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Abstract—Meshing is the process of discretizing problem 

domain into many sub domains before the numerical calculation can 
be performed. One of the most popular meshes among many types of 
meshes is tetrahedral mesh, due to their flexibility to fit into almost 
any domain shape. In both 2D and 3D domains, triangular and 
tetrahedral meshes can be generated by using Delaunay triangulation. 
The quality of mesh is an important factor in performing any 
Computational Fluid Dynamics (CFD) simulations as the results is 
highly affected by the mesh quality. Many efforts had been done in 
order to improve the quality of the mesh. The paper describes a mesh 
generation routine which has been developed capable of generating 
high quality tetrahedral cells in arbitrary complex geometry. A few 
test cases in CFD problems are used for testing the mesh generator. 
The result of the mesh is compared with the one generated by a 
commercial software. The results show that no sliver exists for the 
meshes generated, and the overall quality is acceptable since the 
percentage of the bad tetrahedral is relatively small.  The boundary 
recovery was also successfully done where all the missing faces are 
rebuilt. 
 

Keywords—Mesh generation, tetrahedral, CFD, Delaunay.  

I. INTRODUCTION 
HE mesh quality can have a considerable impact on the 
computational analysis, for both CFD and FEA, in terms 

of the accuracy of the solution and the time taken to obtain it. 
Tetrahedrons formed to fill the computational domain need to 
be of required quality in term of shapes and sizes.  Delaunay 
triangulation based algorithm is an effective tool in mesh 
generation. In two-dimension (2D), a set of triangles is a 
Delaunay triangle when none of the triangle having vertex 
inside their circum-circle. This criterion is called empty circle 
properties. The empty circle properties ensure that Delaunay 
triangle will tend to avoid long and skinny triangle (since they 
have larger circum-circle), making them good in numerical 
simulation.   
    One of the most popular Delaunay triangulation algorithms 
for two or higher dimensional space was first introduced 
independently by Bowyer [1] and Watson [2]. In the Bowyer-
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Watson algorithm, each point is processed one point at a time 
and any elements that violate the empty circle properties is 
deleted. The speed of the algorithm depends on how fast the 
elements that violate the Delaunay criteria can be determined 
and a new element set is updated. Triangles/tetrahedral 
generated can be used as a guide to decide where should the 
next vertex to be inserted. In general, in order to ensure 
acceptable quality, the vertex should be inserted as far as 
possible from other vertices [3]. Most of the bad quality 
elements normally have at least one short edge. Therefore, 
inserting a vertex further from existing vertices will reduce the 
likelihood of a new bad element to appear.  
    Although one can use small size elements to produce as 
many tetrahedral as they want to capture the critical region, 
the CPU time for a flow simulation is proportional to the 
number of grid points raised to the power of 3/2 [4]. Hence 
putting large number of elements will certainly take more time 
and resources to solve the problem. Shewchuk used the 
grading refinement algorithm from Jim Ruppert, and achieved 
good angle bounding [2]. 
    In this paper a complete three dimensional tetrahedral mesh 
generation algorithm based on Delaunay triangulation is 
presented. This includes methods to improve the mesh quality 
and delete elements outside the domain. Triangular surface 
mesh of the domain is used as input for the mesher. 

II.  DELAUNAY TRIANGULATION KERNEL 
Following the Bowyer-Watson methodology, the algorithm 

is started with one large cube with five tetrahedral that 
enclosed all the input vertices. Point is inserted one at a time. 
The region affected by this new vertex is determined and a 
new Delaunay triangulation which contains the newly 
introduced point is produced. The process can divided into 
three stages :  

 
(1) BASE searching 
(2) Correction of the CORE 
(3) Triangulation of the CORE and update 

A. BASE Searching 
When a new vertex, P is inserted into a set of Delaunay 

triangles/tetrahedral, some of the cells will violate the empty 
circle criteria as P is inside their circum-sphere. These 
tetrahedral are removed from the mesh set and replaced with 
new tetrahedral set that included point P. 

