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Iterative solutions to some linear matrix equations
Jiashang Jiang, Hao Liu, Yongxin Yuan

Abstract—In this paper the gradient based iterative algorithms are
presented to solve the following four types linear matrix equations: (a)
AXB = F ; (b) AXB = F, CXD = G; (c) AXB = F s. t. X =
XT ; (d) AXB+CY D = F, where X and Y are unknown matrices,
A,B,C,D, F,G are the given constant matrices. It is proved that if
the equation considered has a solution, then the unique minimum
norm solution can be obtained by choosing a special kind of initial
matrices. The numerical results show that the proposed method is
reliable and attractive.

Keywords—matrix equation, iterative algorithm, parameter estima-
tion, minimum norm solution.

I. INTRODUCTION

MATRIX equations are often encountered in many sys-
tems and control applications, such as Lyapunov matrix

equations, Sylvester matrix equations and so on. Traditional
methods convert such matrix equations into their equivalent
forms by using the Kronecker product and stretching function,
however, which involve the inversion of the associated large
matrix and result in increasing computation and excessive
computer memory. In recent years iterative approaches for
solving matrix equations and recursive identification for pa-
rameter estimation have received much attention, e.g.,[1-6].
For example, Dehghan and Hajarian studied the finite itera-
tive algorithm for the reflexive solutions of the generalized
coupled Sylvester matrix equations [7]; Mukaidani et al. gave
a numerical algorithm for finding solution of cross-coupled
algebraic Riccati equations [8]; Zhou and Duan studied the
explicit solutions to generalized Sylvester matrix equations [9,
10]; Ding and Chen presented a gradient based and a least-
squares based iterative algorithms for generalized Sylvester
matrix equations and general coupled matrix equations [11,
12].

Our main contribution in this paper is to provide a gradient
based iterative algorithm to solve the following matrix equa-
tions:

AXB = F, (1)
AXB = F, CXD = G, (2)
AXB = F s. t. X = XT , (3)
AXB + CY D = F, (4)

where X and Y are unknown matrices, A,B,C,D, F,G are
the given constant matrices. We observe that Ding et al.[13,
14] have considered the iterative solutions of Eqs.(1) and (2),
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but their algorithms can work well on the condition that the
matrix equation considered should have the unique solution,
which seems a rigorous requirement. In this paper, we present
gradient based iterative algorithms to solve Eqs.(1)-(4) and
prove that if the equation considered has a solution, then the
unique minimum norm solution can be obtained by choosing
a special kind of initial matrices. The numerical results show
that the proposed method is reliable and attractive.

Throughout this paper, we shall adopt the following no-
tation. Rm×n denotes the set of all m × n real matrices.
AT , A+ and R(A) stand for the transpose, Moore-Penrose
generalized inverse and the column space of the matrix A,
respectively. λmax(M

TM) denotes the maximum eigenvalue
of MTM. In represents the identity matrix of order n.
For A,B ∈ Rm×n, an inner product in Rm×n is defined
by (A,B) = trace(BTA), then Rm×n is a Hilbert space.
The matrix norm ‖ · ‖ induced by the inner product is the
Frobenius norm. Given two matrices A = [aij ] ∈ Rm×n and
B ∈ Rp×q , the Kronecker product of A and B is defined by
A ⊗ B = [aijB] ∈ Rmp×nq. Also, for an m × n matrix
A = [a1, a2, · · · , an], where ai, i = 1, · · · , n, is the i-th
column vector of A, the stretching function vec(A) is defined
as vec(A) = [aT1 , a

T
2 , · · · , aTn ]T .

II. PRELIMINARY CONSIDERATIONS

To begin with, we first give some lemmas.
Lemma 1: [11, 12, 13]. If the linear equation system Mx =

b, where M ∈ Rm×n, b ∈ Rm, has a unique solution x∗, then
for any initial vector x0 ∈ Rn, the gradient based iterative
algorithm

{
xk = xk−1 + μMT (b−Mxk−1),
0 < μ < 2

λmax(MTM)
or 0 < μ < 2

‖M‖2 ,

yields limk→∞ xk = x∗.
Lemma 2: [15]. Let D ∈ Rm×n, H ∈ Rn×l, J ∈ Rl×s.

Then
vec(DHJ) = (JT ⊗D)vec(H).

