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Abstract—A novel calibration approach that aims to reduce Other researchers [2] reported that the model isr-ov

ASM2d parameter subsets and decrease the modellediypis
presented. This approach does not require highpuatational
demand and reduces the number of modeling parasnetguired to
achieve the ASMs calibration by employing a sevisjtiand iteration
methodology. Parameter sensitivity is a cruciattda and the
iteration methodology enables refinement of theusdtion parameter
values. When completing the iteration processapaters values are
determined in descending order of their sensiésiti The number of
iterations required is equal to the number of mgdehmeters of the
parameter significance ranking. This approach wasdufor the
ASM2d model to the evaluated EBPR phosphorus rehandit was
successful. Results of the simulation provide catibn parameters.
These included Yao, Ypos Ypra, Gpras Gpp Hpaos Dpao, Oop Depas

parameterized due to the paucity ofexperimental
observations.Therefore, the reduction of the numbér
parameters that are required for calibration waoulake the
model more user friendly but it is challenging. feumtly, there
are two calibration approaches to reduce the nundfer
required parameters. They are (1) the identifighélpproach,
and, (2) the experience-based approach. Matherhatiadysis
is used for the identifiability determination. Tha to say,
there is an ordered determination of the magnitwde
influenced for each model parameter. It is basedamsitivity
analysis as the priority step. The result is awdation of

Kps Ya, HauT: Baut, Koo aum @nd Kyua aut. Those parameters were parameter ranking following determination of thergmaeter

corresponding to the experimental data available.

Keywords—ASM2d, calibration approach,
methodology, sensitivity, phosphorus removal

|. INTRODUCTION

CTIVATED sludge models (ASMs) have been used tgther researchers.

subset sizes. This requires high levels of comprgsources
and performance [4]-[7].In contrast, the experiebased

iteration gpproach requires process knowledge of particuttivated

sludge unit operations to derive model parame®&lr{12]. In
using the experience based approach for this suadyes for
process parameters were obtained from literatubtighed by
Both approaches are feasibileodseto

understand microorganism mechanisms in activatedccessfullyattain modeling calibration.Each ackgevalues

sludge processes in order for design,upgrade omizgt of
various wastewater treatment plants(WWTPs)[1], [Zp
study carbon, nitrogen and phosphorus removal, vAtd
Sludge Model No. 2d (ASM2d)is an essential modelalbse
it simulates the dynamics of biological mechanisins

for the necessary stoichiometric and kinetic patamseand
satisfiesthe simulation.The identifiability apprbatas the
disadvantage of high computational demands forelatgta
subset sizes [2]. The experience-based approaclespos
difficulty in choosing modeling parameters accogdimo

enhanced biological phosphorus removal (EBPR) Byste knowledge and experience with particular activashatge

[3].ASM2d can explain phosphorus utilization by ppborus-
accumulating organisms (PAOs) under aerobic camitias
well as denitrification  mechanisms  of

WWTPs under study.This study is unique in thatnitpéoys
both methods, rather than just one.

PAOs.In  Regarding the limitations of the two calibratiorpapaches

Contrast,ACtiVated Sludge Model No. 2 (ASMZ) casaibe discussed above’ a new approach is purposed |r5m
phosphorus uptake mechanisms under aerobic conslitioly. There are two important considerations needed topéetely
However, the ASM2d model is Complicated to calierahis deve|op model calibration. These are (1) Senamahmysis
is due to a requirement of large number the modghd (2) iteration in the calibration methodologyheT

parameters.These are most often derived from floenation

content of particular wastewater treatment plaMBMTPs)

[4]-[6]. The Modified University of Cape Town (MUQT
processes have been widely used in activated sNAYa Ps

forpreventionof eutrophication [13]-[15]. Also, thdUCT

processes are among the most effective for EBPRs i$ due
their design maintaining truly anaerobic conditidas EBPR

[16], [17].
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sensitivity calculation produces a parameter sigaifce
ranking which is used to reducethe number of itenat
required.lt furtherrepresents the influence of ma@deameters
on the simulation output [4]-[7]. Then using thergraeter
significance ranking, the calibrated parametersdatermined
iteratively.

The purpose of this research is to present a néiraigon
approach. The goal was to avoid both high
calculationdemands and the requirement for a priori
knowledge of all theparameters specific to thevattid sludge
treatment works.

