)𝑄3

.
𝑥(𝑠)d𝑠

=− 𝜏

2

∫ 𝑡−𝜏(𝑡)

𝑡−𝜏

.
𝑥
𝑇
(𝑠)𝑄3

.
𝑥(𝑠)d𝑠

− 𝜏

2

∫ 𝑡− 𝜏
2

𝑡−𝜏(𝑡)

.
𝑥
𝑇
(𝑠)𝑄3

.
𝑥(𝑠)d𝑠

≤− 𝜏

2
(𝜏 − 𝜏(𝑡)) 𝑓𝑇2 (𝑡)𝑄3𝑓2(𝑡)

− 𝜏

2
(𝜏(𝑡)− 𝜏

2
)𝑔𝑇2 (𝑡)𝑄3𝑔2(𝑡),

and

−𝜏

2

∫ 𝑡

𝑡− 𝜏
2

.
𝑥
𝑇
(𝑠)𝑄2

.
𝑥(𝑠)d𝑠

≤−
[
𝑥(𝑡)− 𝑥(𝑡− 𝜏

2
)
]𝑇

𝑄2

[
𝑥(𝑡)− 𝑥(𝑡− 𝜏

2
)
]
,

where

𝑓2(𝑡) =
1

𝜏 − 𝜏(𝑡)

∫ 𝑡−𝜏(𝑡)

𝑡−𝜏

.
𝑥(𝑠)d𝑠,

𝑔2(𝑡) =
1

𝜏(𝑡)− 𝜏
2

∫ 𝑡− 𝜏
2

𝑡−𝜏(𝑡)

.
𝑥(𝑠)d𝑠

It is easy to see lim
𝜏(𝑡)→𝜏

𝑓2(𝑡) =
.
𝑥(𝑡 − 𝜏), lim

𝜏(𝑡)→ 𝜏
2

𝑔2(𝑡) =

.
𝑥(𝑡− 𝜏

2
). Adding the following terms to (6)

0 =2𝜉𝑇 (𝑡)𝑈 [𝑥(𝑡− 𝜏(𝑡))− 𝑥(𝑡− 𝜏)− (𝜏 − 𝜏(𝑡))𝑓2(𝑡))] ,

0 =2𝜉𝑇 (𝑡)𝑉
[
𝑥(𝑡− 𝜏

2
)− 𝑥(𝑡− 𝜏(𝑡))− (𝜏(𝑡)− 𝜏

2
)𝑔2(𝑡))

]
,

0 =2
[
𝑥𝑇 (𝑡)𝑇1𝑖 +

.
𝑥
𝑇
(𝑡)𝑇2𝑖

] [− .
𝑥(𝑡) +𝐴𝑖𝑥(𝑡)

+𝐴𝑑𝑖𝑥(𝑡− 𝜏(𝑡))] ,
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where

𝑈 = [𝑈𝑇
1 𝑈𝑇

2 𝑈𝑇
3 𝑈𝑇

4 𝑈𝑇
5 ]𝑇 ,

𝑉 = [𝑉 𝑇
1 𝑉 𝑇

2 𝑉 𝑇
3 𝑉 𝑇

4 𝑉 𝑇
5 ]𝑇 .

Hence, we can obtain

ℒ𝑉 ≤ 𝜁(𝑡)𝑇 Φ̄𝜁(𝑡)

where

Φ̄ =

⎡
⎣ Φ2 −(𝜏 − 𝜏(𝑡))𝑈 −(𝜏(𝑡)− 𝜏

2 )𝑉∗ − 𝜏
2 (𝜏 − 𝜏(𝑡))𝑄3 0

∗ ∗ − 𝜏
2 (𝜏(𝑡)− 𝜏

2 )𝑄3

⎤
⎦ ,

𝜁𝑇 (𝑡) = [𝜉𝑇 (𝑡) 𝑓𝑇2 (𝑡) 𝑔𝑇2 (𝑡)].

