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Abstract—The forest stand consisted of four layers. The species 

composition between the third and the bottom layers was almost 
similar, whereas it was almost exclusive between the top and the lower 
three layers. The values of Shannon’s index H ′ and Pielou’s index 
J ′  tended to increase from the bottom layer upward, except for 
H ′ -value of the top layer. The values of H ′ and J ′  were 4.21 bit 
and 0.73, respectively, for the total stand. High woody species 
diversity of the forest depended on large trees in the upper layers, 
which trend was different from a subtropical evergreen broadleaf 
forest grown in silicate habitat in the northern part of Okinawa Island. 
The spatial distribution of trees was overlapped between the third and 
the bottom layers, whereas it was independent or slightly exclusive 
between the top and the lower three layers. Mean tree weight of each 
layer decreased from the top toward the bottom layer, whereas the 
corresponding tree density increased from the top downward. This 
relationship was analogous to the process of self-thinning plant 
populations. 
 

Keywords—Canopy multi-layering, limestone habitat, mean tree 
weight-density relationship, species diversity, subtropical forest.  

I. INTRODUCTION 
IOLOGICAL diversity is a key issue to nature conservation  
([1]) and species diversity is one of the important 

components of the biological diversity ([2]). The diversity of 
tree species is fundamental to total forest biodiversity, because 
trees provide resources and habitats for almost all other forest 
species ([3]-[7]).  Generally tree species diversity in a forest 
varies greatly from place to place mainly due to variation in 
biogeography, habitat and disturbance ([6]).  
  It is known that woody species diversity increases sharply 
along a latitudinal thermal gradient from higher latitudes to the 
tropics ([8], [9]) in accordance with a greater degree of stand 
multi-layering toward warmer regions ([10]-[12]). The 
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architectural stratification is an important factor to maintain 
higher woody species diversity ([5], [13]). 

The subtropical zone, which includes a chain of islands from 
Okinawa to Taiwan, is sufficiently moist to allow the 
development of subtropical evergreen broadleaf forests ([8]). 
The subtropical forest of Okinawa Islands is, therefore, 
phytogeographically precious. In the northern part of Okinawa 
Island, the subtropical area mainly consists of silicate rock, 
where a well-developed evergreen broadleaf forest dominated 
by Castanopsis sieboldii (Mak.) Hatusima exists. However, a 
small part of the area consists of limestone, where a different 
type of forest is developed in the absolutely absence of C. 
sieboldii. Several studies have been carried out on the woody 
species diversity, spatial distribution patterns of trees, woody 
species composition and stand stratification in silicate area ([2], 
[14]- [18]).  

However, no studies of such kinds have been performed yet 
in the limestone area. The objectives of this study are, 
therefore, to distinguish the canopy multi-layering of a forest 
grown in the limestone habitat, and to quantify woody species 
diversity related to the multi-layering structure.  

 
 

II.  METHODOLOGY 
  

A.  Study Site and Sampling  
The present study was conducted in a subtropical forest, 

located at Mt. Nekumatidi, Higashi Village, in the northern part 
of Okinawa Island (26º41′5″N and 128º8′19″E). The bedrock is 
mainly limestone and the soil pH is 8.1. This area is 
characterized by a humid-maritime subtropical climate. The 
wormth index is 212.8 ± 1.8 (SE) º C month, which is within the 
range of 180 to 240º C month of the subtropical region defined 
by [19]. The mean annual rainfall is 2176 ± 171 mm. Typhoons 
frequently occur between July and October, bringing high 
rainfall and strong winds. 

