
International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:6, No:4, 2012

190

 

A Calibration Approach towards Reducing ASM2d 
Parameter Subsets in Phosphorus Removal Processes 

N.Boontian 
 

Abstract––A novel calibration approach that aims to reduce 
ASM2d parameter subsets and decrease the model complexity is 
presented.  This approach does not require high computational 
demand and reduces the number of modeling parameters required to 
achieve the ASMs calibration by employing a sensitivity and iteration 
methodology.  Parameter sensitivity is a crucial factor and the 
iteration methodology enables refinement of the simulation parameter 
values.  When completing the iteration process, parameters values are 
determined in descending order of their sensitivities.  The number of 
iterations required is equal to the number of model parameters of the 
parameter significance ranking. This approach was used for the 
ASM2d model to the evaluated EBPR phosphorus removal and it was 
successful. Results of the simulation provide calibration parameters. 
These included YPAO, YPO4, YPHA, qPHA, qPP, µPAO, bPAO, bPP, bPHA, 
KPS, YA, µAUT, bAUT, KO2 AUT, and KNH4 AUT. Those parameters were 
corresponding to the experimental data available.  

 
Keywords—ASM2d, calibration approach, iteration 

methodology, sensitivity, phosphorus removal 

I. INTRODUCTION 

CTIVATED sludge models (ASMs) have been used to 
understand microorganism mechanisms in activated 

sludge processes in order for design,upgrade or optimize of 
various wastewater treatment plants(WWTPs)[1], [2]. To 
study carbon, nitrogen and phosphorus removal, Activated 
Sludge Model No. 2d (ASM2d)is an essential model because 
it simulates the dynamics of biological mechanisms in 
enhanced biological phosphorus removal (EBPR) systems 
[3].ASM2d can explain phosphorus utilization by phosphorus-
accumulating organisms (PAOs) under aerobic conditions as 
well as denitrification mechanisms of PAOs.In 
contrast,Activated Sludge Model No. 2 (ASM2) can describe 
phosphorus uptake mechanisms under aerobic conditions only. 
However, the ASM2d model is complicated to calibrate.This 
is due to a requirement of large number the model 
parameters.These are most often derived from the information 
content of particular wastewater treatment plants (WWTPs) 
[4]–[6]. The Modified University of Cape Town (MUCT) 
processes have been widely used in activated sludge WWTPs 
forpreventionof eutrophication [13]–[15]. Also, the MUCT 
processes are among the most effective for EBPR.  This is due 
their design maintaining truly anaerobic conditions for EBPR 
[16], [17]. 
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Other researchers [2] reported that the model is over-
parameterized due to the paucity ofexperimental 
observations.Therefore, the reduction of the number of 
parameters that are required for calibration would make the 
model more user friendly but it is challenging. Currently, there 
are two calibration approaches to reduce the number of 
required parameters.  They are (1) the identifiability approach, 
and, (2) the experience-based approach. Mathematical analysis 
is used for the identifiability determination.  That is to say, 
there is an ordered determination of the magnitude of 
influenced for each model parameter.  It is based on sensitivity 
analysis as the priority step.  The result is a calculation of 
parameter ranking following determination of the parameter 
subset sizes. This requires high levels of computer resources 
and performance [4]–[7].In contrast, the experience-based 
approach requires process knowledge of particular activated 
sludge unit operations to derive model parameters [8]–[12]. In 
using the experience based approach for this study, values for 
process parameters were obtained from literature published by 
other researchers.  Both approaches are feasible methods to 
successfullyattain modeling calibration.Each achieves values 
for the necessary stoichiometric and kinetic parameters and 
satisfiesthe simulation.The identifiability approach has the 
disadvantage of high computational demands for large data 
subset sizes [2]. The experience-based approach poses 
difficulty in choosing modeling parameters according to 
knowledge and experience with particular activated sludge 
WWTPs under study.This study is unique in that it employs 
both methods, rather than just one. 