The easiest method is to check for all existing tetrahedral to 
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identify which of them contain P inside their circum-sphere. 
But this is very time consuming process as the number of 
tetrahedral are large and increasing as the process progress. 
Furthermore, those tetrahedral containing P only consist of 
small portion from entire cells (except for some rare cases). 
Checking all the cells that do not contain P for the inclusion 
test is not efficient.  

To localize the operation, the location of P with respect to 
the tetrahedral set, need to be determined. Following [5], the 
tetrahedron which contains the point P is called BASE. The 
ideal case is to start the search in the vicinity of point P. But, 
in reality, the location to start the search process is not known. 

The search can be started from the last constructed 
tetrahedron when no information is provided. The search 
travel from cell to cell, moves across the faces that make it 
closer to P. The decision to cross the face is only made when 
the “unique node” (node that not belong to the common face) 
of the neighboring tetrahedron is on the same side as the point 
P. That is, the volume sign of the tetrahedron formed by 
taking common face, F with the “unique node” and point P are 
the same. The searching is terminated when no “unique node” 
of the neighbor tetrahedron is on the same side as point P, 
because point P is inside the current tetrahedron.  Fig. 1 shows 
the search path to the BASE in 2D. The elements outside the 
path are ignored. 

 
Fig. 1 Search path to BASE. Only highlighted elements are checked. 

The rest are skipped 

B. Correction of the CORE 
CORE is the cavity that is left behind after the tetrahedral 

that violate the empty circle properties are deleted. The CORE 
can be easily identified when the BASE is known. The search 
can start from the adjacent cells of the BASE, when they are 
found to be part of the CORE, their adjacent cells will be 
checked. The “branch” search process is continued until no 
new tetrahedral is part of the CORE. 

The boundary of the CORE is the faces remain after the 
tetrahedral is removed. Tetrahedral sharing the face give 
positive and negative results to sphere inclusion test. The new 
tetrahedral set is constructed simply by connecting new point 
to the boundary face of the CORE. But, for some rare 
situations, the tetrahedron formed using CORE boundary is 
inverted. Fig. 2 shows one of the case in two dimensional 
problem where one of the new triangle formed is invalid. 

The problem can be solved by applying visibility check. 
That is, every face from the boundary of the CORE must be 

visible to point P. The volume sign of the tetrahedron deleted 
must be the same as the new tetrahedron using the same 
CORE face if point P can “see” the CORE face. Or in other 
words, the vector projected to the new vertex cannot cross any 
CORE boundary. Fig. 3 shows the example of the visibility 
test. The red point is the newly introduced vertex. 

 
Fig. 2 Invalid elements formed 

 
Fig. 3 Visibility Test 

If the inverted cell is detected, the CORE boundary face 
that contributes to this cell is removed by removing 
tetrahedron from the CORE that contains this face. New 
CORE boundary face is established and the visibility check 
continue until all new tetrahedral are valid. This visibility test, 
although simple, is important to ensure the validity of the 
CORE. The volume calculated is used to update the volume 
data later during the triangulation of the CORE. 

C. Triangulation of the CORE 
New triangles/tetrahedral are created by connecting vertex 

P to all the CORE boundary faces. Creating the cell is simple. 
The complicated part is when updating the adjacency data for 
fast searching later. The adjacency data for CORE boundary is 
calculated before the actual construction. The common edge 
of each face pair is also recorded. During actual construction, 
after a CORE face is used, its adjacent faces immediately 
appear in “next to use” list. The adjacency data can be updated 
without the need of search and match since the next three cells 
built must be the neighbors. If the neighbor’s faces are already 
used, only the adjacency data are updated.  

The important parameters that enhance the search such as 
circum-center and circum-radius are calculated right after new 
tetrahedron is built.  They can be easily calculated based on 
the same quantities as the old tetrahedron [5] since they are 
using same CORE face. But, experience shows that the error 
from previous calculation is accumulated and causing 
inaccurate result in sphere inclusion test after some iteration. 
Hence, this was not implemented. 
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D. Data Structure 
In the current mesh generator, double-linked connectivity 

for face and element is used. In this, each tetrahedron will 
store the four vertices and four faces. The face stores three 
vertices and the two tetrahedral that share the face. The reason 
for storing face data instead of adjacent cell data is for the 
ease of extraction of output data for the face based solver. 
Face based solver required information on which cells belong 
to the face. The current data structure can directly provide the 
information without the need to generate them from cell 
information. The adjacent cell of each cell can be obtained 
through visiting the face used by the tetrahedron. 

