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Abstract—The information revealed by derivatives can help to 

better characterize digital near-end crosstalk signatures with the 
ultimate goal of identifying the specific aggressor signal.  
Unfortunately, derivatives tend to be very sensitive to even low 
levels of noise.  In this work we approximated the derivatives of both 
quiet and noisy digital signals using a wavelet-based technique.  The 
results are presented for Gaussian digital edges, IBIS Model digital 
edges, and digital edges in oscilloscope data captured from an actual 
printed circuit board.  Tradeoffs between accuracy and noise 
immunity are presented.  The results show that the wavelet technique 
can produce first derivative approximations that are accurate to 
within 5% or better, even under noisy conditions.  The wavelet 
technique can be used to calculate the derivative of a digital signal 
edge when conventional methods fail. 
 

Keywords—digital signals, electronics, IBIS model, printed 
circuit board, wavelets  
 

I. INTRODUCTION 

EVERY digital electronic system experiences crosstalk to  some extent.  Well designed systems can tolerate low to 
moderate levels of crosstalk without functional upset. Much 
research and effort has been focused on crosstalk defect 
prevention [1].   

Despite the attention and effort, PCB crosstalk defect 
prevention is not completely effective.  PCBs continue to 
shrink and must accommodate denser interconnect structures. 
Accordingly, crosstalk management involves troubleshooting 
and resolving crosstalk defects that, for a variety of reasons, 
occasionally surface in modern PCBs.  Unfortunately, the 
tools and techniques commonly used to troubleshoot crosstalk 
problems and identify the root causes are often far less 
effective than desired.  In practice, the troubleshooting 
approach often amounts to little more than a series of educated 
guesses combined with trial and error attempts to isolate and 
identify the aggressor signal.  In modern systems with 
combinations of hardware, software, and field-programmable 
gate array (FPGA) firmware, this trial and error process can 
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become a protracted and expensive exercise, consuming 
valuable engineering resources.   

Real-Time Digital Oscilloscopes with long record lengths 
and sophisticated triggering capabilities can help in locating a 
voltage glitch caused by crosstalk.  Once a glitch is found, the 
next step is to determine the cause of the glitch.  This is often 
the most difficult and time consuming portion of the task.  If 
important parameters such as the aggressor frequency, 
distance, directionality, or rise time could be discerned by 
analysis of the crosstalk glitch, then valuable clues as to its 
cause can be inferred.  In the absence of such a utility, the 
search for clues as to the origin of the crosstalk must be a 
manual approach.  The first step in the process often begins in 
the time domain by a visual inspection of the crosstalk glitch 
on an oscilloscope screen, followed by a careful examination 
of the PCB layout.   

Unfortunately visual inspection in the time domain for the 
origin of crosstalk often falls short for a number of reasons.  
In cases such as far-end crosstalk, the glitch is the derivative 
of the aggressor signal.  Therefore, visual inspection of the 
glitch does not directly provide useful information about the 
source.  However, integration can be useful in such cases.  In 
other cases, it is difficult to visually separate the crosstalk 
glitch from the victim signal.  Reflections and other anomalies 
may introduce distortion that can make direct measurement of 
crosstalk glitch characteristics difficult, if not impossible.  
Derivatives with respect to time can be useful in cases where 
the crosstalk glitch is corrupted by the victim signal 
reflections or other anomalies.   

  In spite of the mathematical tools available for analysis, 
noise often inhibits their use.  For example, differentiation is 
extremely sensitive to noise.  To reduce the effect of noise, 
advanced filtering methods can be applied.  One approach is 
to use Gaussian filters to smooth a signal prior to further 
processing [2].  Other edge detection approaches rely on the 
tuning of filter parameters, window sizes, and other 
characteristics for optimal performance [3].  With adaptive 
filtering, improved performance may often be obtained 
because a filter’s characteristics change with the signal and 
noise.  However, these approaches can quickly become 
complex to implement, and analysis to understand their impact 
on time domain characteristics can be daunting.  In short, 
these approaches tend to alter the very characteristics of the 
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crosstalk glitch that the derivative operation sought to reveal 
in the first place.  Therefore a better approach is needed. 

Frequency domain methods can be applied; however, the 
resulting spectrum tends to be a combination of the crosstalk 
glitch and the victim signal.  Rarely does this approach offer 
meaningful insight into the source of the glitch. In some cases 
it may be possible to temporally isolate the crosstalk glitch 
using windowing functions.  While this approach can 
significantly reduce the undesirable artifacts introduced by 
truncation in the time domain, it introduces artifacts in the 
frequency domain.   

