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Certain Conditions for Strongly Starlike and
Strongly Convex Functions
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Abstract—In the present paper, we investigate a differential subor-
dination involving multiplier transformation related to a sector in the
open unit disk E = {z : |z| < 1}. As special cases to our main
result, certain sufficient conditions for strongly starlike and strongly
convex functions are obtained.
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I. INTRODUCTION

LET H be the class of functions analytic in the open unit
disk E = {z : |z| < 1} and for a ∈ C (set of complex

numbers) and n ∈ N = {1, 2, · · · }, let H[a, n] be the subclass
of H consisting of functions f of the form

f(z) = a+ anz
n + an+1z

n+1 + · · · .
Let A be the class of functions f , analytic in E and

normalized by the conditions f(0) = f ′(0) − 1 = 0.
A function f ∈ A is said to be strongly starlike of order α,

0 < α ≤ 1, if ∣∣∣∣arg
zf ′(z)
f(z)

∣∣∣∣ < απ

2
,

equivalently
zf ′(z)
f(z)

≺
(

1 + z

1 − z

)α

.

A function f ∈ A is said to be strongly convex of order α,
0 < α ≤ 1, if ∣∣∣∣arg

(
1 +

zf ′′(z)
f ′(z)

)∣∣∣∣ < απ

2
,

equivalently

1 +
zf ′′(z)
f ′(z)

≺
(

1 + z

1 − z

)α

.

For two analytic functions f and g in the open unit disk E,
we say that f is subordinate to g in E and write as f ≺ g if
there exists a Schwarz function w analytic in E with w(0) = 0
and |w(z)| < 1, z ∈ E such that f(z) = g(w(z)).

In case the function g is univalent, the above subordination
is equivalent to f(0) = g(0) and f(E) ⊂ g(E).
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Let Ap denote the class of functions of the form

f(z) = zp +
∞∑

k=p+1

akz
k, p ∈ N,

which are analytic in the open unit disk E = {z : |z| < 1}.
We note that A1 = A.

For f ∈ Ap, we define the multiplier transformation
Ip(n, λ) as

Ip(n, λ)[f ](z) = zp+
∞∑

k=p+1

(
k + λ

p+ λ

)n

akz
k, (λ ≥ 0, n ∈ Z).

The operator Ip(n, λ) has been recently studied by Aghalary
et al. [1]. Earlier, the operator I1(n, λ) was investigated by
Cho and Kim [2] and Cho and Srivastava [3], whereas the
operator I1(n, 1) was studied by Uralegaddi and Somanatha
[9]. I1(n, 0) is the well-known Sălăgean [8] derivative operator
Dn, defined as:

Dn[f ](z) = z +
∞∑

k=2

knakz
k, n ∈ N0 = N ∪ {0}

where f ∈ A.
In 1989, the operator I1(n, 0) has been studied by Owa,

Shen and Obradovic̆ [7]. Recently, Li and Owa [4] studied
the operator I1(n, 0). Many significant results regarding the
operator Ip(n, λ) have been obtained by different authors.

In the present paper, we study a differential subordination
involving multiplier transformation in a sector. As special
cases to our main result, we derive some simple sufficient
conditions for members of the class A to be strongly starlike
and strongly convex functions.

II. PRELIMINARIES

We shall need the following lemma to prove the main result.
Lemma 2.1: ([5]). Let μ > 0 be a real number and let β0 =

β0(μ, n), n ∈ N be the root of the equation βπ =
3π
2

−
arctan(nμβ).

Let

α = α(β, μ, n) = β +
2
π

arctan(nμβ), 0 < β ≤ β0. (1)

If P ∈ H[1, n], then P (z)+μzP ′(z) ≺
(

1 + z

1 − z

)α

implies

P (z) ≺
(

1 + z

1 − z

)β

.
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III. MAIN RESULT

Theorem 3.1: If f ∈ Ap satisfies

(1 − γ)
Ip(n, λ)[f ](z)

zp
+ γ

Ip(n+ 1, λ)[f ](z)
zp

≺
(

1 + z

1 − z

)α

,

(2)
then

Ip(n+ 1, λ)[f ](z)
Ip(n, λ)[f ](z)

≺
(

1 + z

1 − z

)δ

,

where α = α

(
γ

p+ λ
, δ

)
satisfies the equation

2 arctan
[

γ

p+ λ
(δ − α)

]
+ π(δ − 2α) = 0, (3)

and γ and δ are real numbers such that γ ≥ 1, 0 < δ ≤ 1.
Proof: Let us define

Ip(n, λ)[f ](z)
zp

= u(z). (4)

Differentiate (4) logarithmetically, we obtain

zI ′p(n, λ)[f ](z)
Ip(n, λ)[f ](z)

− p =
zu′(z)
u(z)

. (5)

In view of the equality

zI ′p(n, λ)[f ](z) = (p+λ)Ip(n+1, λ)[f ](z)−λIp(n, λ)[f ](z),

(5) reduces to

Ip(n+ 1, λ)[f ](z)
Ip(n, λ)[f ](z)

= 1 +
zu′(z)

(p+ λ)u(z)
.