III. MAINTAINING DOMAIN VALIDITY 
Bowyer-Watson algorithm creates a large convex hull that 

encloses all input data. After input vertices are tetrahedralized, 
some of the tetrahedral generated are outside the domain and 
they may not conform to the input boundary. That is, some 
input triangles are actually missing and result in the surface no 
longer “closed”. The recovery of these missing faces is 
necessary to maintain the validity of the domain. 

A. Boundary Recovery 
The missing segment in 2D can be easily recovered through 

the recursive splitting procedure until the missing segment is 
represented by few sub segments. Since the Delaunay 
triangulation always connects a vertex to its nearest neighbor, 
the entire length can be represented once the vertices spacing 
along the edge is sufficiently small [3].  

But in 3D, a missing face may contain one or more missing 
edges. In the present algorithm, the missing segments and 
faces are recovered separately. All the input edges are first 
checked to know if they already exist. If not, a new vertex is 
added at the center of the missing edge. This process is looped 
until no input segment is missing. 

To recover the missing faces, all missing faces were first 
identified by comparing all input faces to all the faces that 
exist in tetrahedralization data. If no face in tetrahedralization 
data is matched with the input face, the input face is flagged as 
missing. 

The recovery process is divided into two procedures. First 
the swapping process is carried out to recover missing faces as 
much as possible. If the face still cannot be recovered, second 
procedure is done by adding vertex at the missing face. 
Shewchuk [3] added the vertex at the circum-center of the 
missing triangle. In the present procedure, vertex is added at 
the circum-center only when the circum-center lies inside the 
triangle. If not, the vertex is added at the intersecting point 
between the missing triangle and the edge crossing it. Since 
the triangle is missing, they must be crossed by at least one 
edge. If not the triangle is actually not missing and is 
unflagged. 

After swapping and re-meshing, the surface may be 
recovered but in the union of triangles different from the input 
set. In order to identify which triangle lie on the surface, 
Shewchuk [3] proposed that two independent separate data 

sets are maintained for two dimensional and the 
tetrahedralization data. When vertex is added in the three 
dimensional data, the two dimensional data is updated with 
the vertex as well. This will always ensure both triangles in 
two and three dimensional is comparable, making the 
identification easy. 

Due to the different in input style, the two dimensional data 
is not maintained in the present code. This problem is 
countered by maintaining list of “which node is used by which 
surface”. The vertices of new triangle are checked, and all 
possible surfaces are listed out. The new triangle is inside a 
surface when its centroid is inside one of the triangles 
belonging to that surface. When this is true, this new triangle 
will be flagged as belonging to this surface. 

The check and match procedure can be very time 
consuming since it requires comparisons against all existing 
faces. The real flow simulation problem can easily produce 
more than 100,000 faces during initial tetrahedralization. A 
fast search method is used to limit the number of faces that 
need to be checked. In this procedure, a new vertex is added at 
the center of the missing edge or face and the tetrahedron 
containing this vertex is identified. The edge or face exists 
only when they exist at this tetrahedron. By doing this, the rest 
of the faces can be skipped. This method greatly enhanced the 
speed of the boundary recovery process and no extra 
algorithm is needed since the searching algorithm is the same 
with that used in tetrahedralization. The only different is the 
new vertex is deleted after the search, without any 
tetrahedralization. 

B. Domain Recovery 
Since the Delaunay triangulation start by few large cells 

that contain entire input vertices, unwanted cells are also 
generated. They are removed before refinement process to 
avoid unnecessary refinement at the tetrahedral outside 
domain. Surprisingly, despite its importance, only few of the 
grid generation papers discuss this topic in depth. 

