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Abstract—An optimal control problem for a mathematical model
of efficiency of antiviral therapy in hepatitis B virus infections is con-
sidered. The aim of the study is to control the new viral production,
block the new infection cells and maintain the number of uninfected
cells in the given range. The optimal controls represent the efficiency
of antiviral therapy in inhibiting viral production and preventing new
infections. Defining the cost functional, the optimal control problem
is converted into the constrained optimization problem and the first
order optimality system is derived. For the numerical simulation,
we propose the steepest descent algorithm based on the adjoint
variable method. A computer program in MATLAB is developed for
the numerical simulations.
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[. INTRODUCTION

EPATITIS B virus (HBV) infections are of major public
health importance, due to their high burden of disease.
Worldwide, an estimated two billion people have been infected
at some time or another, with four to five million new infec-
tions occurring each year [5]. World-wide, over 350 million
people are estimated to be chronically infected with HBV
and each year 600,000 people die from HBV-related liver
disease or hepatocellular carcinoma. The prevalence of chronic
infections is globally differentiated in high endemic areas (>
7%), intermediate endemic areas (2-7%), and low endemic
areas (<2%). High prevalence areas are South-East Asia
and sub-Saharan Africa, where 8 to 10% of the population
are chronically infected with HBV. Western-Europe, North
America, and Australia have the lowest prevalence (0.1-1%).
Chronic HBV infection is often the result of exposure early
in life, leading to viral persistence in the absence of strong
antibody or cellular immune responses [7]. Therapy of HBV
carries can aim to either inhibit viral replication or enhance
immunological responses against the virus, or both.
Mathematical models have been used to understand the
factors that govern infectious disease progression in viral
infections like HBV. The mathematical models of HBV in-
cluding antiviral therapy have been studied by many research
groups throughout the world during the last two decades [4],
[7], [10]. However, all these works considered the forward
problem of simulating the model for a given set of parameters
/clinical data. Optimal control of efficiency of antiviral therapy
in HBV model has not been discussed in the literature. In
this study, we consider an optimal control problem for a
mathematical model of efficiency of antiviral therapy in HBV
virus infection.
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Management of chronic hepatitis B depends on the level
of viral replication. Although progression to cirrhosis is more
likely in severe than in mild or moderate chronic hepatitis
B, all forms of chronic HBV infection can be progressive[5].
Treatment of a chronic infection is indicated if there is active
viral replication (HBV DNA >105 IU/ml), combined with
signs of disturbance of the liver function (elevated ALAT),
or presence of liver inflammation or fibrosis [5].

The main goal of this study is to optimize the efficiency
of the antiviral therapy in HBV virus infections. In other
word, maintain uninfected cells in the given range, control the
new viral production and block the new infection cells. The
optimal controls represent the efficiency of antiviral therapy
in inhibiting viral production and preventing new infections.
Defining the the cost functional, we formulate the optimal
control problem as a constrained minimization problem [2] and
derive formally the corresponding first-order optimality system
via the Lagrange functional. For the numerical computation
of the optimal control variables we present a steepest descent
algorithm using the adjoint variables.

The paper is organized as follows. In Section II, we present
the models and define cost functional which ought to be
minimized. In Section III, the first order optimality system is
derived. The steepest descent algorithm is discussed in Section
IV. Finally, some numerical results are presented in Section
V and concluding remarks can be found in Section VI.

II. OPTIMAL CONTROL PROBLEM
A. Basic Virus Infection Model
Based on studies done by [1], [4], [7], [10], we consider a
simple mathematical model for basic virus infection consisting
the ordinary differential equations for uninfected cells, T,
infected cells, / and free virus, V:

;
%: — o T VT, (1a)
%: VT — .1, (1b)
%

%: - Vv, (1)

where ¢ denotes the time scale. Here we assume that the
uninfected cells are produced at a rate, , die at per capita rate

7, and become infected cells at a rate 7 V/, proportional to
both uninfected cell concentration and the virus concentration.
Infected hepatocytes are thus produced ar rate 7/ and are
assumed to die at constant rate ;. Upon infection, hepatocytes
produce virus at rate  per infected cell, and virion are cleared
ar rate  per virion.
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Several researchers [4], [6], [7], [10] have modified the
system (1) to include antiviral therapy. The models introduced
a therapy induced block in virus production with efficacy ,
i.e. replaced the term / with (1 — ) /, and block in viral
infection with efficacy , i.e. replaced the term V7T with
(1— ) VT. Then the dynamics of system are governed by
the following equations

ar

v - rT—-Q01-) VT, (2a)
dl
E—(lf )y VT — ;I, (2b)
dav
= =(1- - V.
=A==V (2¢)
The system (2) is subject to the initial conditions
7(0) = To, 1(0) = 1o, V(0) = V. (2d)

The control (f), represents the efficiency of antiviral ther-
apy in inhibiting viral production. If = 1, the inhibiting
is 100% effective, whereas if = 0, there is no inhibition.
The control (f), represents the efficiency of antiviral therapy
in blocking new infection. If = 1, the blocking is 100%
effective, whereas if = 0, there is no blocking.