A better approach is to use a transform that would retain the 
desirable characteristics of both the time and frequency 
domain, but without the restrictions and limitations described 
above.  Wavelet Transforms offer a potential solution capable 
of delivering on both points.  Wavelet-based edge detection 
approaches have been proposed, as have wavelet-based 
derivatives which show promise in preserving edge 
characteristics while removing noise [4]-[5]. 

Previous papers have suggested approaches that analyze a 
crosstalk waveform in order to estimate the aggressor distance 
and frequency [6], and to classify crosstalk directionality [7].  
Our approach asserts that there is a method by which a near-
end crosstalk (NEXT) waveform can be analyzed to estimate 
the rise time of the aggressor.  The method requires and relies 
upon an accurate first derivative operation.  In some cases, 
simply knowing the aggressor rise time may be enough to 
make a positive identification.  In other cases, it may be 
necessary to take advantage of the aforementioned methods 
suggested in previous papers to obtain a more complete 
picture of the aggressor signal. 

We present a wavelet-based approach that approximates the 
first derivative of a digital signal edge.  Working with the 
derivative of the edge can allow the rise time to be determined 
with greater accuracy and consistency than is possible when 
using more direct rise-time measurement approaches.  This is 
particularly important in the presence of reflections and other 
anomalies commonly encountered in the PCB operating 
environment.  Accordingly, the problem we focus on in this 
paper is calculating the reasonably accurate derivative for a 
digital signal edge containing noise and minor anomalies that 
are typical of a PCB operating environment.  Our work also 
addresses concerns about decimation and signal length when 
considering higher order derivatives.   

Applying the wavelet-based derivative to a NEXT 
waveform is a critical step in pursuing the ultimate goal of 
estimating the aggressor rise time.  Then, subsequent analysis 
of the first derivative can estimate the rise time, which is a key 
piece of information about the crosstalk source.  Similarly, the 
wavelet-based derivative can be applied directly to potential 
aggressor signals, and subsequently analyzed to estimate rise-
time.  Then, by comparing the estimated rise time of the 
NEXT glitch with the estimated rise times of the potential 
aggressors, it may be possible to rule out potential aggressors, 
or even make a positive identification of the actual aggressor.   

  

II. MATHEMATICAL DIFFERENTIATION USING WAVELETS 
 
We are interested in the analysis of finite, non-stationary 

time domain signals over a short time interval, but not 
necessarily a fixed length time interval.  Therefore, we 
considered wavelet transforms for analysis. The analysis and 
synthesis equations for the Discrete Wavelet Transform 
(DWT) are shown below, 
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where, φj,k(t) and Ψj,k(t) represent the scaling and wavelet 
functions, respectively.  The scaling and wavelet functions are 
the basis functions of the DWT and the j and k indices 
represent their time scales and shifts, respectively.  The aj(k) 
coefficients are commonly referred to as the approximation 
coefficients, and the bj(k) coefficients as the detail 
coefficients.   

By inspection of (2), it is clear that the DWT expresses the 
time domain function f(t) as a weighted sum of basis 
functions, where the weights are determined by the 
coefficients aj(k) and bj(k) from (1).   

During implementation, the analysis coefficients are usually 
downsampled in order to eliminate redundancy.  As a 
consequence, the DWT is not shift-invariant.  In our 
application it is convenient to keep all the samples in the 
DWT.  Therefore, we used the Stationary Wavelet Transform 
(SWT), which eliminates the down sampling operation of the 
outputs.  As a result, the SWT has the desirable property of 
time-shift invariance, and offers the same benefits as the DWT 
with respect to time-frequency partitioning.   

To approximate the first derivative of a signal using 
wavelet transforms, different-order SWT approximation 
coefficients can be subtracted from each other [4].  In essence, 
such an approach performs two separate SWTs of the input 
signal, each using a different order basis function.  Then, the 
difference between the approximation coefficients is taken as 
an approximation to the first derivative of the input signal. 

Daubechies orthogonal wavelets of order p have p 
vanishing moments and may be conveniently used to 
approximate derivatives as described in [4].  Let m and q be 
any positive integer such that m ≠ q, and D2m and D2q 
represent Daubechies orthogonal wavelets of order m and q, 
respectively.  Furthermore, let C = {aj(k)} be the set of 
approximation coefficients at scale j for all shifts k from (1).  
Then, the first derivative of sequence y[n] can be 
approximated as  
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In addition, higher-order derivative approximations are 

possible by iteration. 
 