It is easy to see Φ21 and Φ22 result from Φ̄𝜏(𝑡)→ 𝜏
2

and
Φ̄𝜏(𝑡)→𝜏 , respectively, where we have deleted the zero row
and the zero column. Denoting: 𝜁𝑇1 (𝑡) = [𝜉𝑇 (𝑡) 𝑓𝑇2 (𝑡)] and
𝜁𝑇2 (𝑡) = [𝜉𝑇 (𝑡) 𝑔𝑇2 (𝑡)]. The LMIs (3𝑐) and (3𝑑) imply Φ̄ < 0
because

𝜏 − 𝜏(𝑡)
𝜏
2

𝜁𝑇1 (𝑡)Φ21𝜁1(𝑡) +
𝜏(𝑡)− 𝜏

2
𝜏
2

𝜁𝑇2 (𝑡)Φ22𝜁2(𝑡)

= 𝜁𝑇 (𝑡)Φ̄𝜁(𝑡).

and Φ̄ is convex in 𝜏(𝑡) ∈ [ 𝜏2 𝜏 ].
Hence, if (3𝑎)-(3𝑓) are satisfied , then the considering free

nominal system is guaranteed to be asymptotically stable in
mean square. This completes the proof.

2) 𝐻∞ performance: In the sequel, we shall deal with
the 𝐻∞ performance of the system (1). For this purpose, we
consider stochastic Lyapunov functional (5) and the following
index:

𝐽𝑧𝜔(𝑡) = ℰ
{∫ 𝑡

0

[
𝑧𝑇 (𝑠)𝑧(𝑠)− 𝛾2𝜔𝑇 (𝑠)𝜔(𝑠)

]
d𝑠
}
.

Under zero initial condition, it is easy to see that

𝐽𝑧𝜔(𝑡) ⩽ ℰ
{∫ 𝑡

0

[
𝑧𝑇 (𝑠)𝑧(𝑠)− 𝛾2𝜔𝑇 (𝑠)𝜔(𝑠) + ℒ𝑉 ] d𝑠

}

Theorem 2. Given scalars 𝜏 , 𝜇, 𝛾 > 0, (1) is asymptotically
stable in mean square with 𝛾-disturbance attenuation for any
time delay 𝜏(𝑡) satisfying (2), if there exist symmetric positive-
definite matrices𝑃𝑖, 𝑄1𝑖, 𝑄2, 𝑄3, 𝑅 and such that for every
𝑖 ∈ 𝒮 ,

⎡
⎢⎢⎣

Φ1 − 𝜏
2𝑁 𝒲1 𝒲2

∗ −( 𝜏2 )
2𝑄2 0 0

∗ ∗ −𝛾2𝐼 𝐷𝑇
2𝑖

∗ ∗ ∗ −𝐼

⎤
⎥⎥⎦ < 0, (7a)

⎡
⎢⎢⎣

Φ1 − 𝜏
2𝐿 𝒲1 𝒲2

∗ −( 𝜏2 )
2𝑄2 0 0

∗ ∗ −𝛾2𝐼 𝐷𝑇
2𝑖

∗ ∗ ∗ −𝐼

⎤
⎥⎥⎦ < 0, (7b)

⎡
⎢⎢⎣

Φ2 − 𝜏
2𝑈 𝒲1 𝒲2

∗ −( 𝜏2 )
2𝑄3 0 0

∗ ∗ −𝛾2𝐼 𝐷𝑇
2𝑖

∗ ∗ ∗ −𝐼

⎤
⎥⎥⎦ < 0, (7c)

⎡
⎢⎢⎣

Φ2 − 𝜏
2𝑉 𝒲1 𝒲2

∗ −( 𝜏2 )
2𝑄3 0 0

∗ ∗ −𝛾2𝐼 𝐷𝑇
2𝑖

∗ ∗ ∗ −𝐼

⎤
⎥⎥⎦ < 0, (7d)

𝑁∑
𝑗=1

𝜋𝑖𝑗𝑄1𝑗 < 𝑅, (7e)

[
𝑋11 𝑋12

∗ 𝑋22

]
> 0, (7f)

where

𝒲1 = [𝐷𝑇
1𝑖𝑃𝑖 0 0 0 0]𝑇 ,

𝒲2 = [𝐶𝑖 𝐶𝑑𝑖 0 0 0]𝑇 .

Proof. By Theorem 1 and Lemma 1, the desired results can
be obtained.

