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Abstract—This work proposes a recursive weighted ELS 

algorithm for system identification by applying numerically robust 
orthogonal Householder transformations. The properties of the 
proposed algorithm show it obtains acceptable results in a noisy 
environment: fast convergence and asymptotically unbiased 
estimates. Comparative analysis with others robust methods well 
known from literature are also presented. 
 

Keywords—Stochastic Systems, Robust Identification, Parameter 
Estimation, Systems Identification.  

I. INTRODUCTION 
YSTEM identification is a general term used to describe 
mathematical tools and algorithms that build dynamical 

models from measured data [3][4][6][7][8][14][15]. A 
dynamical model in this context is a mathematical description 
of the dynamic behavior of a system or process, as example 
the movement of a falling body under the influence of gravity 
and stock markets that react to external influences. Three 
approaches are common in the data computational modeling 
field: 
 

• White-box model: Based on physical principles, eg., 
a model for a system from the Newton laws 
equations; but in many cases such models will be 
overly complex and possibly even impossible to 
obtain in reasonable time due to the complex nature 
of many systems and industrial processes. 

 
• Black-box model: No prior knowledge about the 

dynamic system’s behaviour is available, and the 
problem consists in obtain an adequate mathematical 
description of the system or industrial process from 
experimental data.  

 
• Grey-box model: Although the peculiarities inside 

the system are not entirely known, a certain physical 
model is already available. This model does however 
still have a number of unknown free parameters 
which can be estimated using experimental data. 
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A common approach is therefore to start from measures 
related to the behavior of the system and external influences 
as inputs and noises, and try to determine a mathematical 
relation between them without going into the details of what is 
actually happening inside the system. To be applicable to real 
world problems, the parameter estimation must be highly 
efficient, because the input and output measurements may be 
contaminated by noise. For low levels of noise the least 
squares (LS) method, for example, may produce excellent 
estimates of the consequent parameters. However, with larger 
levels of noise, some modifications in this method are 
required to overcome this inconsistency. Generalized least 
squares (GLS) method, extended least squares (ELS) method, 
prediction error (PE) method and instrumental variable (IV), 
are examples of such modifications [9][19][20]. In [10], a 
robust iterative instrumental variable method with modified 
residuals is developed for robust identification of systems 
based on Huber’s minimax principle and instrumental variable 
principle. This algorithm, however, is only used in off-line 
applications. In [12], a recursive least squares algorithm for 
fixed order with exponential data weighting, using Givens 
orthogonal transformations for identification of parameters 
that vary quickly with time is proposed. A limitation of this 
proposal is its application just for very low levels of noise 
environment. In [1], two algorithms for LS system 
identification via QR decomposition are proposed. This 
algorithm presents the same limitations of [12]. In [8], a new 
proposal for robust identification of multivariable nonlinear 
stochastic systems using fuzzy instrumental variable method 
[7] is presented. The proposal of this paper belongs to these 
contexts. A recursive weighted ELS algorithm based on the 
numerically robust orthogonal Householder transformations is 
developed for systems identification in a noise environment, 
characterizing the black-box model approach. This algorithm, 
once numerically validated, is used for closed loop 
identification, according to direct and indirect methods, to 
provide accurate estimations of the system under feedback 
control using simple measurements in a noise environment. 
All experiments are performed in a DC servomotor, of 12 
Volts, from the Laboratory of Computational Intelligence and 
Control.  

II. PROBLEM FORMULATION AND ALGORITHM 
Consider, for a given dynamic system, the following model 

structure: 
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tnatnctnbtnbtt yayaububy ξ+−−++= −−−− 1111 ...                   (1) 

where ( )tu  e ( )ty  is the input and output of the model, 
respectively, and tξ  is a noise signal added to the system.  
Let: 
 

( )nanb
T a.,..,a,b.,..,b 11=θ                                 (2) 

 
( )nattnbtt

T
t yyuu −−−− −−= .,..,,.,.., 11a                       (3) 

 
and in a vetorial form, considering a set of data from the 
system,  gives 
 

Ξ+= θAY                                           (4) 
 
where 
 

[ ]n
T yyY .,..,1=                                      (5) 

[ ]p
T aaA .,..,1=                                      (6) 

[ ]n
T ξξ .,..,1=Ξ                                      (7) 

 
with p the dimension of the problem, i.e., nbna + , and n is the 
number of sample. 