Regarding the limitations of the two calibration approaches 
discussed above, a new approach is purposed in this study. 
There are two important considerations needed to completely 
develop model calibration.  These are (1) sensitivity analysis 
and (2) iteration in the calibration methodology. The 
sensitivity calculation produces a parameter significance 
ranking which is used to reducethe number of iterations 
required.It furtherrepresents the influence of model parameters 
on the simulation output [4]–[7]. Then using the parameter 
significance ranking, the calibrated parameters are determined 
iteratively. 

The purpose of this research is to present a new calibration 
approach. The goal was to avoid both high 
calculationdemands and the requirement for a priori 
knowledge of all theparameters specific to the activated sludge 
treatment works. 
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Fig. 1 A schematic diagram of the activated sludge MUCT 

 

This new method was developed using the 
identifiabilityapproach and the experience-based approach. 
The sensitivitymethod is used to reduce the number of model 
parameters.Parameter sensitivity is used to identify those 
parameters which most affect the model. Additionally, the 
model is calibrated using an iterative process. This avoids high 
computational demand. This was to reduce the size of ASM2d 
parameter subset. Four procedures were structured in this new 
approach. Firstly the analysis of the wastewater 
characterization and layout of the related to a specific 
wastewater treatment plant were established. Second, defining 
initial default values of ASM2d parameters and demonstration 
of the range values for stoichiometric and kinetic parameters 
were obtained from the literature. Third, analyzing the 
sensitivity of the ASM2d parameters was done using the 
experimental results of an activated sludge on a pilot-scale 
process to obtain the parameter significance ranking. Finally, 
model parameter values were refined by iteratively fitting 
them to the observed experimental results.  This was done 
sequentially starting with the most significant parameter, 
continuing with subsequent parameters in order of decreasing 
impact upon the model. 

II. MATERIALS AND METHODS 

A. The MUCT Pilot Scale of EBPR Processes 

The results of the modeling calibration were determined 
experimentally using the MUCT pilot scale processes operated 
in the pilot hall facilities of the sewage treatment works of 
Cranfield University, UK. This pilot scale processes (Fig. 1) 
consisted of five reactors in series. They included anaerobic, 
1st anoxic, 2nd anoxic, aerobic phase and clarifier stages with 
effective volumes 125 L, 120 L, 230 L, 550 L and 334 L, 
respectively. The solid retention time (SRT) was 15 days. The 
operating conditions of this system were: influent wastewater 
flow rate (QIN=60 L/h), return activated sludge flow rate 
(QR=51 L/h), anoxic recirculation flow (Q1=60 L/h) and 
aerobic recirculation flow (Q2=60 L/h). In order to develop 
EBPR processes, acetic acid was fed to influent. The 
experimental samples were observed on a daily basis for the 
influent, anaerobic and aerobic stages as well as for the 
effluent. Average process temperature was maintained at 
17°C. The process was fed with municipal wastewater. 

 

B. Sensitivity Analysis 

The relative importance of parameters over the range of 
model inputs was calculated to evaluate the kinetic and 
stoichiometric parameters. This determined the parameters 
that most affect the effluent. Sensitivity analysis results in an 
ordered ranking of parameters based upon the magnitude of 
their influence on the model [15].The data used for the 
sensitivity analysis included values for total chemical oxygen 
demand (TCOD), total nitrogen (TN), total phosphorus (TP), 
phosphorus (P), total suspended solid (TS), mixed liquor 
suspended solid (MLSS), ammonium (NH4), and nitrate 
(NO3). The sensitivity calculations were implemented in 
relation to the following dimensional functions: 
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where ∂y
i

∂θj⁄  is the absolute sensitivity of the model output y 

to the parameter �� at a particular time. The matrices, � and��, 
contain values of the various sensitive parameters.  A finite 
difference method is used to approximate the absolute 
sensitivity value, which the significant limitation of this 
method is only valid for a small change in the parameter 
considered [2]. The vectors �̃�are defined as normalization: 

s̃j= sj  s̃j ⁄ . The ∆θj value is the uncertainty range of the 
parameter θj according to prior knowledge which is classified 
into three uncertainty classes and�!� is a characteristic scale of 
the variable y

i
[18]. Aquasim [19] and interface UNSIM [20], 

[21] were used to calculate the sensitivity analysis. 