Some of the tetrahedral which lie outside the domain can be 
easily identified since they use at least one of the non input 
vertices. The problem arises when the domain shape is non 
convex or having internal boundary. They cannot be identified 
through node index since all their nodes are input vertices. 

The point in solid test is used to identify tetrahedral which 
are outside the domain. Taking advantage that the centroid of 
the tetrahedron will always lies inside itself, it is used as point 
to test to decide if this tetrahedron is inside the domain. The  
point in solid test algorithm presently used is based on Jordan 
Curve Theorem [6]. The theorem says, any simple closed 
curve C divides the points of the plane not on C into two 
distinct domains (with no points in common) of which C is the 
common boundary [7]. So in practice, casting a ray from a 
point to any direction will give a number of intersections with 
the boundary.  If the intersecting count is odd, the point is 
inside closed surface. If the count is even or zero, the point is 
outside. The process is also called “ray-casting”. Fig. 4 shows 
example of the ray casting. Red ray having even intersecting, 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:10, 2009

810

 

 

hence the starting point of the ray is outside domain (grey 
region). Blue ray having odd intersecting count (inside) and 
green ray is special case (parallel with the segment). Another 
ray must recast to different direction.  

 
Fig. 4 Five points tested using ray casting 

The advantage of the ray-casting method is that it needs no 
pre-computed data. The input triangles can be used directly as 
boundary faces. The concept is very simple and easy to 
implement. The drawback of the ray-casting is uncertainty 
arise when the ray is intersecting with the edge or vertex, or 
coplanar face is found. In this case, a new ray must be cast at 
the different direction until no special case detected. The 
intersecting calculation must be restarted from beginning 
when such special case is encountered resulting in waste of 
time. 

The ray casting test can be very time consuming when the 
input face number is large (which will lead to many 
tetrahedral generated) and complex (more special case 
encountered). In order to limit the triangles that need to check 
for intersecting, only the triangles at the location that possibly 
crossed by ray will be check for intersection. For example, if a 
ray starts from point P toward +x direction, triangles that are 
having all three vertices lie behind point P (in –x direction 
when viewed from point P) can be discarded, since they are on 
the opposite side of the ray direction. 

The domain recovery process can be even faster if the 
number of tetrahedral that need to undergo ray-casting check 
can further reduced.  This can be done by taking advantage of 
the flagged face data from previous boundary recovery 
process. All triangles that represent the input surface is 
flagged and internal triangles is flagged as zero (default 
value). The process can be started from any of the tetrahedron 
that uses triangle having non zero flagged, which indicate that 
this tetrahedron is using boundary face. If it lies outside the 
domain after being tested by ray-casting, all of its neighbors 
will be put into delete list, except for the neighbor that is 
sharing boundary face with the current cell. The process is 
very similar to that described in [8], which employs a “triangle 
eating virus” at a point specify by user. The “virus” spread 
around until it stops by segments. The present method uses 
ray-casting to automatically decide where this “virus” should 
be planted, hence no user intervention is needed. 

This domain recovery method is strongly tied up with the 
robustness of previous boundary recovery scheme. Even with 
only one of the surface triangle missing, the “virus” will 
infiltrate into the domain through the hole on the surface. 

Hence all tetrahedral is considered outside domain and 
deleted. 

IV. REFINEMENT SCHEME 

A. Quality Measurement 
In numerical simulation, the shape of the elements affects 

the accuracy and stability of the simulation. For tetrahedral, 
large angle will give large interpolation error, which lead to 
instability of the simulation; while small angle tend to produce 
ill condition matrix [9]. Hence the refinement scheme must be 
able to avoid the creation of these two types of elements 
(often tetrahedron with large angle will contain small angle at 
the other side also). Quality measurement used must be able to 
detect such elements.  

In 2D, radius to shortest edge ratio is a good quality 
measurement, since minimizing this ratio will also maximize 
minimum angle of the triangle. But in 3D this is not always 
the case. The radius to shortest edge ratio in 3D can detect 
most of the bad quality tetrahedral, except for sliver, which is 
the tetrahedron that has its four vertices equally spaced, with 
one vertex slightly off the equator [3]. Sliver has nearly zero 
volume, and angle close to 0˚or 180˚. The creation of the 
sliver is the natural output of the Delaunay triangulation rather 
than numerical error [5]. Even well spaced input cannot 
prevent sliver [10,11]. Fig. 5 shows example of some bad 
elements and sliver. Most of the bad elements except for sliver 
contain at least one short edge compare to the ideal 
tetrahedron. 