A little calculation yields
u(z) +

γ

p+ λ
zu′(z)

= (1 − γ)
Ip(n, λ)[f ](z)

zp
+ γ

Ip(n+ 1, λ)[f ](z)
zp

.

Therefore, in view of (2), we have

u(z) +
γ

p+ λ
zu′(z) ≺

(
1 + z

1 − z

)α

. (6)

We note that for α + β = δ and μ =
γ

p+ λ
, the condition

(3) corresponds to the condition (1) of Lemma 2.1. Therefore,
in view of Lemma 2.1, we have

u(z) ≺
(

1 + z

1 − z

)β

(7)

where β satisfies the condition (1) of Lemma 2.1.
Let us, now, write u(z)+

γ

p+ λ
zu′(z) = v(z) and therefore,

we have
Ip(n+ 1, λ)[f ](z)

zp
=

(
1 − 1

γ

)
u(z) +

1
γ
v(z).

Obviously,
Ip(n+ 1, λ)[f ](z)

zp
is a convex combination of

u(z) and v(z).
In view of condition (1) of Lemma 2.1, we conclude that

α > β, thus, from (6) and (7), we have

Ip(n+ 1, λ)[f ](z)
zp

≺
(

1 + z

1 − z

)α

. (8)

Write w(z) =
Ip(n+ 1, λ)[f ](z)
Ip(n, λ)[f ](z)

, obviously w ∈ H[1, 1]

and we can rewrite w as

w(z) =
Ip(n+ 1, λ)[f ](z)/zp

u(z)
.

From (7) and (8),we obtain

| argw(z)| ≤
∣∣∣∣arg

Ip(n+ 1, λ)[f ](z)
zp

∣∣∣∣ + | arg u(z)|

< α
π

2
+ β

π

2
= (α+ β)

π

2
= δ

π

2
.

Hence, we have

Ip(n+ 1, λ)[f ](z)
Ip(n, λ)[f ](z)

≺
(

1 + z

1 − z

)δ

, z ∈ E.

IV. APPLICATIONS TO UNIVALENT FUNCTIONS

In this section, using Theorem 3.1, we derive certain suf-
ficient conditions for strongly starlike and strongly convex
functions.

On writing p = 1 and λ = 0 in Theorem 3.1. We have the
following result.

Corollary 4.1: If f ∈ A satisfies

(1 − γ)
Dn[f ](z)

z
+ γ

Dn+1[f ](z)
z

≺
(

1 + z

1 − z

)α

,

then
Dn+1[f ](z)
Dn[f ](z)

≺
(

1 + z

1 − z

)δ

,

where α = α(γ, δ) satisfies the equation

2 arctan[γ(δ − α)] + π(δ − 2α) = 0,

and γ and δ are real numbers with γ ≥ 1, 0 < δ ≤ 1.
When we select p = 1, n = 0 and λ = 0 in Theorem 3.1.

We obtain the following result of Oros [6].
Corollary 4.2: If f ∈ A satisfies

(1 − γ)
f(z)
z

+ γ f ′(z) ≺
(

1 + z

1 − z

)α

,

then
zf ′(z)
f(z)

≺
(

1 + z

1 − z

)δ

,

where α = α(γ, δ) satisfies the equation

2 arctan[γ(δ − α)] + π(δ − 2α) = 0,

and γ and δ are real numbers with γ ≥ 1, 0 < δ ≤ 1.
By taking p = 1, n = 1 and λ = 0 in Theorem 3.1. We

obtain the following result.
Corollary 4.3: If f ∈ A satisfies

f ′(z) + γ zf ′′(z) ≺
(

1 + z

1 − z

)α

,

then

1 +
zf ′′(z)
f ′(z)

≺
(

1 + z

1 − z

)δ

,
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where α = α(γ, δ) satisfies the equation

2 arctan[γ(δ − α)] + π(δ − 2α) = 0,

and γ and δ are real numbers with γ ≥ 1, 0 < δ ≤ 1.
By setting p = 1, n = 0 and λ = 1 in Theorem 3.1. We

have the following result.
Corollary 4.4: If f ∈ A satisfies

(
1 − γ

2

) f(z)
z

+
γ

2
f ′(z) ≺

(
1 + z

1 − z

)α

,

then
1
2

(
1 +

zf ′(z)
f(z)

)
≺

(
1 + z

1 − z

)δ

,

where α = α
(γ

2
, δ

)
satisfies the equation

2 arctan
[γ
2
(δ − α)

]
+ π(δ − 2α) = 0,

and γ and δ are real numbers such that γ ≥ 1, 0 < δ ≤ 1.
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