It is intended to obtain a consistent estimation of θ  from 
{ }n

tt uy 1,  so that the error between the measured and 
estimated output of the system be minimum in sense of least 
squares 

 
2
2min bA −θ                                      (8) 

 
or in the normal equations form 

YAAA TT =θ                                      (9) 

A. Hauseholder Transformation Method 
For study on performance of numerical algorithms, the 

concepts of numerical stability and conditioning are very 
importants.  The former propriety is not based on the 
computing, and the later one is associated to computing 
problems and the data to be processed. The numerical errors, 
in any computational processing, are dependent of the stability 
of the algorithm and the conditioning of the problem. The 
proposed algorithm formulation is based on Householder 
orthogonal matrices for solve the normal equation given in (9) 
by QR factorization. The use of orthogonal transformations 
for solve least squares problems are well established by the 
following: matrices easily invertible, precision and speed of 
computations perfectly conditioned, simplified error analysis 
due the use of Euclidian or spectral norms commonly used in 
such study.  The Householder orthogonal matrix is of the 
following form: 
 

2
2

2
v

vv
IH

T
−=                                      (10) 

 

where THH =  and 1−= HH . Householder transformations 
are powerful tools for annul a block of entries in matrices or 
vectors by selection of Householder vectors v as shown in 
(10) [1][2]. Thus, if x is a vector and ei is a unity vector with 1 
in the i-th position, the vector v is defined by 

iexxv ±=                                           (11) 

and 

iexxH ∓=                                           (12) 
The vectors x and v are the same dimension and are 

different only in the i-th position. In this analysis, the 
procedure for explicit form of the Householder matrix is not 
established which happen in the most cases.  

B. ELS-QR Algorithm 
In industrial applications of identification algorithms, the 

model structure can be known but its parameters need to be 
estimated from measured data of the dynamic system. The 
variables associated to the dynamical system behaviour can 
vary with time due the changes of operating conditions. In this 
case, the off-line methods are insufficient and have a poor 
performance. The main motivation of this proposal is the 
development of an algorithm that provides frequently the 
parameters estimation by adequate processing of its input and 
output data and can adapt itself to the varying operating 
conditions of the dynamic system. The problem of interest can 
be given by 

 
YAAA TT =θ                                  (13) 

 
where pn×A , 1×pθ  and 1×nY  are, respectively, the matrix of 
data, the parameter vector and the output vector. The equation 
in (13), in turn, can be rewrited by 
 

WYAWAA TT =θ                                (14) 
 
where nn×W  and ( )1.,..,, 21 −−= nn

n diag λλW , with 10 << λ . 
The scalar λ is the well known forgetting factor, and it is used 
to give more weight for the actual data and less weight for the 
past data. Developing both side in (14), as W, A and Y are 
known, results 
 

bS =θ                                             (15) 
  
where WAAS T

pp =×  and WYAb T
p =×1 . It is important to 

highlight that the order of the matrix S and of the vector b are 
lower than matrix A and vector b, because p is the number of 
parameters to be estimated, implying less computational effort 
and, consequently, more fast for solution of θ . Generically, 
the matrices A, W and the vector b are given by 
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Hence, WAAS T

pp =× results 
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(16) 
 
and WYAb T

p =×1 is 
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From equations (16) and (17), it can see that the entries of the 
matrix A and of the vector b are dependent of actual and 
immediately past values of input and output from the dynamic 
system to be identified, according to the dimension of the 
problem p. This imply in generate, directly, i.e., at each 
sample, the matrix S and the vector b, without necessity of 
bench matrices operations as in  (14), with advantage the 
dimension of the problem is lower for QR factorization. So, 
the problem can be rewrited as to find the solution for 
 

2
2ˆ

minimize bS −θ
θ

                           (18) 

 
Applying QR factorization, via Householder orthogonal 

transformations, gives 
 

2

2ˆ
minimize bQSQ TT −θ

θ
                    (19) 

 
and 
 

2
2ˆ

minimize dR −θ
θ

                               (20) 

where pp×Q  is an orthogonal matrix, pp×R  is an upper 
triangular matrix, and 1×pd  is a resulting vector. So, the 

minimizer of (18) can be found by solving dR =θ̂  by back-
substitution method. 