 
Fig. 5 Bad elements (middle 3) compared to ideal tetrahedron 

(left) and sliver (right) 
 
Volumetric skewness is the ratio of the cell volume to the 

maximum possible volume under cells circum-radius. It can 
detect almost any kind of bad tetrahedron including sliver 
(near to zero in volumetric skewness). But it is too strict as 
quality measurement since it also identify tetrahedral that   
have good angle but skinny as very bad quality. In reality 
these elements are harmless, except that they are wasting 
vertices [9]. Attempt to improve them will create even more 
cells and vertices. Radius ratio (ratio of circum-radius to the 
inscribe radius) give the similar problem. 

B. Vertex Addition 
After the initial tetrahedralization and domain recovery, the 

tetrahedral are refined by inserting vertex at circum-centre of 
bad quality cells. The process is repeated until all tetrahedral 
are within the bound of the quality parameter (except those 
near the boundary, since their circum-centre may be outside of 
the domain).  

Despite the failure to detect sliver, the radius to shortest 
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edge ratio is still preferred as the primary quality parameter 
during the mesh refinement. If the maximum radius to shortest 
edge allowed, is set to 1, the algorithm is guaranteed to 
terminate when a new vertex at the circum-centre of the 
elements is inserted, as the edge of the new tetrahedron is at 
least the same length as the radius of the deleted tetrahedron 
[3,12]. No edge shorter than pre-existing edge can be created. 
So, the algorithm will terminate when it run out of space to 
add new vertex. 

“Auto sizing” based on the input surface can also be 
included. Here, each vertex is assigned a weight based on the 
length of the edges using the vertex. Later the maximum of 
the tetrahedral is the average weight of the tetrahedral 
vertices. Hence the tetrahedron using small input surface has 
small final size. A weight of the new vertex added (at the 
circum-centre) is slowly increased by the expansion rate of 1.2 
until the maximum allowable size is achieved. Hence elements 
away from boundary will have uniform size. 

C. Topology Transformation 
After the vertex insertion process, the only bad tetrahedral 

lefts are those having high “sliverness”. They are improved by 
applying swapping. Swapping is the process of changing 
connectivity of the cell while keeping the vertex location 
static. Swapping is also called topology transformation. 

Since sliver cannot be detected through radius to shortest 
edge ratio, after vertex insertion process the quality parameter 
used is dihedral angle. Both minimum and maximum dihedral 
angle is recorded to keep the current quality state of the 
tetrahedron. The mesh improvement scheme only target 
elements which have quality worst than a specified angle. 

Most of the sliver can be removed by applying 3-2 swap. 
The diagonal edge of the sliver is used as reference and the 
two other tetrahedral that are using this edge are found. Later 
this common edge is swapped hence the sliver will disappear. 
The swap 3-2 can also be reversed to become swap2-3. In 
swap 2-3 common face of the two tetrahedral is destroyed and 
replaced with common edge that are used by three elements.  
Cheng et al. [10] removed most of the Sliver through this 
method. Fig. 6 shows the swap 3-2 and swap 2-3 operation. 

 

 
Fig.6 Swap 3-2 and swap 2-3 Operation 

   Other topology transformations are swap 4-4 and swap 2-2. 
Swap 4-4 is used to change the common edge connectivity of 
the 4 tetrahedral without changing the number of elements. 
Swap 2-2 is very similar to swap 4-4 but working on the 

common edge that lies on the boundary and shared by two 
tetrahedral. Fig.7 shows these two operations. 