A sampling plot of area 1000 m2 (40 m ×  25 m) was 
established and divided into 160 quadrats (2.5 m × 2.5 m). The 
altitude of the plot, which faced to the north with a slope of 
25.4º, was 235 m above sea level. All woody plants were 
numbered and identified to species according to the 
nomenclature by [20]. Tree height H, stem diameter at breast 
height DBH (H > 1.3 m) and stem diameter at a height of H/10 
D0.1H were measured. 
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B.  Data Analysis 

1.  Canopy Multi-Layering 
To determine the multi-layering structure of the forest stand, 

the M–w diagram ([10]) was used. Tree weight w was assumed 
to be proportional to D0.1H

2 H and was arranged in descending 
order. Mean tree weight M from the maximum tree weight to a 
given tree weight w was calculated. The M–w diagram was 
constructed by plotting values of M against the corresponding 
values of w on logarithmic coordinates. Reference [10] pointed 
out that segments on the M–w diagram can be expressed by 
either of the equations: 
M = Aw + B                                                                             (1) 
M = Cwb                                                                                                 (2) 
where A, B, C and b are coefficients. Each segment is 
considered to be related to the story with characteristics 
specific to beta–type distributions designated by [10], [21], 
which belong to special forms of the beta distribution (e.g. 
[22]). These distributions reflect some aspect of the manner of 
packing of trees into the three-dimensional space as realized by 
a forest stand. 

A boundary between layers was distinguished by the 
relationships of the first derivative S1 and the second derivative 
S2 of M with respect to w on the M–w diagram.  The S1 and S2 
are defined as: 
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If the moving value of S1 is plotted against the geometric mean 
of the corresponding values of w, points of inflection probably 
appear instead of points of intersection between the segments 
on the M–w diagram. The point of inflection has its 
x-coordinate at which point the second derivative S2 has an 
extremum. The x-coordinate of the extremum, i.e. critical 
number, can be regarded as a boundary between layers ([4]).  

 
2.  Species Similarity  
The similarity of species composition between layers was 

calculated using the following index ΠC  ([23], [24]): 
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where S is the total number of species, nAi and nBi are the 
number of individuals of the ith species respectively belonging 
to two layers (layer A, layer B), and NA and NB  are respectively 
the number of total individuals in the two layers. The value of 

ΠC  is 1.0 when the number of individuals belonging to a 
species is the same between the two layers for all species, i.e. 
species composition is completely the same between the layers, 
and is 0.0 when no common species is found between them.  

 

3.  Overlapping in Spatial Distributions of Trees 
On the basis of the concept of mean crowding proposed by 

[25]; [26] derived the ω -index for analyzing of spatial 
association between species. The ω -index was applied as its 
version to a measure of the degree of overlapping in spatial 
distributions of trees between layers: 
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In Eq. (6), 
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where Q is the total number of quadrat existed in layer A and 
layer B, and jnA and jnB  are the number of individuals 
belonging to the jth quadrat in layer A and layer B, 

respectively. Similarly, 
*
BAm , quadrat-based mean crowding 

on layer B by layer A, is defined as: 
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The interlayer quadrat-based mean crowding indicates the 
mean number of individuals of the other layer per individual of 

the subject layer per quadrat. On the other hand,
*

Am , 
quadrat-based mean crowding within layer A, is defined as: 
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Similarly, 
*

Bm , quadrat-based mean crowding within layer B, 
is defined as: 
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The intralayer quadrat-based mean crowding indicates the 
mean number of the other individuals per individual of the 

subject layer per quadrat. The symbol Am ( Qn
Q

j
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1

A ) 

and Bm ( Qn
Q

j
j∑

=

=
1

B ) stand for the mean density per 

quadrat in layer A and layer B, respectively. The value of ω  
changes from the maximum of +1.0 for complete overlapping, 
through 0.0 for independent occurrence, to the minimum of 
–1.0 for complete exclusion. 
 

4.  Species Diversity  
The following two indices of Shannon’s index ([27]) H ′  

and Pielou’s index ([28]) J ′  were used to measure woody 
species diversity or equitability (evenness): 
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J ′ = 
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  ( maxH ′  = 2log S)                                           (8)                                                                              

where in  is the number of individuals of the ith species and N 
is the total number of individuals. 