III. RESULTS 
A digital NEXT waveform is an amplitude scaled version 

of the digital aggressor signal from which it was caused.  
Therefore, if one can analyze a digital signal edge waveform 
to estimate rise time, then one can apply the same approach to 
analyze both the aggressor signal, and the resulting NEXT 
voltage glitch.  (In practice, the analysis would first be applied 
to the NEXT glitch.  It would then be applied to potential 
aggressors in an effort to identify the specific aggressor that 
caused the NEXT glitch.)   

Our objective in this paper is to demonstrate the efficacy of 
the wavelet-based derivative method, which is a prerequisite 
step to the analysis that is used to estimate rise time.  In this 
section we present results for a variety of digital signal edge 
waveforms starting with synthetic long and short rise times to 
verify the method.  Noise is added in some cases to highlight 
the benefits of the proposed approach.  In addition, we show 
results from both simulation and actual oscilloscope data. 

A. 100 ps Gaussian Edge 
We initially used a MATLAB-generated Gaussian edge test 

signal with a 20% to 80% rise time of 100 ps as shown in Fig. 
1.  We used a single decomposition of the wavelet transform 
with m = 8, and q = 18.  The first derivative of the edge was 
taken using two different techniques and the results were 
compared.  The derivative was approximated with a 
conventional method as yc’[n] = y[n] – y[n-1], where n 
represents a unit sample time interval, and compared to the 
result obtained using (4).   
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Fig. 1 100 ps Gaussian rising edge without noise. 

 

 
 
After shifting and scaling the results of yc’[n], the results 

appeared visually identical.  The percent of full scale error 
was calculated as  
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and is shown in Fig. 2.  The value was approximately 0.24% 
at its peak.  The lack of perfect symmetry in the error is due to 
the fractional time shift between the results in this discrete-
time system.  Nevertheless, it can be seen that the error is 
relatively small.  This suggested that the wavelet-based 
derivative approach did indeed produce a close approximation 
to the first derivative of the 100 ps Gaussian edge.   
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Fig. 2 Error between wavelet-based and conventional derivative 
for a 100 ps Gaussian rising edge (without noise) using one 

decomposition level. 
 
In practice, waveforms often contain random noise.  

Therefore, 10 mV of random, band limited noise was added to 
the edge, and the derivatives were again calculated and 
compared.  In order to accurately model the characteristics of 
the noise that would be present in an oscilloscope waveform, 
we filtered a uniformly-distributed random noise sequence 
using filter parameters based on the specifications of a 
commercially available, mature, and popular brand/model 
digital oscilloscope.  Based on the manufacturer’s 
specifications, the Tektronix TDS-7404 Real-Time Digital 
Oscilloscope has a maximum sample rate of 20 x 109 samples 
per second and an analog bandwidth of 4 GHz.   

Using one level of decomposition of the wavelet transform, 
we calculated the approximation to the derivative of the noisy 
edge and compared it to the conventional result.  The noise 
had a dramatic effect on both the conventional approximation 
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and wavelet-approximated derivative results as can be seen in 
Fig. 3.  Clearly the wavelet results were less affected by the 
noise.  We attempted to improve results by increasing the 
wavelet decomposition level.  Fig. 4 shows the result with a 
wavelet decomposition level of three.  The results show that 
the wavelet-based derivative is smoother than when a one 
level decomposition was used.  However, the error with a 
wavelet decomposition level of three increased to 
approximately 3.1% peak.   
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Fig. 3 Comparison of wavelet-based and conventional derivative 

of a 100 ps Gaussian rising edge with noise using one decomposition 
level. 
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Fig. 4 Comparison of wavelet-based and conventional derivative 

of a 100 ps Gaussian rising edge with noise using three 
decomposition levels. 

 
We also considered wavelets that had the minimum number 

of vanishing moments for our analysis as an extreme case.  
We used wavelets that had q = 0 and m = 1 to calculate the 
derivative.  Keeping the decomposition level at three, we 
again calculated the difference between the wavelet approach 
and the conventional approach.  We found the error was 
reduced to approximately 0.5% peak.  The error when using 

the wavelet approach was clearly much smaller when a lower 
order wavelet was used.  However when lower order wavelets 
were used on a noisy signal, the result was not as smooth as 
when higher order wavelets were used. 