 
Fig. 7 Swap 4-4 and swap 2-2 

    The more general topology transformations used for any 
number of tetrahedral larger than four are edge removal and 
multi-face removal. They are the reverse of each other. Edge 
removal replaces common edge of a group of tetrahedral with 
a few faces created by non common nodes of those elements. 
Multi-face removal, as the name suggests, remove all the faces 
between two common nodes and replace with an edge 
connecting them. Fig. 8 shows these two operations, where 
common edge AB is replaced with 3 internal faces in edge 
removal process, and in multi-face removal these three 
internal faces are deleted and edge AB is restored. 

 
Fig. 8 Multi-face removal and edge removal 

 
    Topology transformation is local. It only changes small 
number of elements around the targeted region. All dihedral 
angles after transformation are calculated and compared with 
the value before. The transformation is only accepted when 
the worst case after swapping is better than before. This is to 
ensure the mesh can only improved and never become worst. 

D. Smoothing 
Smoothing is the opposite of swapping. It changes the 

position of the vertices without touching their connectivity. 
For triangular and tetrahedral elements, the popular smoothing 
method is Laplacian smoothing, which move the vertex 
toward the centroid of the polygon formed by surrounding 
vertices [9]. With the connectivity table, the surrounding 
nodes can easily be found and the process is local as in 
topology transformation. The drawback of Laplacian 
smoothing is that its quality function of the tetrahedron is not 
a smooth function of the vertex coordinate. Hence the quality 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:10, 2009

812

 

 

after smoothing may be worst than before. Pierre et al. [11] 
uses variational tetrahedral meshing to optimize vertex 
position by minimizing the energy function, but their mesh 
generated is not conform to input boundary. Klingner et al. [9] 
uses non-smooth optimized smoothing to counter this 
problem, and extends it to boundary smoothing for flat 
surface. 

In the present work, Laplacian smoothing is used due to its 
speed and ease of implementation. A similar approach as in 
topology transformation is used to ensure that no element after 
smoothing is worst than before. 
    The swapping- smoothing procedure is repeated iteratively. 
This means that after all tetrahedral are swapped, smoothing is 
applied to the remaining bad elements that failed to improve 
by swapping. It was found that, this approach successfully 
improve many tetrahedral that cannot be improved by 
swapping or smoothing alone. After smoothing, even though 
the element quality is still far from ideal, it allowed the 
swapping operation to be applied on tetrahedron that failed to 
swap during the last iteration. 

V. RESULTS AND DISCUSSION 
Two models in CFD problem are tested and compared with 

results from a popular commercial meshing software to 
generate tetrahedral elements. 

A. Exhaust Tube 
The flow inside a typical exhaust tube of an automobile is 

investigated to find out why the outer tube is dirtier, which 
means more carbon is passing through outer side of the tube. 
The geometry and surface mesh is shows in Fig. 9. Uniform 
surface mesh is used in this case. 

 
Fig. 9 Exhaust tube and the input surface mesh 

 
Using the same surface mesh, the result obtained from the 

present mesher and the commercial mesh generator are 
compared. The elements generated using the present mesher is 
11183, while the commercial mesh generator generated 13858 
elements. Fig. 10 shows the cutting view of both meshes. 
Elements form the commercial mesh generator looks slightly 
smaller. This may explained why their number of elements is 
higher. 

The cutting view shows that the mesh distribution and size 

is uniform for both cases. No extreme skew or unrefined 
element is found. A more in-depth quality investigation is 
done using mesh examination tools. Only tetrahedral having 
angular skewness larger or equal to 0.6 (θmin≤28.2ْ , 
θmax≥136.2ْ ) are displayed. Fig. 11 shows the result obtained 
using the present mesher. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 10. Cutting view of the elements generated. Top: Present Mesh 
Generator, Bottom: Commercial Mesh Generator 