III.  RESULTS AND DISCUSSION 

A.  Canopy Multi-Layering Structure 
The M–w diagram is illustrated in Fig. 1a. As is clear from 

Fig. 1b, the M–w diagram shows four phases, the first, second 
and fourth of which have the property of Eq. (1), i.e. Type I of 
the C–D curve tribe that contains eight types ([29]), whereas 
the third phase has the property of Eq. (2), i.e. a power function. 
As a result, it was confirmed that the forest consists of four 
layers. Fig. 1c shows that the extrema, represented by arrows, 
apparently emerged in the wS ln2 −  relationship. Their 
critical numbers, i.e. tree weights at boundaries between layers, 
were estimated to be 1640, 63.9 and 0.188 cm2 m. Reference  
[10] found out that the number of layers distinguished by the 
M–w diagram increases along a latitudinal thermal gradient 
from unity in northern conifer forests to four in tropical rain 
forests. Reference [4] revealed using the M–w diagram that a 
subtropical evergreen broadleaf forest grown in silicate habitat 
near the present forest also consists of four layers. 
   Fig. 2 shows the relationship between tree height H and 
weight w (cf. [30]), which was formulated as:  

 
11.52
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11
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wH
                                                  (9) 

The rank of tree height correlated well with that of tree weight 
(Spearman’s rank correlation coefficient rs = 0.96, t = 242, P ≅  
0). The heights of boundaries were determined as 7.83, 4.10 
and 0.53 m by substituting the critical numbers obtained above 
for w in Eq. (9). Therefore, the height range of a layer was 7.83 
< H ≤ 12.3 m for the top layer, 4.10 < H ≤ 7.83 m for the second 
layer, 0.53 < H ≤ 4.10 m for the third layer and 0.0 ≤ H ≤ 0.53 m 
for the bottom layer.  
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Fig. 1 Relationships of (a) mean tree weight M (b) the first derivative 

S1 and (c) the second derivative S2 to tree weight w on logarithmic 
coordinates. In the M–w diagram (a), the regression curves for the top, 
second and bottom layers are given by Eq. (1), where A = 0.903 and B 
= 1492 cm2 m (R2 = 0.99) for the top layer;  A = 1.49 and B = 524 cm2 

m (R2 = 0.98) for the second layer; A = 332 and B = 61.5 cm2 m (R2 = 
0.97) for the bottom layer. The regression curve for the third layer is 
given by Eq. (2), where C = 192 cm2-b m1-b and b = 0.284 (R2 = 0.92) 
 

B.  Species Similarity among the Layers 
As far as the species composition among the layers concerns 

on the basis of the similarity index ΠC  (Fig. 3), the forest is 
classified into three groups. The first group consists of the third 
and the bottom layers, the second group the third, bottom and 
the second layers, and the third group the top and the lower 
three layers. Among these groups, the first group showed the 
highest similarity in species composition with a ΠC -value of 
0.82. The next highest similarity was in the second group with a 

ΠC -value of 0.58, indicating that species composition was 
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nearly the same. The lowest ΠC -value of 0.13 was found in 
the third group, indicating that a few species were similar 
between the layers.  

Species composition was almost the same between the third 
and the bottom layers because of the similar characteristics of 
the species of these lower layers, i.e. the species are mainly 
shade-tolerant, occupying the lower canopy layers. A few 
species (10% of the total species), which have a nature of 
facultative shade species, can grow from the bottom to the 
upper layers.  However, the similarity in species composition in 
the third group was almost exclusive, i.e. different species 
composition, because the top layer may consist of sun and 
facultative shade species, whereas the lower layers may consist 
of shade and facultative shade species. In addition, Rhus 
succedanea L. had the highest number in the upper layers, 
whereas it had no saplings and seedlings in the lower layers. 
This result indicates the nature of shade-intolerance for R. 
succedanea, i.e. early successional species (pioneer species), 
and also indicates a sign of extinction. Thus, this forest is likely 
to be in compositional unequilibrium.  
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Fig. 2 Relationship between tree height H and weight w. The 

regression curve is given by Eq. (9), where R2 = 0.95. Filled circles, 
top layer (7.83 < H ≤ 12.3 m); open circles, second layer (4.10 < H ≤ 

7.83 m); crosses, third layer (0.53 < H ≤ 4.10 m); open squares, 
bottom layer (0.00 < H ≤ 0.53 m) 