Lemma 3: [16]. If L ∈ Rm×q, b ∈ Rm, then Ly = b
has a solution y ∈ Rq if and only if LL+b = b. In this
case, the general solution of the equation can be described as
y = L+b+(Iq−L+L)z, where z ∈ Rq is an arbitrary vector.

Lemma 4: [16]. Suppose that the consistent linear equation
Ax = b has a solution x ∈ R(AT ), then x is the unique
minimum Frobenius norm solution of the linear equation.

Lemma 5: [17]. Let f(x, y) =
∑K

i,j=0 cijx
iyj be a real

coefficient binary polynomial. For A ∈ Rm×m, B ∈ Rn×n,
define a matrix polynomial as f(A,B) =

∑K
i,j=0 cijA

i⊗Bj ,

where A0 = Im, B
0 = In. If the eigenvalues of A and B

are, respectively, ξi and μj , i = 1, · · · ,m; j = 1, · · · , n, then
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the eigenvalues of f(A,B) are f(ξi, μj), i = 1, · · · ,m; j =
1, · · · , n.

Lemma 6: The equation of AXB = F has a symmetric
solution X if and only if the matrix equations

{
AXB = F,
BTXAT = FT ,

(5)

are consistent.
Proof. If the equation of AXB = F has a symmetric solution
X∗, then AX∗B = F, and (AX∗B)T = BTX∗AT = FT .
That is to say, X∗ is a solution of (5).
Conversely, if the matrix equations of (5) has a solution, say,
X = U . Let X∗ = 1

2 (U + UT ), then X∗ is a symmetric
matrix, and

AX∗B =
1

2
(AUB) +

1

2
(AUTB) =

1

2
F +

1

2
(FT )T = F.

Hence, X∗ is a symmetric solution of AXB = F .

III. THE SOLUTION OF THE MATRIX EQUATION AXB = F

Using Lemma 2, we know that the equation of (1) is
equivalent to

(BT ⊗A)vec(X) = vec(F ). (6)

Theorem 1: Suppose that A ∈ Rm×n, B ∈ Rp×q and F ∈
Rm×q. If the equation of (1) has a unique solution X∗, then
for any initial matrix X0, the gradient based iterative algorithm
{
Xk = Xk−1 + μAT (F −AXk−1B)BT ,
0 < μ < 2

λmax(ATA)·λmax(BBT )
or 0 < μ < 2

‖A‖2·‖B‖2 ,
(7)

yields limk→∞Xk = X∗.
Proof. Applying Lemma 1 to Eq.(6), we have the gradient
based iterative algorithm for the equation of (1) described as
follows.

vec(Xk) = vec(Xk−1) + μ(BT ⊗A)T (vec(F )
−(BT ⊗A)vec(Xk−1)

)
.

(8)

From (8) and Lemma 2, we can easily obtain

Xk = Xk−1 + μAT (F −AXk−1B)BT . (9)

By Lemma 5, we know that

λmax

(
(BT ⊗A)T (BT ⊗A)) = λmax

(
BBT ⊗ATA

)

= λmax(A
TA) · λmax(BB

T ) ≤ ‖A‖2 · ‖B‖2.
According to Lemma 1, Theorem 1 is proven.

Now, assume that J ∈ Rm×q is an arbitrary matrix, then
we have

vec(ATJBT ) = (B ⊗AT )vec(J) ⊂ R(B ⊗AT ).

It is obvious that if we choose

X0 = ATJBT , (10)

where J is an arbitrary matrix, then all Xk generated by the
equation of (9) satisfy

vec(Xk) ⊂ R(B ⊗AT ), k = 1, 2, · · · .

It follows from Lemma 3 that the equation of (1) has a solution
if and only if

(BT ⊗A)(BT ⊗A)+vec(F ) = vec(F ),

which implies that

AA+FBB+ = F. (11)

By Lemma 4, we have proved the following result.
Theorem 2: Suppose that the condition (11) is satisfied. If

we choose the initial matrix by (10), where J is an arbitrary
matrix, or especially, X0 = 0, then the iterative solution {Xk}
obtained by the gradient iterative algorithm (7) converges to
the unique minimum Frobenius norm solution X∗ of Eq.(1).