C. Iteration Methodology in the New Calibration Approach 

Using all possible stoichiometric and kinetic parameters values 
in model would prevent calibration accuracy [22]. Such 
calculations would require a very long time, i.e. perhaps several 
days. Additionally, round off and truncation errors may 
beintroduced and grow during the calculations.  Our 
approach,therefore, employed the used of parameter subsets. 
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Fig. 2 A new calibration approach procedures to reducing ASM2d parameter subsets 
 

 
Someparameters had to be categorized by the iteration tool 

into specific groups.  These included nitrification, phosphorus 
removal and others, based on the available experimental data. 
Sensitivity parameter functions were used in 
theimplementation iteration with GPS-X (Hydromantis, Inc., 
Hamilton, Canada). The procedures for that iteration 
calibration are shown in Fig. 2. A stepwise manual iteration 
methodology was specifically adapted to EBPR in which the 
simulation results were calibrated using observed results with 
the parameter significance ranking in order to achieve a 
reasonable model fit. The iterative algorithm was reevaluated 
until refinement of the sensitivity parameters no longer 
affected the simulation output. 

III. RESULTS AND DISCUSSION 

Step1: Influent Wastewater Characteristics 

The simulation of operating period was completedfor a 
steady state processes. The influent characteristics are 
summarized in TABLE I. 

Step2: Default Values and a Priori Parameter Set 

In order to calibrate the ASM2d model, a number of default 
parameters were established.  Their values were obtained from 
published literature.These included kinetic and stoichiometric 
parameters of phosphorus accumulating organisms (PAOs).  
Maximum and minimum values for these parameters are given 
in TABLE II.  

 
 

TABLE I 
CHARACTERIZATION OF INFLUENT WASTEWATER COMPONENTS 

Symbol Definition  Influent Unit Reference 

SO2in Dissolved oxygen  0 g O2/m3 This study 
SAin Fermentation products (acetate)  103.25 g COD/ m3 This study 

SFin Readily biodegradable substrate  26.93 g COD/ m3 This study 

SIin Inert soluble organic substrates  53.50 g COD/ m3 This study 

SNH4in Ammonium  33.53 g N/m3 This study 

SNO3in Nitrate (plus nitrite)  0 g N/m-3 This study 

SPO4in Phosphate  5.04 g P/m3 This study 

SN2in Dinitrogen (N2) , 0.78 atm at 20 ºC  0 g N/m3 This study 

XIin Inert, non-biodegradable organics  168.00 g COD/ m3 This study 

XSin Slowly biodegradable substrate  43.68 g COD/ m3 This study 

XPAOin Phosphorus-accumulating organisms, PAO  0 g COD/m3 [3] 

XPPin Stored poly-phosphate of PAO  0 g P/m3 [3] 

XPHAin Organic storage products of PAO  0 g COD/m3 [3] 

 
 
 

Step 2: Define default values with ASM2d and demonstrate the upper 
and lower values of the stoichiometric and kinetic parameters with data 

available from the literature 

Step 1: Wastewater characterization and pilot-scale layout 
 

Successful calibration 

Step 3: Parameter significant ranking 

Step 4: Calibrate (1) effluent NH4 (2) Phosphorus (3) effluent TP 

YES 



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:6, No:4, 2012

193

 

TABLE II 
DEFAULT, MINIMUM AND MAXIMUM VALUES FOR PARAMETERS INVOLVED ON ASM2D CALIBRATION.  

