Certain Conditions for Strongly Starlike and Strongly Convex Functions

Sukhwinder Singh Billing, Sushma Gupta and Sukhjit Singh Dhaliwal

Abstract

In the present paper, we investigate a differential subordination involving multiplier transformation related to a sector in the open unit disk $\mathbb{E}=\{z:|z|<\mathbf{1}\}$. As special cases to our main result, certain sufficient conditions for strongly starlike and strongly convex functions are obtained.

Keywords-Analytic function, Multiplier transformation, Strongly starlike function, Strongly convex function.

I. Introduction

LET \mathcal{H} be the class of functions analytic in the open unit disk $\mathbb{E}=\{z:|z|<1\}$ and for $a \in \mathbb{C}$ (set of complex numbers) and $n \in \mathbb{N}=\{1,2, \cdots\}$, let $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of functions f of the form

$$
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots
$$

Let \mathcal{A} be the class of functions f, analytic in \mathbb{E} and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$.

A function $f \in \mathcal{A}$ is said to be strongly starlike of order α, $0<\alpha \leq 1$, if

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\alpha \pi}{2}
$$

equivalently

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha} .
$$

A function $f \in \mathcal{A}$ is said to be strongly convex of order α, $0<\alpha \leq 1$, if

$$
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\alpha \pi}{2}
$$

equivalently

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha}
$$

For two analytic functions f and g in the open unit disk \mathbb{E}, we say that f is subordinate to g in \mathbb{E} and write as $f \prec g$ if there exists a Schwarz function w analytic in \mathbb{E} with $w(0)=0$ and $|w(z)|<1, z \in \mathbb{E}$ such that $f(z)=g(w(z))$.

In case the function g is univalent, the above subordination is equivalent to $f(0)=g(0)$ and $f(\mathbb{E}) \subset g(\mathbb{E})$.

Sukhwinder Singh Billing is with the Deaprtment of Applied Sciences, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib-140 407, Punjab, India.

E-mail: ssbilling@gmail.com
Sushma Gupta and Sukhjit Singh Dhaliwal are with the Department of Mathematics, Sant Longowal Institute of Engineering \& Technology, Longowal - 148106 (Deemed University), Sangrur, Punjab, India.

E-mails: sushmagupta1 @yahoo.com, sukhjit_d@yahoo.com
Manuscript received January 7, 2010.

Let \mathcal{A}_{p} denote the class of functions of the form

$$
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, p \in \mathbb{N}
$$

which are analytic in the open unit disk $\mathbb{E}=\{z:|z|<1\}$. We note that $\mathcal{A}_{1}=\mathcal{A}$.

For $f \in \mathcal{A}_{p}$, we define the multiplier transformation $I_{p}(n, \lambda)$ as
$I_{p}(n, \lambda)[f](z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k},(\lambda \geq 0, n \in \mathbb{Z})$.
The operator $I_{p}(n, \lambda)$ has been recently studied by Aghalary et al. [1]. Earlier, the operator $I_{1}(n, \lambda)$ was investigated by Cho and Kim [2] and Cho and Srivastava [3], whereas the operator $I_{1}(n, 1)$ was studied by Uralegaddi and Somanatha [9]. $I_{1}(n, 0)$ is the well-known Sălăgean [8] derivative operator D^{n}, defined as:

$$
D^{n}[f](z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}
$$

where $f \in \mathcal{A}$.
In 1989, the operator $I_{1}(n, 0)$ has been studied by Owa, Shen and Obradovič [7]. Recently, Li and Owa [4] studied the operator $I_{1}(n, 0)$. Many significant results regarding the operator $I_{p}(n, \lambda)$ have been obtained by different authors.

In the present paper, we study a differential subordination involving multiplier transformation in a sector. As special cases to our main result, we derive some simple sufficient conditions for members of the class \mathcal{A} to be strongly starlike and strongly convex functions.

II. Preliminaries

We shall need the following lemma to prove the main result. Lemma 2.1: ([5]). Let $\mu>0$ be a real number and let $\beta_{0}=$ $\beta_{0}(\mu, n), n \in \mathbb{N}$ be the root of the equation $\beta \pi=\frac{3 \pi}{2}-$ $\arctan (n \mu \beta)$.

Let

$$
\begin{equation*}
\alpha=\alpha(\beta, \mu, n)=\beta+\frac{2}{\pi} \arctan (n \mu \beta), 0<\beta \leq \beta_{0} \tag{1}
\end{equation*}
$$

If $P \in \mathcal{H}[1, n]$, then $P(z)+\mu z P^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha}$ implies
$P(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta}$.