IV. THE SOLUTION OF THE MATRIX EQUATIONS
AXB = F,CXD = G

Using Lemma 2, we know that the equations of (2) are
equivalent to

Mvec(X) =

[
vec(F )
vec(G)

]
, (12)

where
M =

[
BT ⊗A
DT ⊗ C

]
.

Theorem 3: Suppose that A ∈ Rm×n, B ∈ Rp×q, C ∈
Rf×n, D ∈ Rp×t, F ∈ Rm×q and G ∈ Rf×t. If the equation
of (2) has a unique solution X∗, then for any initial matrix
X0, the gradient based iterative algorithm
⎧
⎪⎪⎨

⎪⎪⎩

Xk = Xk−1 + μ
[
AT (F −AXk−1B)BT

+CT (G− CXk−1D)DT
]
,

0 < μ < 2
λmax(ATA)·λmax(BBT )+λmax(CTC)·λmax(DDT )

or 0 < μ < 2
‖A‖2·‖B‖2+‖C‖2·‖D‖2 ,

(13)
yields limk→∞Xk = X∗.
Proof. Applying Lemma 1 to Eq.(12), we have the gradient
based iterative algorithm for the equation of (2) described as
follows.

vec(Xk) = vec(Xk−1)+μM
T

([
vec(F )
vec(G)

]
−Mvec(Xk−1)

)
.

(14)
From (14) and Lemma 2, we can easily obtain

Xk = Xk−1 + μ
[
AT (F −AXk−1B)BT

+CT (G− CXk−1D)DT
]
.

(15)

By Lemma 5, we know that

λmax

(
MTM

)
= λmax

(
BBT ⊗ATA+DDT ⊗ CTC

)

= λmax(A
TA) · λmax(BB

T )

+ λmax(C
TC) · λmax(DD

T )

≤ ‖A‖2 · ‖B‖2 + ‖C‖2 · ‖D‖2.
According to Lemma 1, the proof is complete.

Now, assume that J ∈ Rm×q and L ∈ Rf×t are arbitrary
matrices, then we have

vec(ATJBT + CTLDT ) =MT

[
vec(J)
vec(L)

]
⊂ R(MT ).
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It is obvious that if we choose

X0 = ATJBT + CTLDT , (16)

where J, L are arbitrary matrices, then all Xk generated by
the equation of (15) satisfy

vec(Xk) ⊂ R(MT ), k = 1, 2, · · · .
It follows from Lemma 3 that the equation of (2) has a solution
if and only if

MM+

[
vec(F )
vec(G)

]
=

[
vec(F )
vec(G)

]
. (17)

By Lemma 4, we have proved the following result.
Theorem 4: Suppose that the condition (17) is satisfied. If

we choose the initial matrix by (16), where J, L are arbitrary
matrices, or especially, X0 = 0, then the iterative solution
{Xk} obtained by the gradient iterative algorithm (13) con-
verges to the unique minimum Frobenius norm solution X∗

of Eq.(2).
The proposed algorithm can be applied to the generalized

matrix equations:
⎧
⎪⎪⎨

⎪⎪⎩

A1XB1 = F1,
A2XB2 = F2,
· · · · · · · · · · · ·
AsXBs = Fs.

(18)

Define M̃, b̃ as

M̃ =

⎡
⎢⎢⎣

BT
1 ⊗A1

BT
2 ⊗A2

· · · · · · · · ·
BT

s ⊗As

⎤
⎥⎥⎦ , b̃ =

⎡
⎢⎢⎣

vec(F1)
vec(F2)
· · · · · ·
vec(Fs)

⎤
⎥⎥⎦ .

Theorem 5: Let Ai ∈ Rmi×n, Bi ∈ Rp×qi and Fi ∈
Rmi×qi , i = 1, 2, · · · , s, and suppose that the condition
M̃M̃+b̃ = b̃ is satisfied. If we choose the initial matrix
X0 =

∑s
i=1A

T
i JiB

T
i , where Ji, i = 1, 2, · · · , s, are arbitrary

matrices, or especially, X0 = 0, then the gradient based
iterative algorithm
⎧
⎪⎨

⎪⎩

Xk = Xk−1 + μ
(∑s

i=1A
T
i (Fi −AiXk−1Bi)B

T
i

)
,

0 < μ < 2∑s

i=1
λmax(ATi Ai)·λmax(BiBTi )

or 0 < μ < 2∑s

i=1
‖Ai‖2·‖Bi‖2

,

converges to the unique minimum Frobenius norm solution
X∗ of Eq.(18).