190



International Journal of Earth, Energy and Environmental Sciences
ISSN: 2517-942X
Vol:6, No:4, 2012

Aerobic recirculation ﬂowj

Return activated sludge

Anoxic recirculation flow——

Anaerobic |—

Excess sludge

Sa
Fig. 1 A schematic diagram of the activated sIubigéeCT

This new method was developed wusing the B. Senditivity Analysis

identifiabilityapproach and the experience-basegr@gch.  The relative importance of parameters over the eaof
The sensitivitymethod is used to reduce the nurobenodel model inputs was calculated to evaluate the kineticl
parameters.Parameter sensitivity is used to iderttibse stoichiometric parameters. This determined the mpaters
parameters which most affect the model. Additionathe that most affect the effluent. Sensitivity analyssults in an
model is calibrated using an iterative processs Bitbids high ordered ranking of parameters based upon the maignibf
computational demand. This was to reduce the SiZ5M2d  thejr influence on the model [15].The data used floe
parameter subset. Four procedures were structoredsinew  sensitivity analysis included values for total chieahoxygen
approach.  Firstly the analysis of the wastewatefemand (TCOD), total nitrogen (TN), total phosptso(@iP),
characterization and layout of the related to acifise phosphorus (P), total suspended solid (TS), mixgdot
wastewater treatment plant were established. Sectwfihing  syspended solid (MLSS), ammonium (§H and nitrate
initial default values of ASM2d parameters and desti@tion (NO,). The sensitivity calculations were implemented in

of the range values for stoichiometric and kingtzameters rejation to the following dimensional functions:
were obtained from the literature. Third, analyzinige

sensitivity of the ASM2d parameters was done udimg _M6jay, L sij (1)
experimental results of an activated sludge onlet-pcale Sij T 5e a0’ Sij = SR s%;

process to obtain the parameter significance rankimally,
model parameter values were refined by iterativigy ~
them top the observed experimental resul)t/s. Thi\;mdty;ge The matrices’ = (s;;) andS = (5;;), and the column vectors
sequentially starting with the most significant graeter,
continuing with subsequent parameters in ordereafebsing  s; = (s, ...,sn,j)Tand§j = (5, ...,§n,]-)T
impact upon the model.
wheredy. /06, is the absolute sensitivity of the model output
to the parametei; at a particular time. The matricesands,
A. The MUCT Pilot Scale of EBPR Processes contain values of the various sensitive parameteisfinite
The results of the modeling calibration were deteen difference method is used to approximate the absolu
experimentally using the MUCT pilot scale processgsrated Sensitivity value, which the significant limitatioof this
in the pilot hall facilities of the sewage treatmavorks of Method is only valid for a small change in the paeter
Cranfield University, UK. This pilot scale process@ig. 1) considered [2]. The vector§are defined as normalization:
consisted of five reactors in series. They includederobic, §=s;/||5j||. The A; value is the uncertainty range of the
1% anoxic, 2 anoxic, aerobic phase and clarifier stages witparamete®; according to prior knowledge which is classified
effective volumes 125 L, 120 L, 230 L, 550 L and433 jnto three uncertainty classes andis a characteristic scale of

respectively. The solid retention time (SRT) wasd2ys. The the variabley,[18]. Aquasim [19] and interface UNSIM [20],
operating conditions of this system were: influeristewater [21] were used to calculate the sensitivity analysi

flow rate (Qy=60 L/h), return activated sludge flow rate

(Qg=51 L/h), anoxic recirculation flow (260 L/h) and C. Iteration Methodology in the New Calibration Approach
aerobic recirculation flow (60 L/h). In order to develop  Using all possible stoichiometric and kinetic paeaens values
EBPR processes, acetic acid was fed to influente Tin model would prevent calibration accuracy [22]ucB
experimental samples were observed on a daily Basithe calculations would require a very long time, i.erlpaps several
influent, anaerobic and aerobic stages as well aastlie days. Additionally, round off and truncation errors yna
effluent. Average process temperature was mairdaiae bentroduced and grow during the calculations. Our
17°C. The process was fed with municipal wastewater approacttherefore, employed the used of parameter subsets.