B. 2 ns Gaussian Edge 
We considered a MATLAB-generated Gaussian edge signal 

like that in Fig. 1, but with a rise time of 2 ns.  Noise was 
added as in the case of the 100 ps edge discussed earlier.  In 
this case, the wavelet approach produced a recognizable 
result, whereas the conventional result was completely 
consumed by and hidden within the noise.  Therefore, the 
wavelet approach was capable of extracting a recognizable 
derivative from a noisy Gaussian edge when it was not 
possible to do so with the conventional derivative function.  
The resulting level three decomposition error was quite small 
at ≈ 0.02% peak.  In this case, the benefit of obtaining a 
recognizable derivative far outweighed the modest error 
associated with a higher decomposition level. 

C. Clock Buffer IBIS Model Waveform 
To demonstrate the utility of our approach using more 

realistic driver models, we analyzed an edge generated by the 
IBIS Model of the Xilinx Virtex-II Pro FPGA (v2pro.ibs, File 
Rev. 2.4).  The actual waveform was captured using the 
Cadence SigXP Signal Integrity simulator.  Fig. 5 shows the 
error between the wavelet result and the conventional result 
with a decomposition level of three.   

The results obtained when 10 mV of random, band limited 
noise was added to the edge are shown in Fig. 6.  By 
inspection, the wavelet approach produced a much smoother 
result than the conventional approach that was severely 
distorted and unusable. 
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Fig. 5 Error between wavelet-based and conventional derivative 

for V2PRO_LVTTL_F_12 IBIS Model Edge using using three 
decomposition levels. 
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Fig. 6 Comparison of wavelet-based and conventional derivative 

of an IBIS Model edge with noise using three decomposition levels. 

D. Actual Oscilloscope Data 
The advantage of the wavelet-based derivative over 

conventional derivatives became even clearer when we 
applied both approaches to oscilloscope waveforms from an 
actual PCB.  A Tektronix TDS-7404 Real-Time Digital 
Oscilloscope was used to capture the waveform presented in 
this section.   

In this test case we analyzed a 53 MHz clock waveform.  
The sample interval was 100 ps, and the waveform points 
were stored at the oscilloscope sample rate.  Fig. 7 shows the 
oscilloscope waveform for a rising and falling edge.  Note the 
presence of small nonmonotonicities on the rising edge.  
These can be caused by a variety of factors including, but not 
limited to reflections, poor probing techniques, measurements 
taken too far from the receiver pin, parasitic inductance and 
capacitance, etc.  Fig. 8 shows the first derivative of the clock 
edges using the conventional approach.  It is indeed quite 
difficult to discern the edge derivatives from the noise.  Fig. 9 
shows the wavelet result with a decomposition level of one.  
The edge derivatives are clearly discernable from the noise. 
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Fig. 7 53 MHz clock waveform (real-time sampled). 
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Fig. 8 Conventional derivative for the for 53 MHz clock. 
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Fig. 9 Wavelet-based derivative for the for 53 MHz clock using 

wavelet decomposition level 1. 
 

IV. CONCLUSION 
We applied a wavelet-based derivative to Gaussian and 

IBIS Model digital edges, and digital edges in oscilloscope 
data from an actual PCB.  Once the amplitude was normalized 
and the time shift removed, approximation errors were found 
to be suitably low for the purposes of crosstalk analyses.  In 
the presence of noise the wavelet-based derivative produced 
an improved approximation to the derivative as compared to 
using a conventional approach.   

This work showed that in some cases, the wavelet 
derivative was able to produce recognizable and useful results 
when the conventional derivative was overwhelmed by the 
effects of noise.  We found that the wavelet-based derivative 
offers a tradeoff between accuracy and noise tolerance.  Using 
a higher wavelet decomposition level provides a smoother 
result in the presence of noise.  It also increases the error 
relative to the result that would be obtained by simply taking 
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the derivative in the conventional way.  We noted that error 
can be reduced by using shorter, lower order wavelets.  
However, we found that doing so tends to degrade 
performance in the presence of noise.  Further investigation is 
recommended to determine the optimal tradeoff between 
wavelet decomposition level and length in a given application.   

In the context of the digital signal waveforms considered in 
this paper, we found that the wavelet-based derivative 
combines an appropriate filtering stage with a derivative stage, 
producing suitably accurate derivatives for noisy signals in a 
single operation.  It is reasonable to expect that other types of 
signal analysis could benefit from the availability of the 
wavelet-based derivative presented in this paper.   

It is acknowledged that applications specific to PCB 
crosstalk analysis require additional considerations.  Factors 
such as reflections, ringing, overshoot, undershoot, multi-
aggressor crosstalk, rise time degradation, modal propagation 
differences, and crosstalk directionality all serve to complicate 
crosstalk analyses.  This paper presented a method that applies 
to one piece aspect of the much larger problem.   
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