The algorithm receives a set of data for initial estimation 
and the updating is done by acquisition of input and output 
measures and using the summation of the matrix S and the 
vector b, this is, at t-th sampling time, results: 
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and  
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The algorithm is as follow: 
 
Step 1: Define the number of input and output pairs from 

the experimental data for initial estimation; 
 
Step 2: Generate the matrix S and the vector b from (16) 

and (17); 
 
Step 3: Apply QR factorization via Householder orthogonal 

transformation to generate the minimization problem in (20); 
 
Step 4: Solve (20) by back-substitution method; 
 
Step 5: Obtain a new value of input and output pairs from 

the experimental data; 
 
Step 6: Generate the new matrix S and the new vector b 

from (21) and (22), respectively; 
 
Step 7: Go back to Step 3. 
 
The LS estimation is biased with the presence of correlated 

noise on the experimental data. It can be verified from the 
matricial product involving the matrix A and the vector of 
noise Ξ   is different of zero:  
 

( ) Ξ+=
− TT XXX

1ˆ θθ                                (23) 
 

There are several possibility to overcome this problem as 
outlined in section I of this paper. Particularly, it is of interest 
the modeling the correlation of the noise and estimate the 
dynamic system model parameters from this model 
correlation. It can be performed using the regression model 
 

( ) ( ) ( ) ( )1kˆ1kkyk T −−−= θϕε                      (24) 
 

where 
 

( )nnn ccbbaa .........ˆ
111=θ  

 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )nk...1knku...1kunky...1ky1kT −−−−−−−−=− εεϕ  
 

(25) 
where the variables ( )ke  are approximated by the prediction 
error ( )kε . Thus, the online identification can be done 
substituting using (25) into the matrix A and performing all 
formulation and steps already outlined.  

III. COMPUTATIONAL RESULTS 
In this section is shown a simulation example to illustrate 

the main characteristics of the ELS-QR algorithm proposed in 
this paper, and an experimental application to demonstrate the 
applicability of the algorithm to open and closed loop 
identification. 

A. Simulation Results 
In this section, without less of generality, will be presented 

two simulation results for speed convergence analysis and 
consistence of the proposed algorithm for open loop 
identification in a noisy environment.  
 

Example I: 
Consider the following linear system described by: 

 
( ) ( ) ( ) ( ) ( ) ( )tezCtuzBtyzA 111 −−− +=                  (26) 

 
Where: 
 

( ) 11 2.01 −− −= zzA                                (27) 
( ) 11 5.0 −− = zzB                                   (28) 

( ) 11 3.01 −− −= zzC                               (29) 
 

The input of the system was the well known PRBS 
(Pseudo-Random Binary Sequence) signal of magnitude one.  
The perturbation ( )ke  consists in a white noise signal with 
mean zero and variance unity. The total of points used in this 
simulation was 300 and the proposed algorithm was 
implemented with 98,0=λ , with 10 points for initial 
estimation. After 50 points of running, the parameter 0,2 in 
polynomial ( )1−zA  is changed to 0,8. The Fig. 1 shows the 
performance of the algorithm LS-QR without influence of 
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(32) 

noise on the data (red) and with noisy environment (blue). It 
can be seen that this algorithm track efficiently the time 
varying parameter of the dynamic system, while in the 
presence of noise its performance is very poor as expected. 
The Fig. 2 shows the performance of the proposed ELS-QR 
algorithm in the same conditions applied to LS-QR. It is 
observed that the algorithm can track quickly the estimated 
time varying parameter in a noisy environment. The Table I 
shows a comparative analysis of the LS-QR and ELS-QR 
algorithms performances. 
 