III. Main Result

Theorem 3.1: If $f \in \mathcal{A}_{p}$ satisfies

$$
\begin{equation*}
(1-\gamma) \frac{I_{p}(n, \lambda)[f](z)}{z^{p}}+\gamma \frac{I_{p}(n+1, \lambda)[f](z)}{z^{p}} \prec\left(\frac{1+z}{1-z}\right)^{\alpha}, \tag{2}
\end{equation*}
$$

then

$$
\frac{I_{p}(n+1, \lambda)[f](z)}{I_{p}(n, \lambda)[f](z)} \prec\left(\frac{1+z}{1-z}\right)^{\delta}
$$

where $\alpha=\alpha\left(\frac{\gamma}{p+\lambda}, \delta\right)$ satisfies the equation

$$
\begin{equation*}
2 \arctan \left[\frac{\gamma}{p+\lambda}(\delta-\alpha)\right]+\pi(\delta-2 \alpha)=0 \tag{3}
\end{equation*}
$$

and γ and δ are real numbers such that $\gamma \geq 1,0<\delta \leq 1$.
Proof: Let us define

$$
\begin{equation*}
\frac{I_{p}(n, \lambda)[f](z)}{z^{p}}=u(z) . \tag{4}
\end{equation*}
$$

Differentiate (4) logarithmetically, we obtain

$$
\begin{equation*}
\frac{z I_{p}^{\prime}(n, \lambda)[f](z)}{I_{p}(n, \lambda)[f](z)}-p=\frac{z u^{\prime}(z)}{u(z)} \tag{5}
\end{equation*}
$$

In view of the equality

$$
z I_{p}^{\prime}(n, \lambda)[f](z)=(p+\lambda) I_{p}(n+1, \lambda)[f](z)-\lambda I_{p}(n, \lambda)[f](z),
$$

(5) reduces to

$$
\frac{I_{p}(n+1, \lambda)[f](z)}{I_{p}(n, \lambda)[f](z)}=1+\frac{z u^{\prime}(z)}{(p+\lambda) u(z)} .
$$

A little calculation yields

$$
\begin{aligned}
& u(z)+\frac{\gamma}{p+\lambda} z u^{\prime}(z) \\
& \quad=(1-\gamma) \frac{I_{p}(n, \lambda)[f](z)}{z^{p}}+\gamma \frac{I_{p}(n+1, \lambda)[f](z)}{z^{p}} .
\end{aligned}
$$

Therefore, in view of (2), we have

$$
\begin{equation*}
u(z)+\frac{\gamma}{p+\lambda} z u^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha} . \tag{6}
\end{equation*}
$$

We note that for $\alpha+\beta=\delta$ and $\mu=\frac{\gamma}{p+\lambda}$, the condition (3) corresponds to the condition (1) of Lemma 2.1. Therefore, in view of Lemma 2.1, we have

$$
\begin{equation*}
u(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta} \tag{7}
\end{equation*}
$$

where β satisfies the condition (1) of Lemma 2.1.
Let us, now, write $u(z)+\frac{\gamma}{p+\lambda} z u^{\prime}(z)=v(z)$ and therefore, we have

$$
\frac{I_{p}(n+1, \lambda)[f](z)}{z^{p}}=\left(1-\frac{1}{\gamma}\right) u(z)+\frac{1}{\gamma} v(z) .
$$

Obviously, $\frac{I_{p}(n+1, \lambda)[f](z)}{z^{p}}$ is a convex combination of $u(z)$ and $v(z)$.

In view of condition (1) of Lemma 2.1, we conclude that $\alpha>\beta$, thus, from (6) and (7), we have

$$
\begin{equation*}
\frac{I_{p}(n+1, \lambda)[f](z)}{z^{p}} \prec\left(\frac{1+z}{1-z}\right)^{\alpha} . \tag{8}
\end{equation*}
$$

Write $w(z)=\frac{I_{p}(n+1, \lambda)[f](z)}{I_{p}(n, \lambda)[f](z)}$, obviously $w \in \mathcal{H}[1,1]$ and we can rewrite w as

$$
w(z)=\frac{I_{p}(n+1, \lambda)[f](z) / z^{p}}{u(z)} .
$$

From (7) and (8),we obtain

$$
\begin{aligned}
|\arg w(z)| \leq & \left|\arg \frac{I_{p}(n+1, \lambda)[f](z)}{z^{p}}\right|+|\arg u(z)| \\
& <\alpha \frac{\pi}{2}+\beta \frac{\pi}{2}=(\alpha+\beta) \frac{\pi}{2}=\delta \frac{\pi}{2} .
\end{aligned}
$$

Hence, we have

$$
\frac{I_{p}(n+1, \lambda)[f](z)}{I_{p}(n, \lambda)[f](z)} \prec\left(\frac{1+z}{1-z}\right)^{\delta}, z \in \mathbb{E} .
$$

IV. Applications to Univalent Functions

In this section, using Theorem 3.1, we derive certain sufficient conditions for strongly starlike and strongly convex functions.