V. THE SYMMETRIC SOLUTION OF THE MATRIX EQUATION
AXB = F

Using Lemma 2, we know that the equations of (5) are
equivalent to

Nvec(X) =

[
vec(F )
vec(FT )

]
, (19)

where
N =

[
BT ⊗A
A⊗BT

]
.

Theorem 6: Suppose that A ∈ Rm×n, B ∈ Rn×q and F ∈
Rm×q. If the equation of (3) has a unique symmetric solution

X∗, then for any initial symmetric matrix X0, the gradient
based iterative algorithm

⎧
⎪⎪⎨

⎪⎪⎩

Xk = Xk−1 + μ
[
AT (F −AXk−1B)BT

+B(FT −BTXk−1A
T )A

]
,

0 < μ < 1
λmax(ATA)·λmax(BBT )

=: μ0

or 0 < μ < 1
‖A‖2·‖B‖2 ,

(20)

yields limk→∞Xk = X∗.
Proof. Applying Lemma 1 to Eq.(19), we have the gradient
based iterative algorithm for the equation of (3) described as
follows.

vec(Xk) = vec(Xk−1)+μN
T

([
vec(F )
vec(FT )

]
−Nvec(Xk−1)

)
.

(21)
From (21) and Lemma 2, we can easily obtain

Xk = Xk−1 + μ
(
AT (F −AXk−1B)BT

+B(FT −BTXk−1A
T )A

)
.

(22)

By Lemma 5, we know that

λmax

(
NTN

)
= λmax

(
BBT ⊗ATA+ATA⊗BBT

)

= 2λmax(A
TA) · λmax(BB

T )

≤ 2‖A‖2 · ‖B‖2.
According to Lemma 1, the proof is complete.

Now, assume that J ∈ Rm×q is an arbitrary matrix, then
we have

vec(ATJBT +BJTA) = NT

[
vec(J)
vec(JT )

]
⊂ R(NT ).

It is obvious that if we choose

X0 = ATJBT +BJTA, (23)

where J is an arbitrary matrix, then all Xk generated by the
equation of (20) satisfy

XT
k = Xk, vec(Xk) ⊂ R(NT ), k = 1, 2, · · · .

It follows from Lemma 3 and Lemma 6 that the equation of
(3) has a solution if and only if

NN+

[
vec(F )
vec(FT )

]
=

[
vec(F )
vec(FT )

]
. (24)

By Lemma 4, we have proved the following result.
Theorem 7: Suppose that the condition (24) is satisfied. If

we choose the initial matrix by (23), where J is an arbitrary
matrix, or especially, X0 = 0, then the iterative solution {Xk}
obtained by the gradient iterative algorithm (20) converges to
the unique minimum Frobenius norm symmetric solution X∗

of Eq.(3).
The proposed algorithm can be used to solve the symmetric

solution of the generalized matrix equations:
⎧
⎪⎪⎨

⎪⎪⎩

A1XB1 = F1,
A2XB2 = F2,
· · · · · · · · · · · ·
AsXBs = Fs,

s. t. XT = X. (25)
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Define Ñ , g̃ as

Ñ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

BT
1 ⊗A1

A1 ⊗BT
1

BT
2 ⊗A2

A2 ⊗BT
2

· · · · · · · · ·
BT

s ⊗As

As ⊗BT
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(F1)
vec(FT

1 )
vec(F2)
vec(FT

2 )
· · · · · ·
vec(Fs)
vec(FT

s )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 8: Let Ai ∈ Rmi×n, Bi ∈ Rn×qi and Fi ∈
Rmi×qi , i = 1, 2, · · · , s, and suppose that the condition
ÑÑ+g̃ = g̃ is satisfied. If we choose the initial matrix
X0 =

∑s
i=1(A

T
i JiB

T
i +BiJ

T
i Ai), where Ji, i = 1, 2, · · · , s,

are arbitrary matrices, or especially, X0 = 0, then the gradient
based iterative algorithm
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xk = Xk−1 + μ
(∑s

i=1A
T
i (Fi −AiXk−1Bi)B

T
i

+
∑s

i=1Bi(F
T
i −BT

i Xk−1A
T
i )Ai

)
,

0 < μ < 1∑s

i=1
λmax(ATi Ai)·λmax(BiBTi )

or 0 < μ < 1∑s

i=1
‖Ai‖2·‖Bi‖2

,

converges to the unique minimum Frobenius norm symmetric
solution X∗ of Eq.(25).