 

Fig. 1 Parameters estimation by algorithm LS-QR: without noise 
(red) and with a noisy environment (blue) 

 
The following norm of the parametric error equation was 

used for convergence analysis: 
 

TABLE I 
ESTIMATED PARAMETERS FROM LS-QR AND ELS-QR ALGORITHMS 
 True 

values 
LS-QR LS-QR 

(with noise) 
ELS-QR 

(with noise) 
a -0,8 -0,7192 -0,2819 -0,7897 
b  0,5 0,5305 0,4579 0,5034 
c -0,3   -0,2868 

 

( )
2
2

2

2
ˆ

θ

θθ −
=kn                                    (30) 

 
where 2

2• is the Euclidian norm. The Fig. 3 shows the 
convergence curve of the estimated parameters, according to 
(30). It is observed fast convergence of the estimated 
parameters to the nominal ones with minimum error of the 
norm of 0,0436.   
 

 

Fig. 2 Performance of the proposed ELS-QR algorithm in a noise 
environment 

 

Example II: 
Consider the following second order dynamic systems 

described by: 
 

( ) ( ) ( ) ( ) ( ) ( )tezCtuzBtyzA 111 −−− +=                   (31) 
with 
 

( ) 211 8,055,11 −−− +−= zzzA                         (32) 
( ) 211 475,05,1 −−− −= zzzB                          (33) 

( ) 211 25,055,01 −−− +−= zzzC                     (34) 
 

 

Fig. 3 Convergence property of the algorithm ELS-QR 
 
The input of the system was the well known PRBS 

(Pseudo-Random Binary Sequence) signal of magnitude one.  
The perturbation ( )ke  is described by the following equation: 
 

( ){ }01,1 ≥≥+−==℘ εεεε HGFF                   (35) 
 
where 
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( ) ( )0,5,0~;01,0,0~ 2
22

2
11 == σσ NHNG           (36) 

 
are normal distribution with mean zero and finite variance, 
and 1,0=ε means the probability of occurrence of outliers on 
the used data set for model identification. This value implies 
that 10% of the data set consists of outliers, which affect 
considerably the estimation procedure by conventional 
identification algorithms. So, in this case is treated a robust 
identification problem. The total of points used in this 
simulation was 300 and the proposed algorithm was 
implemented with 98,0=λ , with 10 points for initial 
estimation. The estimated parameters of the dynamic system 
in (31)-(34) are listed in Table II, and compared with others 
robust estimation algorithms RILSMMR and RIIVMMR [10]. 

 

TABLE II 
PARAMETERS ESTIMATION OBTAINED BY SIMULATION USING LS, RILSMMR, 

RIIVMM [8] AND ELS-QR 

 True LS RILSMMR RIIVMMR ELS-QR 
a1 1.55 1.373840 1.545272 1.549946 1.54870392 
a0 -0.80 -0.639400 -0.794996 -0.800053 -0.7988945 
b1 1.50 1.452165 1.501897 1.501077 1.50062669 
b0    -0.475 -0.107818 -0.467592 -0.475168 -0.4744999 

Norma 0.0 0.187470 0.004380 0.000465 0.00080142 
 

 
From this result, the robustness of the proposed ELS-QR 

algorithm is validated, this is the method can provide robust 
estimation compared to others robust algorithms in the 
literature. Fig. 4 shows the convergence curve in this 
application, where the norm of the parametric error decreases 
very quickly when the number of iterations increases. 

IV. CONCLUSION  
In this paper, an ELS-QR algorithm was proposed for open 

and closed loop identification in noisy environment. The 
recursive procedure was based on QR factorization via 
Householder orthogonal transformations. Simulation results 
have shown the robustness of the proposed algorithm as 
compared with others robust methods well known from 
literature as well as the efficiency to overcome the problem 
with outliers. Experimental results confirm its application for 
further adaptive control design, in the sense of the obtained 
model could represent the plant closed loop behaviour. As 
future works, the use of this algorithm for TS fuzzy model 
consequent parameters estimation in noisy environment is 
addressed.  
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