IV. NUMERICAL EXAMPLES

In this section, some numerical examples will be presented
to show the validity and the advantages of the main results
derived above. In the following two examples, we assume
the transition probability matrix Π is given by the following
expression:

Π =

[ −𝜋11 𝜋11

𝜋22 −𝜋22

]
.

Example 1. Let us consider the Markovian jump time-delay
system with the following parameters, which is borrowed
from [15].
Mode 1

𝐴1 =

[ −3.4888 0.8057
−0.6451 3.2684

]
,

𝐴𝑑1 =

[ −0.8620 −1.2919
−0.6841 −2.0729

]
.

Mode 2

𝐴2 =

[ −2.4898 0.2895
1.3396 −0.0211

]
,

𝐴𝑑2 =

[ −2.8306 0.4978
−0.8436 −1.0115

]
.

To compare the stochastic stability condition in [15], we
choose 𝜋22 = 0.8, 𝜇 = 0.9. Using Theorem 1 of this
paper, the allowable upper bounder 𝜏2 for different 𝜋11 can
be found in Table 1, which show that our result is less
conservative. For simulation purposes, let the initial condition
𝑥(0) = [−0.5 0.5]𝑇 and 𝜏 = 0.5586. Fig.1 and Fig.2 show
the simulation results of state 𝑥(𝑡) of Mode 1 and Mode 2,
respectively.

Table 1: Comparisons of max. allowed 𝜏 .
𝜋11 −0.1 −0.3 −0.5 −0.7 −0.9
[5] 0.4021 0.4010 0.4001 0.3993 0.3987
[15] 0.4252 0.4250 0.4248 0.4246 0.4242

This paper 0.5586 0.5548 0.5520 0.5497 0.5479

Example 2. Let us consider the Markovian jump time-delay
system with the following parameters.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:3, 2011

393

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time[s]

Sta
te 

res
po

ns
e

x
1

x
2

Mode 1

𝐴1 =

[ −3.4888 0.8057
−0.6451 3.2684

]
,

𝐴𝑑1 =

[ −0.8620 −1.2919
−0.6841 −2.0729

]
,

𝐷11 =
[
0.0403 0.6771

]𝑇
,

𝐶1 =
[ −0.3375 −0.2959

]
,

𝐶𝑑1 =
[
0 0

]
,

𝐷21 = 0.1184;

Mode 2

𝐴2 =

[ −2.4898 0.2895
1.3396 −0.0211

]
,

𝐴𝑑2 =

[ −2.8306 0.4978
−0.8436 −1.0115

]
,

𝐷12 =
[
0.5689 −0.2556

]𝑇
,

𝐶2 =
[ −1.4751 −0.2340

]
,

𝐶𝑑2 =
[
0 0

]
,

𝐷22 = 0.3148.

In this example, the parameters are given by 𝜇 = 0.8 and
𝜋22 = 0.8, For different 𝜋11, Table 2 gives the maximum value
of 𝜏 ensuring the asymptotically stable in mean square for the
considered systems with 𝐻∞ performance 𝛾 = 2. Next, we fix
𝜋11 = 0.3 and the minimum 𝐻∞ performance 𝛾 for different
𝜏 can be obtained in Table 3.

Table 2: The max. allowed 𝜏 for different 𝜋11.
𝜋11 −0.1 −0.3 −0.5 −0.7 −0.9
𝜏𝑚𝑎𝑥 0.523 0.521 0.520 0.519 0.518

Table 3: The min. allowed 𝛾 for different 𝜏 .
𝜏 0.1 0.2 0.3 0.4 0.5

𝛾𝑚𝑖𝑛 0.3149 0.3149 0.3149 0.3778 1.2509

V. CONCLUSION

In this paper, the asymptotical stability and 𝐻∞
performance for Markovian jump systems with Time-varying
delays have been investigated. By using the Lyapunov-
Krasovskii functional and a convex optimization approach,
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novel delay-dependent sufficient conditions are obtained to
guarantee the considered systems are asymptotically stable
in mean square and guarantee a prescribed 𝐻∞ performance
index in terms of linear matrix inequality. The numerical
examples demonstrate the effectiveness of the given methods.
The foregoing results have the potential to be useful for the
study of stochastic systems with Markovian jump parameters
and time-varying delays.
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