Symbol Definition Default Min. Max. Unit Reference 

Typical stoichiometric parameter 

YH Yield coefficient 0.625   g COD/g COD [3] 
FXI Fraction of inert COD generated in biomass lysis 0.10   g COD/g COD [3] 

YPO4 Poly-phosphate (PP) requirement (PO4 release) per  0.40 0.26 0.46 g P/g COD [3], [25], [26], [28], [29], 

 poly-hydroxy-alkanoates (PHA) stored     [31], [36] 

YPAO Yield coefficient (Biomass/PHA) 0.625 0.58 0.9 g COD/g COD [3], [25], [28], [36] 

YPHA PHA requirement for PP storage 0.20 0.20 0.32 g COD/g P [26], [36] 

YA Yield coefficient (Biomass/Nitrate) 0.24   g COD/g N [3] 

Phosphorus-Accumulating Organisms, PAOs 

qPHA Rate constant for storage of XPHA (base XPP) 3.00 0.36 9.03 g XPHA/g XPAO/d [3], [23], [24], [25], [26],  

      [28], [29], [31], [36] 

qPP Rate constant for storage of XPP 1.50 1 10.88 g XPP/g XPAO/d [3], [24], [25], [26], [28],  

      [29], [31], [36] 

µPAO Maximum growth rate of PAO 1.00 0.67 2.97 d-1 [3], [25], [26], [28], [29], 

      [36] 

ηNO3 Reduction factor for anoxic activity 0.60 0.44 0.60  [3], [28] 

bPAO Rate for Lysis of XPAO 0.20 0.04 0.27 d-1 [3], [24], [25], [26], [27], 

      [28], [29], [36] 

bPP Rate for Lysis of XPP 0.20 0.03 0.20 d-1 [3], [24], [26], [27] 

bPHA Rate for Lysis of XPHA 0.20 0.08 0.20 d-1 [3], [26], [28], [36] 

KO2 Saturation/inhibition coefficient for oxygen 0.20 0.20 0.20 g O2/m3 [3], [36] 

KNO3 Saturation coefficient for nitrate, SNO3 0.50 0.50 0.50 g N/m3 [3], [36] 

KA Saturation coefficient for acetate, SA 4.00 1.00 32.00 g COD/m3 [3], [25], [28], [29], [36], 

      [23] 

KNH4 Saturation coefficient for ammonium (nutrient) 0.05 0.01 0.05 g N/m3 [3], [31], [36] 

KPS Saturation coefficient for phosphorus in storage of PP 0.20 0.20 0.50 g P/m3 [3], [26], [36] 

KP Saturation coefficient for phosphate (nutrient) 0.01 0.01 3.00 g P/m3 
 

[3], [23], [27], [36] 

KALK  Saturation coefficient for alkalinity (HCO3) 0.10 0.02 0.10 mole HCO3/m3 [3], [30], [36] 

KMAX  Maximum ratio of XPP/XPAO 0.34 0.152 0.37 g XPP/g XPAO [3], [25], [28], [29], [36] 

KPP Saturation coefficient for poly-phosphate 0.01 0.01 0.26 g XPP/g XPAO [3], [23], [36] 

K IPP Inhibition coefficient for PP storage 0.02 0.001 0.48 g XPP/g XPAO [3], [23], [25], [28], [29], 

      [36]  

KPHA Saturation coefficient for PHA 0.01 0.001 0.01 g XPHA/g XPAO [3], [24], [25], [28], [29],  

      [36] 

Autotrophs 

KO2 AUT Saturation coefficient for oxygen 0.5 0.1 1.0 g O2/m3 [26] 

KNH4 AUT Saturation coefficient for ammonium (substrate) 1.00 0.3  g N/m3 [26] 

       
 

Step 3: Parameter Significance 

The parameter significance ranking of the resulting 
sensitivity analysis was based on the total number of model 
outputs. The result showed which werethe most significant of 
the data inputs, ie, when therootsof mean squared values of 
sensitivities were higher than 0.  From this, the parameter 
subsets under these studies were reduced to the top 30 as 
shownin TABLE III. Consequently, the resulting 30 
parameters were used to calibration in analyzing 

allexperimental results. Other researchers [7] have 
usedsensitivity parameter rankingswith roots of mean squared 
values larger than 0.2 and found 11 relevant parameters 
thatwere used to calibrate the Activated Sludge Model No. 
1(ASM1) applied to full-scale plant data. Differences 
inparameter significance rankings among studies of ASM2d 
are highly influenced by the data available for calibration. 
Important factors in this regard include consideration of
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TABLE III 
THE ASM2d PARAMETER SIGNIFICANT RANKING 