B. Description of Parameters

The description of the model parameters and their values
are listed in Table I, see [8].

C. Dimensionless Form
Introducing the dimensionless quantities
t T / 4
fk:—/T*:—/l*:—/ *:—
tf TO /0 VO
the system (2) can be formulated in dimensionless form.
Dropping the star the system can be presented as follows

ar t

E:?{) — thT—(].— ) VOTjVT/ (33)
al VoToty

i 1— ) VT — jtel, b
dt o U s Gb)
av loty

= = (1- — - V.

-1 7 1 (e

The system (3) is subject to the initial condition
T(0)=1, /1(0)=1, V(0)=1. (3d)

D. Cost Functional

We want to maintain the uninfected cells in 7T,..5 level, i.e.
the final uninfected cells 7(1) close to the given T,.s value.
On the other hand we want to minimize the cost for antiviral
therapy. Hence, we consider the following cost functional

J:ﬂ%w:1mw—ﬁun+§[:mmm

1
+i/wmm )
2 0

where y = (T,/,V) € VY denotes the vector of state
variables and U= ( , ) € U are the controls. The weighting
coefficients ; >0, / = 1...3 denote the benefits and costs of
the antiviral treatment.

Summarizing, we consider the following constrained opti-
mization problem

minimize J(y, U) with respect to U, subject to (3). (5)

In the sequel, we address this problem using the calculus
of adjoint variables.

III. THE FIRST-ORDER OPTIMALITY SYSTEM

In this section we introduce the Lagrangian associated to the
constrained minimization problem (5) and derive the system
of first-order optimality conditions.

Let Y = C(]0,1];R®) be the state space consisting of
triples of differentiable functions y = (7,/, V) denoting
uninfected cells, infected cells and free virus. Further, let
U = C(]0,1];R?) be the control space consisting of a pair
(ty, ) = (, ) of differentiable functions.

We define the operator e = (ep, e, ey): ¥V x U — Y* via
the weak formulation of the state system (3):

(), Jyy-=0 ¥ €V

where (-, ~>Y7Y* denotes the duality pairing between Y and
its dual space Y*. Now, the minimization problem (5) reads
as
minimize J(y, U) with respect to U € U,
subject to e(y, u) = 0. (6)

Introducing the Lagrangian £ : Y x U x Y* — R defined
as

Lyu ) =Jyu)+ ey d), Jyy-
the first—order optimality system reads as

Vyuel(y,u, )=0.

Considering the variation of £ with respect to the adjoint
variable , we recover the state system

e(y,uy=0
or in the classical form
Z—); =f(yu), with T7(0)=1, /(0)=1, V(0)=1
@)
where

oo T—(1— ) Wit VT
VoT,
(=) VT = sty

1—) Ber— v

VAUES

Second, taking variations of £ with respect to the state
variable ¥ we get the adjoint system

Jy(y,u)+ €y, u) =0
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TABLE I
DESCRIPTION OF PARAMETERS

Parameter | Description Value
To Initial uninfected cells 5.5556 - 107
Iy Initial infected cells 1.1111 - 107
Vo Initial free virus 6.309 - 10° copies/ml
ty Time duration 100 days
A Rate of production of new target (uninfected) cells % -1086 1
o Death rate of uninfected cells 3.7877-1073
o1 Death rate of infected cells 3.2596
«a Clearance rate of free virus 0.67
¥ Rate of production of virus per infected cells %
8 Rate of infection of new uninfected cells 5’7;\72155
or in classical form
. -1
d _ . = min (1, |g]|) -
- = U, )
=)
with r(1)=—- 1, (1)=0, v(1)=0, (8) A. Solving Procedure for Adjoint System
We reformulate the adjoint system by substituting = 1 — .
where
ay d ,
Fy.u )=|— ——=F(y,u, ), with 7(1)=~- 1, ;(1)=0, (1)=0.
y at
Finally, considering variations of £ with respect to the Let f=1 — fthen dif = 7%,
control variable U in a direction of U we get the optimality
condition d

(Julyou), ) +{euly,u) u, ) =0. ©)
In the optimum, this holds for all v e U.