1. MATERIALS AND METHODS
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Step 1: Wastewater characterization and pilot-degieut

v

Step 2: Define default values with ASM2d and dentraits the upper
and lower values of the stoichiometric and kinpticameters with data
available from the literature

v

Step 3: Parameter significant ranking

L NO

Step 4: Calibrate (1) effluent NH2) Phosphorus (3) effluent TP

YES

A\ 4
Successful calibration

Fig. 2 A new calibration approach procedures taicety ASM2d parameter subsets

Someparameters had to be categorized by the @eraidl 1. RESULTSAND DISCUSSION
into specific groups. These included nitrificatiguhosphorus Stepl: Influent Wastewater Characteristics
removal and others, based on the available expatahdata. " . i ]

Sensitivity  parameter  functions were used  in The simulation of operating pgrlod was comple_te(_ﬂor
theimplementation iteration with GPS-X (Hydromantisc.,, St€ady state processes. The influent characteristire
Hamilton, Canada). The procedures for that itenaticSUmmarizedin TABLE I.

calibration are shown in Fig. 2. A stepwise maritedation Step2: Default Values and a Priori Parameter Set
methodology was specifically adapted to EBPR inchtthe In order to calibrate the ASM2d model, a numbedefault
simulation results_ wr-_,'r_e cahbrated_usm_g obsena=lilts W!th parameters were established. Their values wesrgat from
the pariTweterdSIIgfrjtlﬂ(;?lnci ratrjkmgl in _t?]rder to ?mtl‘:l published literature.These included kinetic andcsiometric
re"ﬁ’oni_ € mo te fl'th e |era_t|_v¢tagor| m twaeva uated narameters of phosphorus accumulating organismsOgPA
until refinement of the sensitivity parameters mnger \1aximum and minimum values for these parametersjien

affected the simulation output. in TABLE II.
TABLE |
CHARACTERIZATION OF INFLUENT WASTEWATER COMPONENTS

Symbol Definition Influent Unit Reference
So2in - Dissolved oxygen 0 gao/m This study
Shin Fermentation products (acetate) 103.25 g COD/fm  This study
Sein Readily biodegradable substrate 26.93 gCOD/rh  This study
Sin Inert soluble organic substrates 53.50 g COD/rh  This study
Swiain  Ammonium 33.53 g N/m This study
Swosin  Nitrate (plus nitrite) 0 gN/m® This study
Scosn  Phosphate 504 gP/m This study
S\2in Dinitrogen (N) , 0.78 atm at 20 °C 0 gN/ni This study
Xiin Inert, non-biodegradable organics 168.00 g COD/ th  This study
Xsin  Slowly biodegradable substrate 43.68 gCOD/th  This study

Xpaoin  Phosphorus-accumulating organisms, PAO 0 gCOD/m [3]

Xepin  Stored poly-phosphate of PAO 0 gP/m [3]

Xprain  Organic storage products of PAO 0 gcCoD/m [3]
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DEFAULT, MINIMUM AND MAXIMUM VALUES FEQBPLAER/IAIMETERS INVOLVED ON ASM2D CALIBRATION.
Symbol Definition Default Min. Max. Unit Reference
Typical stoichiometric parame
Y Yield coefficient 0.625 g COD/g COD [3]
F Fraction of inert COD generated in biomass lysis .100 g COD/g COD [3]
Yros  Poly-phosphate (PP) requirement (R€lease) per 0.40 0.26 0.46 gP/gCOD [3], [A], [28], [29],
poly-hydroxy-alkanoates (PHA) stored [31], [3€]
Yeao  Yield coefficient (Biomass/PHA) 0.625 0.58 0.9 gOD/gCOD [3], [25], [28], [36]
YpHa PHA requirement for PP storage 0.20 0.20 0.32 gCDgP [26], [36]
Ya Yield coefficient (Biomass/Nitrate) 0.24 g COD/iN [3]
Phosphorus-Accumulating Organisms, PAOs
OpHa Rate constant for storage ofpX (base %p) 3.00 0.36 9.03  gpfia/g Xpaold  [3], [23], [24], [25], [26],
[28], [29], [31], [36]
Opp Rate constant for storage ofX 1.50 1 10.88 g ¥/g Xpao/d [3], [24], [25], [26], [28],
[29], [31], [36]
Hpao Maximum growth rate of PAO 1.00 0.67 297 4 [3], [25], [26], [28], [29],
[36]
NNos Reduction factor for anoxic activity 0.60 0.44 0.6 [3], [28]
beao  Rate for Lysis of X0 0.20 0.04 027 W [3], [24], [25], [26], [27],
[28], [29], [36]
bep Rate for Lysis of Xp 0.20 0.03 020 W [3], [24], [26], [27]
bpHa Rate for Lysis of Xua 0.20 0.08 020 [3], [26], [28], [36]
Koz Saturation/inhibition coefficient for oxygen 0.20 0.20 020 g@m [3], [36]
Knos Saturation coefficient for nitratey& 0.50 0.50 050 g N/ [3], [36]
Ka Saturation coefficient for acetate, S 4.00 1.00 32.00 g COD/n [3], [25], [28], [29], [36],
23]
Knna  Saturation coefficient for ammonium (nutrient) 0.06 0.01 0.05 g N/ [3], [31], [36]
Kps Saturation coefficient for phosphorus in storafje® 0.20 0.20 050 g¢gPim [3], [26], [36]
Kp Saturation coefficient for phosphate (nutrient) 001 0.01 3.00 gP/m3 [3], [23], [27], [36]
Kaik Saturation coefficient for alkalinity (HGD 0.10 0.02 0.10 mole HGON® [3], [30], [36]
Kmax  Maximum ratio of %g¢/Xpao 0.34 0.152 0.37  gpig Xpao [3], [25], [28], [29], [36]
Kep  Saturation coefficient for poly-phosphate 0.01 0.a 0.26 g %Hg Xpao [3], [23], [36]
Kip  Inhibition coefficient for PP stora 0.02 0.001 0.48 geNg Xpao [3], [23], [25], [28], [29],
[36]
Kpna  Saturation coefficient for PHA 0.01 0.001 0.01 g#ig Xeao [3], [24], [25], [28], [29],
[36]
Autotrophs
Kozaur  Saturation coefficient for oxygen 0.5 0.1 1.0 gegm [26]
Knnaaur  Saturation coefficient for ammonium (substrate) 1.00 0.3 g N/ [26]
Sep 3: Parameter Sgnificance allexperimental results. Other researchers [7]