 
C.  Overlapping in Spatial Distributions of Trees among the 

Layers  
A dendrogram of the degree of overlapping in spatial 

distributions of trees among the layers is shown in Fig. 4. It 
shows that the ω -index between the third layer and the bottom 
layer was 0.38, indicating that the spatial distributions of trees 
were overlapped between the two layers. The ω -index 
between the second layer, and the third and bottom layer was 
0.17, indicating that the spatial distributions of trees were 
nearly independent between the layers. However, the spatial 
distributions of the top layer and the lower three layers were 
independent or slightly exclusive with a value of –0.06. Thus, 
sufficient light would penetrate into the lower layers, where 
trees can catch light necessary to photosynthesize. 
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Fig. 3 Dendrogram of the degree of similarity ΠC  in species 

composition among layers 
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Fig. 4 Dendrogram of the degree of overlapping ω  in the spatial 

distributions of trees among layers 
 

D.  Woody Species Diversity and Evenness in the Stratified 
Forest Stand 

Fig. 5 shows that the values of H ′ and J ′  (evenness) 
tended to increase from the bottom layer upward, except for 
H ′ -value of the top layer. The highest value of H ′  occurred 
in the second layer, though species richness (44) and evenness 
were the second highest. The lowest value of H ′ was in the top 
layer. This is ascribed to quite low species richness (11) as 
compared with those in other layers. An increase of H ′ -value 
from the bottom layer to the third layer corresponds to increases 
of species richness and evenness in the same direction.   

In the present forest, the values of H ′ and J ′  for H > 1.3 m 
and DBH ≥ 4.5 cm were higher than values of H ′ and J ′ for 
the total stand, though the species richness was low for H > 1.3 
m and DBH ≥ 4.5 cm (Table I). This may be caused by a high 
evenness for large trees in the upper layers. This trend of 
increasing diversity with increasing layer height becomes much 
clear in Fig. 5, where the values of H ′ and J ′  increased 
upward. In the subtropical evergreen broadleaf forest in silicate 
area in Okinawa Island, however, the values of diversity 
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indices H ′ and J ′ increased downward, indicating that the 
high-species diversity depends on small trees in the lower 
layers ([4]). In the present forest, it is undoubted that the high 
woody species diversity depends on large trees in the upper 
layers, especially in the second layer. Thus, an increase of 
woody species diversity with an increase of layer height may be 
a characteristic of young-aged subtropical forests in limestone 
habitats in the northern part of Okinawa Island.   
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Fig. 5 Relationships of Shannon’s index H ′ and Pielou’s index J ′ to 
layer. Open circle, H ′ ; filled circle, J ′ . The number of species is 
11 for the top, 44 for the second, 53 for the third and 41 for the bottom 

layers 
 
E.  Mean Tree Weight and Density among the Layers 
As shown in Fig. 6, mean tree weight iw of the ith layer 

decreased from the top (i = 1) toward the bottom layer (i = 4), 
whereas the opposite trend was observed for the tree density 

iρ of the ith layer. This trend was well expressed in the form 
([4]): 
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ρ α i
ii Kw                                                         (10)                                                               

where the values of coefficients K , α  and oρ were 86697 

cm2 m ha–α, 0.599 and 22327 ha–1, respectively. This 
relationship is analogous to the process of self-thinning plant 
populations ([31]). This relationship in the present forest was 
the same trend as that in the subtropical evergreen broadleaf 
forest in silicate area ([4]). This may be a general phenomenon 
for subtropical forests. 
 
 
 
 

 

TABLE I 
COMPARISON IN SPECIES DIVERSITY AND EVENNESS BETWEEN DIFFERENT 

TREE SIZES 
Stand age No. of 

trees 
No. of 
species 

H' (bit) J' 

Total stand 47980 62 4.21 0.73 
H > 1.3 m 16730 58 4.82 0.82 
DBH ≥ 4.5 cm   3330 40 4.35 0.82 
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Fig. 6 Relationship between mean tree weight iw and tree density 

iρ . The curve is given by Eq. (10), where R2 ≅  1.0 
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