VI. THE SOLUTION OF THE MATRIX EQUATION
AXB + CY D = F

Using Lemma 2, we know that the equation of (4) is
equivalent to

P

[
vec(X)
vec(Y )

]
= vec(F ), (26)

where
P =

[
BT ⊗A DT ⊗ C ]

.

Theorem 9: Suppose that A ∈ Rm×n, B ∈ Rp×q, C ∈
Rm×e, D ∈ Rh×q and F ∈ Rm×q. If the equation of (4) has
a unique solution pair (X∗, Y ∗), then for any initial matrices
X0 and Y0, the gradient based iterative algorithm
⎧
⎪⎪⎨

⎪⎪⎩

Xk = Xk−1 + μ
[
AT (F −AXk−1B − CYk−1D)BT

]
,

Yk = Yk−1 + μ
[
CT (F −AXk−1B − CYk−1D)DT

]
,

0 < μ < 2
λmax(AAT )·λmax(BTB)+λmax(CCT )·λmax(DTD)

or 0 < μ < 2
‖A‖2·‖B‖2+‖C‖2·‖D‖2 ,

(27)
yields limk→∞Xk = X∗ and limk→∞ Yk = Y ∗.
Proof. Applying Lemma 1 to Eq.(26), we have the gradient
based iterative algorithm for the equation of (4) described as
follows.

[
vec(Xk)
vec(Yk)

]
=

[
vec(Xk−1)
vec(Yk−1)

]

+μPT

(
vec(F )− P

[
vec(Xk−1)
vec(Yk−1)

])
.

(28)

From (28) and Lemma 2, we can easily obtain

Xk = Xk−1+μ
[
AT (F −AXk−1B − CYk−1D)BT

]
, (29)

Yk = Yk−1 + μ
[
CT (F −AXk−1B − CYk−1D)DT

]
. (30)

By Lemma 5, we know that

λmax

(
PTP

)
= λmax

(
PPT

)

= λmax

(
BTB ⊗AAT +DTD ⊗ CCT

)

= λmax(AA
T ) · λmax(B

TB)

+ λmax(CC
T ) · λmax(D

TD)

≤ ‖A‖2 · ‖B‖2 + ‖C‖2 · ‖D‖2.
According to Lemma 1, the proof is complete.

Now, assume that J ∈ Rm×q is an arbitrary matrix, then
we have

[
vec(ATJBT )
vec(CTJDT )

]
= PT vec(J) ⊂ R(PT ).

It is obvious that if we choose

X0 = ATJBT , Y0 = CTJDT , (31)

where J is an arbitrary matrix, then all Xk and Yk generated
by the equations of (29) and (30) satisfy

[
vec(Xk)
vec(Yk)

]
⊂ R(PT ), k = 1, 2, · · · .

It follows from Lemma 3 that the equation of (4) has a solution
if and only if

PP+vec(F ) = vec(F ). (32)

By Lemma 4, we have proved the following result.
Theorem 10: Suppose that the condition (32) is satisfied. If

we choose the initial matrices by (31), where J is an arbitrary
matrix, or especially, X0 = 0, Y0 = 0, then the iterative
solution {Xk} and {Yk} obtained by the gradient iterative
algorithm (27) converges to the unique minimum Frobenius
norm solution (X∗, Y ∗) of Eq.(4).

The proposed algorithm can be applied to the generalized
matrix equation:

s∑

i=1

AiXiBi = F, (33)

where Ai ∈ Rm×ni , Bi ∈ Rpi×q, i = 1, 2, · · · , and F ∈
Rm×q are known matrices. Define P̃ as

P̃ =
[
BT

1 ⊗A1, BT
2 ⊗A2, · · · , BT

s ⊗As

]
.