have

The parameter significance ranking of the resultingsedsensitivity parameter rankingswith roots of msquared

sensitivity analysis was based on the total nundfemodel
outputs. The result showed which werethe most fogmit of
the data inputs, ie, when therootsof mean squasatges of
sensitivities were higher than 0. From this, trerameter
subsets under these studies were reduced to th&Qoas
shownin TABLE Il Consequently, the resulting 30!mportant factors in this regard include consideratof

parameters

were used to calibration in

analyzing

values larger than 0.2 and found 11 relevant patensie
thatwere used to calibrate the Activated Sludge éfiddo.
1(ASM1) applied to full-scale plant data. Differesc
inparameter significance rankings among studie®®#M2d
are highly influenced by the data available forilmaltion.
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TABLE llI
THE ASM2d PARAMETER SIGNIFICANT RANKING

Ranking Parameter Roots ;);rr]zieﬁ&\l/rilizguared of
1 Yros 26.43
2 Upao 23.45
3 Yrao 19.51
4 Opp 18.35
5 Koz aur 18.01
6 KnHa aut 11.85
7 bep 8.93
8 HauT 7.99
9 Y pha 4.76
10 baut 276
11 bera 2.16
12 Ya 159
13 Kipp 1.29
14 m 111
15 o3 1.01
16 pria 0.94
17 Kps 0.53
18 Kpp 0.47
19 Kaur 0.23
20 Kawkpao 0.22
21 fx 0.07
22 Kpha 0.04
23 Knos 0.03
24 Ke 0.02
25 Kn 0.02
26 Kx 0.01
27 Kp 0.01
28 e 0.01
29 brao 0.01
30 ' 0.01

particular WWTP configurations and operation,
someproperties of collected data

significance ranking showed that temperature ctimec
coefficients andthe parameters for PAOs were antioegnost
influential parameters on the model outputs.In tkigdy,
ASM2d was calibrated using an identifiability methoo
describe nitrogen and phosphorus removal in thedta@l he
Netherlands)WWTP [2].PAOs play an important roletlie
dynamics of the EBPR processes [5]. In anothelicgijon,
this approach to ASM2d calibration used an ideatifity
analysis in a systematic manner. It was appliecEB®R at a
full scale WWTP in Switzerland [5]. Additionallyp tcalibrate
ASM2d for anaerobic/anoxic/oxic conditions (A2/O)piot
WWTP used an identifiability approach [6]. PAOsgraeters
were also among the most sensitivity.Although otsteidies
were in rough agreement, there were some diffesenthe
parameter significancerankings of the current stuahe

andnorder of decreasing influence.
[2]. Theparametétitial defaultparameter value and were carried wuder the