Ranking Parameter 
Roots of mean squared of 

sensitivities  

1 YPO4 26.43 

2 µPAO 23.45 

3 YPAO 19.51 

4 qPP 18.35 

5 KO2 AUT 18.01 

6 KNH4 AUT 11.85 

7 bPP 8.93 

8 µAUT 7.99 

9 YPHA 4.76 

10 bAUT 2.76 

11 bPHA 2.16 

12 YA 1.59 

13 KIPP 1.29 

14 µH 1.11 

15 ηNO3 1.01 

16 qPHA 0.94 

17 KPS 0.53 

18 KPP 0.47 

19 KAUT 0.23 

20 KALK PAO 0.22 

21 fXI 0.07 

22 KPHA 0.04 

23 KNO3 0.03 

24 KF 0.02 

25 Kh 0.02 

26 KX 0.01 

27 KP 0.01 

28 qfe 0.01 

29 bPAO 0.01 

30 YH 0.01 

 
particular WWTP configurations and operation, and 
someproperties of collected data [2].Theparameter 
significance ranking showed that temperature correction 
coefficients andthe parameters for PAOs were among the most 
influential parameters on the model outputs.In this study, 
ASM2d was calibrated using an identifiability method to 
describe nitrogen and phosphorus removal in the Haaren (The 
Netherlands)WWTP [2].PAOs play an important role in the 
dynamics of the EBPR processes [5].  In another application, 
this approach to ASM2d calibration used an identifiability 
analysis in a systematic manner. It was applied to EBPR at a 
full scale WWTP in Switzerland [5]. Additionally, to calibrate 
ASM2d for anaerobic/anoxic/oxic conditions (A2/O),a pilot 
WWTP used an identifiability approach [6].  PAOs parameters 
were also among the most sensitivity.Although other studies 
were in rough agreement, there were some differences. The 
parameter significancerankings of the current study are 

different from that of other researchers [2], [5], [6].In the 
current study, the parameter with the highest sensitivity was 
YPO4.However other researchers found this parameter’s 
sensitivity to be ranked as 8th [6], 15th [2], and it was excluded 
altogether in another study [5]. Also researchers [5] found that 
parameter bPAO had the highest sensitivity although it ranked 
4th and 27th in other studies [6], [2]. This parameter’s 
sensitivity was ranked lower in the current study (29th). 
Considering the second most significant sensitivity ranking in 
this study,µPAO, it was of the same order as in one study [5], 
but it was at a lower position (17th) in other work [2], [6]. 
Additionally, the current study found thatµAUThad a higher 
sensitivity ranking than other studies [2][5].  However its 
ranking was lower than reported elsewhere [6]. Furthermore 
the sensitivity analysis in other work [15] used only two 
parameters, YPAO and YPO4. Here anaerobic/aerobic/anoxic 
processes for simultaneous nitrogen and phosphorus removal 
on NO3 and PO4 profiles were examined. One group of 
researchers [33]used manually repeating simulation as a 
sensitivity approach to individual changes in the magnitude of 
related parameters for each model parameter. This was based 
on the steady state cyclic simulations of SPO4, XPHA, SA and 
MLSS profiles containing the most sensitive parameters 
namely,YPO4, qPHA, qPP, KPHA and lysis rates. 