IV. ALGORITHM

To solve the nonlinear first-order optimality system (7), (8)
and (9), we propose an iterative steepest—descent method [3].

1) Set k=0 and choose initial control U € U.

2) Given the control U®). Solve the state system (7) to

obtain y*+1),

3) Solve the adjoint system (8) to obtain (k1)

4) Compute the gradient g(kﬂ) of the cost functional.

5) Given update the control U*+1) = (k) —  glk+1),

6) Compute the cost functional — J*+1) =

J(y(k+1), U(k+1)).

7) If |g*+Y| > Tol, goto 2.

Here, Tol is some prescribed relative tolerance for the termi-
nation of the optimization procedure. In each iteration step,
we need to solve two initial value problems, i.e. the state
system (7) and the adjoint system (8) in the step 2 and 3
of the algorithm.

Crucial for the convergence of the algorithm is the choice
of the step size (in step 5 of the algorithm) in the direction
of the gradient. Clearly, the best choice would be the result of
a line search

* = argming J (U — Gk)-

However this is numerically quite expensive although it is a
one dimensional minimization problem. Instead of the exact
line search method, the heuristic method is used and it gives

(3]

5 Fy.u, ) with 7(0)= 41, 1(0)=0, v(0)=0.

Now we can consider adjoint system as an initial value
problem.

B. Numerics

Both state and adjoint system of ODE were solved using
the MATLAB routine ode23tb. This routine uses an implicit
method with backward differentiation to solve stiff differential
equations. It is an implementation of TR-BDF 2 [9], an implicit
two stage Runge-Kutta formula where the first stage is a
trapezoidal rule step and the second stage is a backward
differentiation formula of order two.

V. RESULTS AND DISCUSSION

In Figure 1 shows the uninfected, infected and free virus
profiles before and after antiviral treatment of control. Before
introducing the antiviral treatment the profile of uninfected
cells decreases from 5.555 - 107 to 3.85 - 107. 100 days after
the therapy treatment, the uninfected cells can be maintained
in 5.36 - 107 level with 97% efficiency. From Figure 1, in an
absence of antiviral treatment one can see the infected cells
increase rapidly from 1.111-107 to 1.753-107. With presence
of antiviral treatment after 100 days it decreases to 6.827-10°
and it indicates 67% efficiency to block the new infections. It
can be seen that without control the viral load increases from
6.31 - 10° to 2.17 - 10'°. Whereas, 100 days after treatment
it reduces to 4.887 - 10°. The total cases in blocking viral
production at the end of the control program (100 days after
introducing the antiviral therapy) is 1.6813 - 1019, It indicates
78% efficiency to blocking new viral production.
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Figure 2 shows the profile of two control parameters and
. The efficiency of drug therapy in blocking new infection,
i.e. the control shows 50% of efficiency during first 40 days
and after that it decreases to 40%. The efficiency of antiviral
therapy in inhibiting viral production shows more-or-less 40%
efficiency during the control program. From Figure 2, it can
be easily seen that the efficiency of antiviral treatment process
more-or-less close to 50% through out the therapy period.
Figure 3 visualizes the corresponding cost functional. One
can see that after 7" iteration, it almost equal to zero.

VI. CONCLUSIONS

We studied an optimal control problem for a HBV viral in-
fection model to identify the best antiviral treatment strategy in
order to block new infection and prevent the viral production.
Defining the cost functional we converted this problem into the
constrained optimization problem and derived the first order
optimality system. For the numerical solution we proposed
steepest descent algorithm based on adjoint variable method.

It can be seen that maintaining 50% of drug efficiency helps
to keep the uninfected cells in 5.36 - 107 level. It counts that
maintaining the uninfected cells, blocking the new infections,
preventing the new viral production in 97%, 67% and 78%
efficiency levels respectively.

Most icteric patients with an acute HBV infection resolve
their infection and do not require treatment, since the rate
of recovery is not likely to be improved. Treatment of chronic
HBYV infections with lamivudine leads to a rapid and sustained
decline of plasma virus levels, but clinical benefit with reduced
risk of cirrhosis and development of liver cancer will greatly
depend on the decline of infected cells. It can be seen that
eradication of the virus infection depends on whether the
efficacy of the drug is sufficiently high to reduce the basic
reproductivity ratio of the virus [10]. Therefore, the quantita-
tive understanding of HBV dynamics derived here would make
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it possible to devise optimal treatment strategies for individual
patient.
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