different from that of other researchers [2], [B§].In the
current study, the parameter with the highest sgitgi was
YposHoOwever other researchers found this parameter’s
sensitivity to be ranked ad'§6], 15" [2], and it was excluded
altogether in another study [5]. Also researchBf$dund that
parameter o had the highest sensitivity although it ranked
4" and 27 in other studies [6], [2]. This parameter's
sensitivity was ranked lower in the current stud®".
Considering the second most significant sensitikdtyking in
this study,lgao, it was of the same order as in one study [5],
but it was at a lower position (17th) in other wd#, [6].
Additionally, the current study found thatghad a higher
sensitivity ranking than other studies [2][5]. Hewer its
ranking was lower than reported elsewhere [6]. Harrhore
the sensitivity analysis in other work [15] usedlyotwo
parameters, Yao and Yeos, Here anaerobic/aerobic/anoxic
processes for simultaneous nitrogen and phosphrerusval
on NO; and PQ profiles were examined. One group of
researchers [33Jused manually repeating simulatsn a
sensitivity approach to individual changes in thagmitude of
related parameters for each model parameter. Tashased
on the steady state cyclic simulations @645 Xpra, Sa and
MLSS profiles containing the most sensitive pararset
namely,Yoo04 Ophas Opp Kpha @and lysis rates.

Sep 4: The Iteration Processes with Smulation of the
ASM2d Modeling

The calibration approach here described avoidptbblem
of needingextensive experience in activated sludgéeling
and the difficulty of identifiability analysis.Thigpproach
iterates only based upon the parameter sensitigitstepwise
methodology was used in the mathematical simulation
each of the iterations.The iteration number of each
experimental data set was based on the numberrafngters
in the sensitivity analysis. Use of 30 iterativepst for each of
the parameter data sets, i.e. the same numberampters in
the sensitivity ranking, was used to predict thepou of
NHjand TP in effluentand of RQOn anaerobic phase.The
application of parameter significance ranking waedi to
perform the calibration in order to fit the modeparameter
values to the observed results.The most signifiEmaimeter
was iterated. This was followed byeach of the otB@
parametersincluded in the parameter significancaking
Iterations beguith the

steady state conditions. The effluent NHs the first
experimental data set used to calibrate the ASM&dmeter

in order to observe the autotrophs activity. Aftaliteration the
values for each parameter were found. The resufts o
theNH,experiments are shown in TABLE IV. As a result of
fitting the simulated data to the effluent lHoncentration, it
was found that there are five significant paransetéhey are:
yield of autotrophic biomass per unit of BI® (Y,), the
maximumgrowth rate for autotrophs(i), the decay rate of
Xaut (baut), saturation coefficient for oxygen &K aum),
nitrogen half saturation coefficient for autotroptf&yna aut)-
Maur Was increased to sustain autotrophic growth.
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TABLE IV In addition to -calibration with an experienced-lthse
THE VALUES OF THE CALIBRATEDASM2d PARAMETERS approach to determine EBPR underdifferent
Symbol ASM2d Calibrated value Unit phosphorus/acetate (P/HAc) ratios with the ASM2dieting

in the SBR performance, it has been shown that prly is

Phosphorus-Accumulating Organisms, PAOS necessary to calibrate NHand NQ [33]. A practical

Yeso 0.625 0.60 g COD/g COD identifiability approach for the ASM2d calibratids to select
Ypou 04 04 gP/lgCoOD the parameter subset sizes for autotrophswith tbaéibrated
Yera 0.20 0.23 gCOD/gP parameters: fr, Knne and paur[5].Another study [6] on
CpHa 3.0 35 g Xpualg Xpaold activated sludgeanaerobic/anoxic/oxic (@) pilot
ep 15 15 g Xedg Xeadld WWTPsusingan identifiability approach with the Fsh
T 1.0 10 g Informatiqn Matrix (FIM) tool to'reduce AsSM2d par_eter
beno 0.2 02 g subset sizes used onlyg. This presents a cqllbrgted
b 02 02 autotroph parameter gnd the parameter s_ubset sdn_zAd,
’ < d Ypos MHaur- The calibratedparameters included in the
Beria 0.2 02 g1 simulation of nitrogen removal at the Hanover-Gumuasdd
Kes 02 035 gpimit pilot wastewater treatment plant wergth axi, Nnos Hyds Ky
Autotrophs .
Nte» Mr, Koz Nnozs Knka auti Gpra Opp @Nd Yoos This was
Ya 0.24 024 gCOD/gN based on ASM2d and ASM3P model concepts [34]. This
Haut 1.0 12 g2 current study several parameters govern the fitifigthe
baur 0.15 0.05 d simulation to model to POin anaerobic phase and effluent
Koz aut 0.5 05 oy’ TP. Those parameters (TABLE V) includeipat, Yros
Kina aut 1.00 0.15 g N/ Yerar Opra Opp Mpaos DBoao, bep bena, @nd Kos In another