Step 4: The Iteration Processes with Simulation of the 
ASM2d Modeling  

The calibration approach here described avoids the problem 
of needingextensive experience in activated sludge modeling 
and the difficulty of identifiability analysis.This approach 
iterates only based upon the parameter sensitivity. A stepwise 
methodology was used in the mathematical simulations in 
each of the iterations.The iteration number of each 
experimental data set was based on the number of parameters 
in the sensitivity analysis. Use of 30 iterative steps for each of 
the parameter data sets, i.e. the same number of parameters in 
the sensitivity ranking, was used to predict the output of 
NH4and TP in effluentand of PO4 in anaerobic phase.The 
application of parameter significance ranking was used to 
perform the calibration in order to fit the model’s parameter 
values to the observed results.The most significantparameter 
was iterated.  This was followed byeach of the other 29 
parametersincluded in the parameter significance ranking 
inorder of decreasing influence.  Iterations begun with the 
initial defaultparameter value and were carried out under the 
steady state conditions. The effluent NH4 is the first 
experimental data set used to calibrate the ASM2d parameter 
in order to observe the autotrophs activity.After calibration the 
values for each parameter were found. The results of 
theNH4experiments are shown in TABLE IV. As a result of 
fitting the simulated data to the effluent NH4, concentration, it 
was found that there are five significant parameters. They are: 
yield of autotrophic biomass per unit of NO3

-N (YA), the 
maximumgrowth rate for autotrophs (µAUT), the decay rate of 
XAUT (bAUT), saturation coefficient for oxygen (KO2 AUT), 
nitrogen half saturation coefficient for autotrophs (KNH4 AUT). 
µAUT was increased to sustain autotrophic growth.
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TABLE IV 
THE VALUES OF THE CALIBRATED ASM2d PARAMETERS 

Symbol ASM2d  Calibrated value Unit 

Phosphorus-Accumulating Organisms, PAOs 

YPAO 0.625  0.60 g COD/g COD 

YPO4 0.4  0.4 g P/g COD 

YPHA 0.20  0.23 g COD/g P 

qPHA 3.0  3.5 g XPHA/g XPAO/d 

qPP 1.5  1.5 g XPP/g XPAO/d 

µPAO 1.0  1.0 d-1 

bPAO 0.2  0.2 d-1 

bPP 0.2  0.2 d-1 

bPHA 0.2  0.2 d-1 

KPS 0.2  0.35 g P/m3 

Autotrophs  

YA 0.24  0.24 g COD/g N 

µAUT 1.0  1.2 d-1 

bAUT 0.15  0.05 d-1 
 

KO2 AUT 0.5  0.5 g O2/m3 

KNH4 AUT 1.00  0.15 g N/m3 

 
Next bAUT was decreased in relation to increasing 

autotrophic growth rate. Later KNH4 AUT decreased because of 
low ammonium concentration in the aerobic phase.Both YA 
and KO2 AUT were from the same as the default values. 
Comparison of the parameter subsets to other experiments 
using different protocols is shown in TABLE V. Significant 
parameters based upon NH4 in effluent using the experienced-
based approach for the experiments of sequencing batch 
reactors (SBRs) [31] were calibrated.  To accomplish this, 
nutrients were removed under limited aeration conditions. The 
parameters examined included µAUT and KNH4. 
 

TABLE V 
THE PARAMETER SUBSETS IN DIFFERENT STUDIES 

Parameter subsets Reference 

YPAO, YPO4,YPHA, qPHA, qPP, µPAO, bPAO, bPP, bPHA,KPS, YA, 
µAUT, bAUT, KO2 AUT, KNH4 AUT. 

This study 

bPAO, µPAO, qPHA, qPP, bPP, Kh, žfe, bAUT, KNH4, µAUT  [5] 

bPAO, YPO4, µAUT [6] 

µAUT, αXI, αSA, αSF, žNO3 HYD, KPHA, µPAO [8] 

YH, µH, KF,bH, žNO3, µA, KNH4, bA, YPO4, qPHA, KA, YPAO, 
µPAO, qPP, bPAO, KPHA, KIPP, KMAX ,  

[12] 

YPAO, YPO4 [15] 

µAUT, KNH4, KX, KN, KO, KOA, YHNO3, bH, YPO4, qPHA, µPAO, 
qPP 

[31] 

µAUT, bPAO, bPP, bPHA, qPHA, qPP, KPHA, YPO4 [33] 

µAUT, αXI, žNO3 HYD, Kh, žfe, µH, KO2, žNO3, KNH4 AUT, qPHA, 
qPP, YPO4 

[34] 

αXI, iNXS, iNXI, KO2AUT, KNH4 AUT, bAUT, žNO3, bH,KNO3, KO2 [35] 

 
 