Theorem 11: Let Ai ∈ Rm×ni , Bi ∈ Rpi×q, i = 1, 2, · · · ,
and F ∈ Rm×q. Suppose that the condition P̃ P̃+vec(F ) =

vec(F ) is satisfied. If we choose the initial matrix X
(0)
i =

AT
i JB

T
i , i = 1, 2, · · · , s, where J is an arbitrary matrix, or

especially, X(0)
i = 0, i = 1, 2, · · · , s, then the gradient based

iterative algorithm
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X
(k)
i = X

(k−1)
i + μ

[
AT

i (F −
∑s

i=1AiX
(k−1)
i Bi)B

T
i

]
,

i = 1, 2, · · · , s,
0 < μ < 2∑s

i=1
λmax(AiATi )·λmax(BTi Bi)

or 0 < μ < 2∑s

i=1
‖Ai‖2·‖Bi‖2

,

converges to the unique minimum Frobenius norm solution
(X∗

1 , X
∗
2 , · · · , X∗

s ) of Eq.(33).
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TABLE I
THE ITERATIVE SOLUTION (μ = 0.047)

k x11 x12 x22 δ
1 1.4229 1.0989 2.1689 0.3487
2 1.6742 0.6781 1.3437 0.1282
10 1.8999 0.7000 1.5999 5.6296e-005
11 1.9000 0.7000 1.6000 2.1895e-005
19 1.9000 0.7000 1.6000 1.2411e-008
20 1.9000 0.7000 1.6000 4.9009e-009
Solution 1.9 0.7 1.6

VII. TWO NUMERICAL EXAMPLES

In this section, we will give two numerical examples to
illustrate the proposed algorithms and the test is performed
using MATLAB 6.5.
Example 1. Consider the following matrix equation:

AXB = F s. t. XT = X

with
A =

[
0.95 −0.6
0.9 1.2

]
,

B =

[
1.13 −1.72
−2.26 −1.44

]
,

F =

[
2.2317 −1.9574
−2.8815 −8.058

]
.

We can easily see that the equation has unique solution and
the exact solution is

X =

[
x11 x12
x12 x22

]
=

[
1.9 0.7
0.7 1.6

]
.

Taking X0 = 0, we apply the gradient based algorithm in
(20) to compute {Xk}. Fig.1 shows the effect of changing μ
on the iterative steps. From the plot, an optimum value of μ
may be obtained and a good compromise value of μ would
be μ = 0.047. With which μ, the iterative solutions Xk are
shown in Table 1, where δ := ‖Xk −X‖/‖X‖ is the relative
error. The errors δ versus k with different convergence factors
are shown in Fig.2. From Table 1 and Fig.2, it is clear that
the error δ becomes smaller and smaller and goes to zero
within several iterations. This indicates that the gradient based
iterative algorithm is effective.
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0

50

100

150

200

250

300

μ

Ite
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Fig.1 Variation of the iterative steps versus μ

TABLE II
THE ITERATIVE SOLUTION (μ = 1/240)

k x11 x12 x22 r
1 0.7782 1.0239 0.9829 4.2224
2 0.9198 1.2102 1.1618 0.7686
5 0.9511 1.2515 1.2014 0.0046
6 0.9513 1.2517 1.2016 8.4356e-004
11 0.9513 1.2517 1.2016 1.6853e-007
12 0.9513 1.2517 1.2016 3.0675e-008
13 0.9513 1.2517 1.2016 5.5833e-009
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Fig.2 The relative errors δ versus k of the gradient based algorithm

Example 2. Consider the matrix equation AXB =
F s. t. XT = X with

A =

[
0.95 0.60
2.85 1.80

]
,

B =

[
1.13 0.72
2.26 1.44

]
,

F =

[
6.1867 3.942
18.56 11.826

]
.

Observe that the equation has many solutions, that is, the so-
lution is not unique. Choosing initial iterative matrix X0 = 0,
we apply the gradient based algorithm in (20) to compute
{Xk}. The iterative solutions Xk are shown in Table 2, where
r := ‖F − AXkB‖. This implies that the algorithm in (20)
can be used to solve the minimum norm symmetric solution
of the equation AXB = F .

VIII. CONCLUDING REMARKS

This paper presents gradient based iterative algorithms for
solving some linear matrix equations. The analysis indicates
that if the equation considered has a solution, then the itera-
tive solutions given by the gradient based iterative algorithm
converges fast to its exact solution or the unique minimum
norm solution by choosing a special kind of initial matrices.
The approach is demonstrated by two numerical examples and
reasonable results are produced.
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