study [15], Ypao and Yoo, calibrated parameters were used to
) ) ) _investigate the effect of extra acetate on the
Next byr was decreased in relation to increasingpaerobic/aerobic/anoxic (AOA) processes for siamgbus
autotrophic growth rate. Later\k, aut decreased because Ofnitrogen and phosphorus removal based on the ASM2d
low ammonium concentration in the aerobic phaséiBOt  modeling with the additional denitrifying PAOs (DNBs)
and Ko, ayr were from the same as the default valueginetics. That modeling has expressed the optimum
Comparison of the parameter subsets to other @Rpats concentration of supplementary COD and formulathd t
using different protocols is shown in TABLE V. Sificant microorganism metabolism. Thus the application bétt
parameters based upon NH effluent using the experienced-mode“ng to the different wastewater compositiogisgh as
based approach for the experiments of sequencirgh baCOD/N/P, can be conducive to predicting PAOs bedravi
reactors (SBRs) [31] were calibrated. To accorhplisis, [15]. To study phosphorus storage capacity-limitiagd
nutrients were removed under limited aeration ctms. The  hosphorus loading-limiting conditions, there arsighificant
parameters examined includeg gt and Kyna. calibrated parameters includingut, Bhao, Des Bona Gpua
drr Kpna and Yepsused for the predicted simulations ¢
Xphars Sa and MLSS profiles in the sequencing batch reactor
(SBR) performance for EBPR fed with acetate ascdmbon
sole carbon source under different P/HAc ratios].[3he
calibration and simulation of ASM2d model at diffat

TABLEV
THE PARAMETER SUBSETS IN DIFFERENT STUDIES

Parameter subsets Reference

Yeao, YrosYrHa, Opra, Opp Mpao, brao, Dop, DonaKes Ya, This study

Hauts baut, Koz aum Kntia au. temperatures in a phosphorus removal pilot plaoivsthat the
Bpao, Hpao, Gpra, Gpp, Bop, Ki, Nte, baut, Kika, Haut 5] significant calibrated parameters includg, Y, Kg,by, Nnoas
beao, Yeos Haut (6] Ha: Knba, Bas Ypos Gphar Kas Yeao: Heaor Gpp Boao, Kpra,
HAUT, Oty Oy s Mos Hvos Keras Horo [8] Kpp, and I.QAAX [12]..To simulate the € COD, NH,, and PQ
Yio s Kesbis, Mos, L, Kasis ba, Yeos Ghrim Ka, Yono 2] data sets in an activated sludge system, a langengder set
Heao, Gpas brao, Kena, Kiee, Kuuax, [35] was includedhy, inxs, inxi» Kozaut, Knma aut, Baut, Ninos,
Yeaor Yeou [15] br,Knos and Koo, Another study [8] included gar, axi, osa,
g:sT’ K, K, K, Ko, Kon, Yimos, B, Yeoa Gpra Heso [31] Ose Nnos hvds Keua Heaolf this methodology has been
HauTs Boaos b b, ra, Gpes Ko Yeos 133] successful to caliprate .th.e pilot plant. operatio‘ﬁhe
expectation when using this in a full-scale site mduce time
g::T\'(::,: 1Ino3 vo. K e, b, Koz, Mo, K aur, Gova (34] consumption for calculation parameter subset sizes.

[35] Subsequently, operation processes can enhancecsis dif

understanding organism behaviors. However, fluanabf

wastewater characteristics and complexity of ojemat
systems may cause calculation errors.

axi, inxs, inxi, Kozaur, Knta aut, Baut, Nnos, BKnos, Kop
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V. CONCLUSION

The reducing parameter subset to the ASM2d caidirat
has been addressed by evaluating a novel calibrafiproach.
The parameter significant ranking showed that theameters
for PAOs were among the most influential parametershe
model outputs. The parameter sensitivity and thearpater
subsets are related to data available for calimatihe new
calibration analysis uses experimental resultss Bgproach
can enable researchers to reduce heavy compui@iorand
and avoids the need to choose the modeling paresndteis
is a simplified approach for practical use.
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