In addition to calibration with an experienced-based 
approach to determine EBPR underdifferent 
phosphorus/acetate (P/HAc) ratios with the ASM2d modeling 
in the SBR performance, it has been shown that only µAUT is 
necessary to calibrate NH4 and NO3 [33]. A practical 
identifiability approach for the ASM2d calibration is to select 
the parameter subset sizes for autotrophswith three calibrated 
parameters: bAUT, KNH4 and µAUT[5].Another study [6] on 
activated sludgeanaerobic/anoxic/oxic (A2/O) pilot 
WWTPsusingan identifiability approach with the Fisher 
Information Matrix (FIM) tool to reduce ASM2d parameter 
subset sizes used onlyµAUT. This presents a calibrated 
autotroph parameter and the parameter subset size is bPAO, 
YPO4, µAUT. The calibratedparameters included in the 
simulation of nitrogen removal at the Hanover-Gümmerwald 

pilot wastewater treatment plant were µAUT, αXI, žNO3 HYD, Kh, 

žfe, µH, KO2, žNO3, KNH4 AUT, qPHA, qPP, and YPO4. This was 
based on ASM2d and ASM3P model concepts [34]. This 
current study several parameters govern the fitting of the 
simulation to model to PO4 in anaerobic phase and effluent 
TP.  Those parameters (TABLE IV) include: YPAO, YPO4, 
YPHA, qPHA, qPP, µPAO, bPAO, bPP, bPHA, and KPS. In another 
study [15], YPAO and YPO4 calibrated parameters were used to 
investigate the effect of extra acetate on the 
anaerobic/aerobic/anoxic (AOA) processes for simultaneous 
nitrogen and phosphorus removal based on the ASM2d 
modeling with the additional denitrifying PAOs (DNPAOs) 
kinetics. That modeling has expressed the optimum 
concentration of supplementary COD and formulated the 
microorganism metabolism. Thus the application of that 
modeling to the different wastewater compositions, such as 
COD/N/P, can be conducive to predicting PAOs behavior 
[15]. To study phosphorus storage capacity-limiting and 
phosphorus loading-limiting conditions, there are 8 significant 
calibrated parameters including µAUT, bPAO, bPP, bPHA, qPHA, 
qPP, KPHA and YPO4 used for the predicted simulations of SPO4, 
XPHA, SA and MLSS profiles in the sequencing batch reactor 
(SBR) performance for EBPR fed with acetate as the carbon 
sole carbon source under different P/HAc ratios [33]. The 
calibration and simulation of ASM2d model at different 
temperatures in a phosphorus removal pilot plant show that the 

significant calibrated parameters include YH, µH, KF,bH, žNO3, 
µA, KNH4, bA, YPO4, qPHA, KA, YPAO, µPAO, qPP, bPAO, KPHA, 
K IPP, and KMAX  [12]. To simulate the O2, COD, NH4, and PO4 

data sets in an activated sludge system, a large parameter set 

[35] was included αXI, iNXS, iNXI, KO2AUT, KNH4 AUT, bAUT, žNO3, 
bH,KNO3, and KO2.  Another study [8] included µAUT, αXI, αSA, 

αSF, žNO3 HYD, KPHA, µPAO.If this methodology has been 
successful to calibrate the pilot plant operation. The 
expectation when using this in a full-scale site can reduce time 
consumption for calculation parameter subset sizes. 
Subsequently, operation processes can enhanced on basis of 
understanding organism behaviors. However, fluctuation of 
wastewater characteristics and complexity of operation 
systems may cause calculation errors. 
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IV. CONCLUSION 

The reducing parameter subset to the ASM2d calibration 
has been addressed by evaluating a novel calibration approach. 
The parameter significant ranking showed that the parameters 
for PAOs were among the most influential parameters on the 
model outputs. The parameter sensitivity and the parameter 
subsets are related to data available for calibration. The new 
calibration analysis uses experimental results. This approach 
can enable researchers to reduce heavy computation demand 
and avoids the need to choose the modeling parameters. This 
is a simplified approach for practical use. 
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