 
Fig. 11 Bad elements from the present mesh generator 

 
Only 48 elements (0.43%) are having angular skewness 

higher than 0.6. The worst element detected is 0.69 (21.86ْ , 
146.06ْ ), which is still inside acceptable range. Many of the 
elements are in between 0.3 (49.37ْ , 103.37ْ ) and 0.4 (42.32ْ 
, 114.32ْ ), consist of 37.71%. The commercial mesh generator 
generated more tetrahedral higher than 0.6 skewness, with 
total number of 224 elements (1.62%) with the worst element 
with skewness of 0.77 (16.22ْ , 154.82ْ ). As in the present 
mesh generator, large number of elements is in between 0.3 
and 0.4 (38.92%). Fig. 12 shows the result obtained from the 
commercial mesh generator. 
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 B. Car 
Flow over a car is a typical CFD problem in automobile 

industry. Often, to save the meshing and simulation time and 
due to the symmetry, only one half of the car will be 
simulated. The car is placed inside a large domain box. Mesh 
is generated in the region between surface of the car and 
domain box boundary. The geometry of the car and is shown 
in Fig. 13. Fig. 14 shows the entire flow domain.  

 
Fig. 12 Bad elements from the commercial mesh generator 

 
Fig. 13 Car Geometry 

 
Fig. 14 Meshing Domain 

The car will have surface mesh much finer than the domain 
box. For the domain box boundaries that are touching the car, 
the grading surface mesh is applied on that surface. This is to 
provide smooth transition between the mesh on car and the 
domain box. Otherwise very skewed meshes are generated 
around the edge segment of the car. Fig. 15 shows the surface 
mesh of the car and the mesh of the symmetry boundary face. 

The triangle on the surface and around the car is much 
smaller than maximum triangle in the domain (on the surface 
of the domain box). This provides an opportunity to test if the  

auto growing function employed is good enough in real 
engineering application. 

 

 
Fig. 15 Surface mesh of the car 

 
The present mesh generator generated 84668 elements 

compare to the commercial mesh generator 73209 elements. It 
is believed that the big different in element number is due to 
different in growth rate. In the commercial mesh generator, 
only the default settings were without employing any specific 
growth function; hence the volume mesh size is only affected 
by the input surface mesh. Mesh from the commercial mesh 
generator has only short transition distance before it grows to 
large, uniform mesh. Both result from the present and the 
commercial mesh generators are shown in Figures 16 and 17 
respectively. 

 
 
 
 

 
 
 
 
 
 
 

 
 

Fig. 16 Cutting view of car mesh generated by the present mesh 
generator 

 
 
 
 
 
 
 
 
 
 

 

Fig. 17. Cutting view of car mesh generated by the commercial mesh 
generator 
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In term of quality, the present mesh generator is superior 
than the commercial mesh generator in term of angular 
skewness measurement. It only generated 201 elements 
(0.24%) with skewness 0.6 and above; while the commercial 
mesh generator has 2492 elements (4.02%) over 0.6 skewness. 
The worst element generated is 0.76 (16.93ْ ,153.73ْ ), 
compared to commercial mesh generator 0.80 (14.1ْ ,158.11ْ ). 
Figures 18 and 19 are comparison of bad elements between 
the present and the commercial mesh generators respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18 Bad elements from the present mesh generator 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. Bad elements from the commercial mesh generator 
 
Both meshes generated did not contain any sliver. But this 

is partly because the input surface mesh did not contain small 
angle and the surface is smooth and in good quality. Reports 
shows that most of the sliver survived is at the boundary, 
especially near small angle [3,9,10].  

VI. CONCLUSION 
A complete tetrahedral mesh generator based on the 

Delaunay triangulation is presented. The quality of the mesh 
generated is acceptable and comparable to commercial mesh 
generator. It was found that the iterative swap-smooth 
approach, although simple, is very effective in removing bad 
quality tetrahedral.  

The disadvantage of the present scheme is that the number 
of tetrahedral generated is much larger when come to grading, 
due to the use of strict growth rules. Furthermore, in the 
present mesher, theoretically sliver can still survive. But as in 
other Delaunay refinement scheme, in practice sliver can often 
be removed during mesh improvement stage. 

The possible future work is the development of the 

automatic surface mesher. Currently, it is assumed that the 
surface mesh provided is already closed, which may not 
always be true. Combination of surface mesher and current 
volume mesher can further increase the robustness of 
boundary and domain recovery scheme since the surface patch 
is now known, which provide the possibility of improving 
surface mesh to suite the need of the volume mesh. 
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