On writing $p=1$ and $\lambda=0$ in Theorem 3.1. We have the following result.

Corollary 4.1: If $f \in \mathcal{A}$ satisfies

$$
(1-\gamma) \frac{D^{n}[f](z)}{z}+\gamma \frac{D^{n+1}[f](z)}{z} \prec\left(\frac{1+z}{1-z}\right)^{\alpha}
$$

then

$$
\frac{D^{n+1}[f](z)}{D^{n}[f](z)} \prec\left(\frac{1+z}{1-z}\right)^{\delta}
$$

where $\alpha=\alpha(\gamma, \delta)$ satisfies the equation

$$
2 \arctan [\gamma(\delta-\alpha)]+\pi(\delta-2 \alpha)=0
$$

and γ and δ are real numbers with $\gamma \geq 1,0<\delta \leq 1$.
When we select $p=1, n=0$ and $\lambda=0$ in Theorem 3.1. We obtain the following result of Oros [6].

Corollary 4.2: If $f \in \mathcal{A}$ satisfies

$$
(1-\gamma) \frac{f(z)}{z}+\gamma f^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\delta},
$$

where $\alpha=\alpha(\gamma, \delta)$ satisfies the equation

$$
2 \arctan [\gamma(\delta-\alpha)]+\pi(\delta-2 \alpha)=0
$$

and γ and δ are real numbers with $\gamma \geq 1,0<\delta \leq 1$.
By taking $p=1, n=1$ and $\lambda=0$ in Theorem 3.1. We obtain the following result.

Corollary 4.3: If $f \in \mathcal{A}$ satisfies

$$
f^{\prime}(z)+\gamma z f^{\prime \prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha},
$$

then

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec\left(\frac{1+z}{1-z}\right)^{\delta}
$$

where $\alpha=\alpha(\gamma, \delta)$ satisfies the equation

$$
2 \arctan [\gamma(\delta-\alpha)]+\pi(\delta-2 \alpha)=0
$$

and γ and δ are real numbers with $\gamma \geq 1,0<\delta \leq 1$.
By setting $p=1, n=0$ and $\lambda=1$ in Theorem 3.1. We have the following result.

Corollary 4.4: If $f \in \mathcal{A}$ satisfies

$$
\left(1-\frac{\gamma}{2}\right) \frac{f(z)}{z}+\frac{\gamma}{2} f^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha}
$$

then

$$
\frac{1}{2}\left(1+\frac{z f^{\prime}(z)}{f(z)}\right) \prec\left(\frac{1+z}{1-z}\right)^{\delta}
$$

where $\alpha=\alpha\left(\frac{\gamma}{2}, \delta\right)$ satisfies the equation

$$
2 \arctan \left[\frac{\gamma}{2}(\delta-\alpha)\right]+\pi(\delta-2 \alpha)=0
$$

and γ and δ are real numbers such that $\gamma \geq 1,0<\delta \leq 1$.

References

[1] R. Aghalary, R. M. Ali, S. B. Joshi and V. Ravichandran, Inequalities for analytic functions defined by certain linear operators, Int. J. Math. Sci., 4(2005), 267-274.
[2] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40(2003), 399-410.
[3] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37(2003), 39-49.
[4] Jian Li and S. Owa, Properties of the Sălăgean operator, Georgian Math. J., 5(4)(1998), 361-366.
[5] S. S. Miller and P. T. Mocanu, Marx-Strohhäcker differential subordination systems, Proc. Amer. Math. Soc., 99(1987), 527-534.
[6] Gh. Oros, A Condition for Starlikeness, General Mathematics, 7(1999), 1-6.
[7] S. Owa, C. Y. Shen and M. Obradović, Certain subclasses of analytic functions, Tamkang J. Math., 20(1989), 105-115.
[8] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., 1013, 362-372, Springer-Verlag, Heideberg, 1983.
[9] B. A. Uralegaddi, Certain subclasses of analytic functions, New Trends In Geometric Functions Theory and Applications. (Madras, 1990) 159-161, World Scientific Publishing Company, Singapore, New Jersey, Londan and Hong Kong, 1991.

